This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/pl/arith.yap
Vítor Santos Costa II 007bfc21b9 document aggregate library
support plus/3 and succ/2 and document them, plus between
2010-04-20 23:06:41 +01:00

462 lines
11 KiB
Prolog

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: arith.yap *
* Last rev: *
* mods: *
* comments: arithmetical optimization *
* *
*************************************************************************/
% the default mode is on
expand_exprs(Old,New) :-
(get_value('$c_arith',true) ->
Old = on ;
Old = off ),
'$set_arith_expan'(New).
'$set_arith_expan'(on) :- set_value('$c_arith',true).
'$set_arith_expan'(off) :- set_value('$c_arith',[]).
compile_expressions :- set_value('$c_arith',true).
do_not_compile_expressions :- set_value('$c_arith',[]).
'$c_built_in'(IN, M, OUT) :-
get_value('$c_arith',true), !,
'$do_c_built_in'(IN, M, OUT).
'$c_built_in'(IN, _, IN).
'$do_c_built_in'(G, M, OUT) :- var(G), !,
'$do_c_built_in'(call(G), M, OUT).
'$do_c_built_in'(Mod:G, _, GN) :- !,
'$do_c_built_in'(G, Mod, GN0),
(GN0 = (_,_) -> GN = GN0 ; GN = Mod:GN0).
'$do_c_built_in'(\+ G, _, OUT) :-
nonvar(G),
G = (A = B),
!,
OUT = (A \= B).
'$do_c_built_in'(call(G), _, OUT) :-
nonvar(G),
G = (Mod:G1), !,
'$do_c_built_metacall'(G1, Mod, OUT).
'$do_c_built_in'(call(G), Mod, OUT) :-
var(G), !,
'$do_c_built_metacall'(G, Mod, OUT).
'$do_c_built_in'(depth_bound_call(G,D), M, OUT) :- !,
'$do_c_built_in'(G, M, NG),
% make sure we don't have something like (A,B) -> $depth_next(D), A, B.
( '$composed_built_in'(NG) ->
OUT = depth_bound_call(NG,D)
;
OUT = ('$set_depth_limit_for_next_call'(D),NG)
).
'$do_c_built_in'(once(G), M, (yap_hacks:current_choice_point(CP),NG,'$$cut_by'(CP))) :- !,
'$do_c_built_in'(G,M,NG0),
'$clean_cuts'(NG0, NG).
'$do_c_built_in'(forall(Cond,Action), M, \+((NCond, \+(NAction)))) :- !,
'$do_c_built_in'(Cond,M,ICond),
'$do_c_built_in'(Action,M,IAction),
'$clean_cuts'(ICond, NCond),
'$clean_cuts'(IAction, NAction).
'$do_c_built_in'(ignore(Goal), M, (NGoal -> true ; true)) :- !,
'$do_c_built_in'(Goal,M,IGoal),
'$clean_cuts'(IGoal, NGoal).
'$do_c_built_in'(if(G,A,B), M, (yap_hacks:current_choicepoint(DCP),NG,yap_hacks:cut_at(DCP),NA; NB)) :- !,
'$do_c_built_in'(G,M,NG0),
'$clean_cuts'(NG0, NG),
'$do_c_built_in'(A,M,NA),
'$do_c_built_in'(B,M,NB).
'$do_c_built_in'((G*->A), M, (NG,NA)) :- !,
'$do_c_built_in'(G,M,NG0),
'$clean_cuts'(NG0, NG),
'$do_c_built_in'(A,M,NA).
'$do_c_built_in'('C'(A,B,C), _, (A=[B|C])) :- !.
'$do_c_built_in'(X is Y, M, P) :-
primitive(X), !,
'$do_c_built_in'(X =:= Y, M, P).
'$do_c_built_in'(X is Y, M, (P,A=X)) :-
nonvar(X), !,
'$do_c_built_in'(A is Y, M, P).
'$do_c_built_in'(X is Y, _, P) :-
nonvar(Y), % Don't rewrite variables
!,
(
number(Y),
P = ( X = Y); % This case reduces to an unification
'$expand_expr'(Y, P0, X0),
'$drop_is'(X0, X, P0, P)
).
'$do_c_built_in'(Comp0, _, R) :- % now, do it for comparisons
'$compop'(Comp0, Op, E, F),
!,
'$compop'(Comp, Op, U, V),
'$expand_expr'(E, P, U),
'$expand_expr'(F, Q, V),
'$do_and'(P, Q, R0),
'$do_and'(R0, Comp, R).
'$do_c_built_in'(P, _, P).
'$do_c_built_metacall'(G1, Mod, '$execute_wo_mod'(G1,Mod)) :-
var(Mod), !.
'$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :-
var(G1), atom(Mod), !.
'$do_c_built_metacall'(Mod:G1, _, OUT) :- !,
'$do_c_built_metacall'(G1, Mod, OUT).
'$do_c_built_metacall'(G1, Mod, '$execute_in_mod'(G1,Mod)) :-
atom(Mod), !.
'$do_c_built_metacall'(G1, Mod, call(Mod:G1)).
'$do_and'(true, P, P) :- !.
'$do_and'(P, true, P) :- !.
'$do_and'(P, Q, (P,Q)).
% V is the result of the simplification,
% X the result of the initial expression
% and the last argument is how we are writing this result
'$drop_is'(V, V1, P0, G) :- var(V), !, % usual case
V = V1, P0 = G.
'$drop_is'(V, X, P0, P) :- % atoms
'$do_and'(P1, X is V, P).
% Table of arithmetic comparisons
'$compop'(X < Y, < , X, Y).
'$compop'(X > Y, > , X, Y).
'$compop'(X=< Y,=< , X, Y).
'$compop'(X >=Y, >=, X, Y).
'$compop'(X=:=Y,=:=, X, Y).
'$compop'(X=\=Y,=\=, X, Y).
'$composed_built_in'(V) :- var(V), !,
fail.
'$composed_built_in'((yap_hacks:current_choice_point(_),NG,'$$cut_by'(_))) :- !,
'$composed_built_in'(NG).
'$composed_built_in'((_,_)).
'$composed_built_in'((_;_)).
'$composed_built_in'((_|_)).
'$composed_built_in'((_->_)).
'$composed_built_in'(_:G) :-
'$composed_built_in'(G).
'$composed_built_in'(\+G) :-
'$composed_built_in'(G).
'$composed_built_in'(not(G)) :-
'$composed_built_in'(G).
% expanding an expression:
% first argument is the expression not expanded,
% second argument the expanded expression
% third argument unifies with the result from the expression
'$expand_expr'(V, true, V) :-
var(V), !.
'$expand_expr'([T], E, V) :- !,
'$expand_expr'(T, E, V).
'$expand_expr'(A, true, A) :-
atomic(A), !.
'$expand_expr'(T, E, V) :-
T =.. [O, A], !,
'$expand_expr'(A, Q, X),
'$expand_expr'(O, X, V, Q, E).
'$expand_expr'(T, E, V) :-
T =.. [O, A, B], !,
'$expand_expr'(A, Q, X),
'$expand_expr'(B, R, Y),
'$expand_expr'(O, X, Y, V, Q, S),
'$do_and'(R, S, E).
% expanding an expression of the form:
% O is Op(X),
% after having expanded into Q
% and giving as result P (the last argument)
'$expand_expr'(Op, X, O, Q, Q) :-
number(X), !,
is( O, Op, X).
'$expand_expr'(Op, X, O, Q, P) :-
'$unary_op_as_integer'(Op,IOp),
'$do_and'(Q, is( O, IOp, X), P).
% expanding an expression of the form:
% O is Op(X,Y),
% after having expanded into Q
% and giving as result P (the last argument)
% included is some optimization for:
% incrementing and decrementing,
% the elementar arithmetic operations [+,-,*,//]
'$expand_expr'(Op, X, Y, O, Q, Q) :-
number(X), number(Y), !,
is( O, Op, X, Y).
'$expand_expr'(+, X, Y, O, Q, P) :- !,
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$plus'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(-, X, Y, O, Q, P) :-
var(X), number(Y),
Z is -Y, !,
'$expand_expr'(+, Z, X, O, Q, P).
'$expand_expr'(-, X, Y, O, Q, P) :- !,
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$minus'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(*, X, Y, O, Q, P) :- !,
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$times'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(//, X, Y, O, Q, P) :-
nonvar(Y), Y == 0, !,
'$binary_op_as_integer'(//,IOp),
'$do_and'(Q, is(O,IOp,X,Y), P).
'$expand_expr'(//, X, Y, O, Q, P) :- !,
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$div'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(/\, X, Y, O, Q, P) :- !,
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$and'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(\/, X, Y, O, Q, P) :- !,
'$preprocess_args_for_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$or'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(<<, X, Y, O, Q, P) :-
var(X), number(Y), Y < 0,
Z is -Y, !,
'$expand_expr'(>>, X, Z, O, Q, P).
'$expand_expr'(<<, X, Y, O, Q, P) :- !,
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$sll'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(>>, X, Y, O, Q, P) :-
var(X), number(Y), Y < 0,
Z is -Y, !,
'$expand_expr'(<<, X, Z, O, Q, P).
'$expand_expr'(>>, X, Y, O, Q, P) :- !,
'$preprocess_args_for_non_commutative'(X, Y, X1, Y1, E),
'$do_and'(E, '$slr'(X1,Y1,O), F),
'$do_and'(Q, F, P).
'$expand_expr'(Op, X, Y, O, Q, P) :-
'$binary_op_as_integer'(Op,IOp),
'$do_and'(Q, is(O,IOp,X,Y), P).
'$preprocess_args_for_commutative'(X, Y, X, Y, true) :-
var(X), var(Y), !.
'$preprocess_args_for_commutative'(X, Y, X, Y, true) :-
var(X), integer(Y), \+ '$bignum'(Y), !.
'$preprocess_args_for_commutative'(X, Y, X, Z, Z = Y) :-
var(X), !.
'$preprocess_args_for_commutative'(X, Y, Y, X, true) :-
integer(X), \+ '$bignum'(X), var(Y), !.
'$preprocess_args_for_commutative'(X, Y, Z, X, Z = Y) :-
integer(X), \+ '$bignum'(X), !.
'$preprocess_args_for_commutative'(X, Y, Z, W, E) :-
'$do_and'(Z = X, Y = W, E).
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
var(X), var(Y), !.
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
var(X), integer(Y), \+ '$bignum'(Y), !.
'$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :-
var(X), !.
'$preprocess_args_for_non_commutative'(X, Y, X, Y, true) :-
integer(X), \+ '$bignum'(X), var(Y), !.
'$preprocess_args_for_non_commutative'(X, Y, X, Z, Z = Y) :-
integer(X), \+ '$bignum'(X), !.
'$preprocess_args_for_non_commutative'(X, Y, Z, W, E) :-
'$do_and'(Z = X, Y = W, E).
/* Arithmetics */
between(I,M,J) :-
(
var(I)
->
'$do_error'(instantiation_error,between(I,M,J))
;
integer(I)
->
(
var(M)
->
'$do_error'(instantiation_error,between(I,M,J))
;
integer(M)
->
(
var(J)
->
'$between'(I,M,J)
;
integer(J)
->
J >= I, J =< M
;
'$do_error'(type_error(integer, J),between(I,M,J))
)
;
M == inf ->
(
var(J)
->
'$between_inf'(I,J)
;
integer(J)
->
J >= I
;
'$do_error'(type_error(integer, J),between(I,M,J))
)
;
M == infinity ->
(
var(J)
->
'$between_inf'(I,J)
;
integer(J)
->
J >= I
;
'$do_error'(type_error(integer, J),between(I,M,J))
)
;
'$do_error'(type_error(integer, M),between(I,M,J))
)
;
'$do_error'(type_error(integer, I),between(I,M,J))
).
'$between'(I,M,I) :- (I == M -> ! ; true ).
'$between'(I0,I,J) :- I0 < I,
I1 is I0+1,
'$between'(I1,I,J).
'$between_inf'(I,I).
'$between_inf'(I,J) :-
I1 is I+1,
'$between_inf'(I1,J).
plus(X, Y, Z) :-
(
var(X)
->
(
integer(Y), integer(Z)
->
'$minus'(Z,Y,X)
;
'$plus_error'(X,Y,Z)
)
;
integer(X)
->
(
var(Y)
->
(
integer(Z)
->
'$minus'(Z,X,Y)
;
'$plus_error'(X,Y,Z)
)
;
integer(Y)
->
(
integer(Z)
->
'$minus'(Z,Y,X)
;
var(Z)
->
'$plus'(X,Y,Z)
;
'$plus_error'(X,Y,Z)
)
;
'$plus_error'(X,Y,Z)
)
;
'$plus_error'(X,Y,Z)
).
'$plus_error'(X,Y,Z) :-
nonvar(X),
\+ integer(X),
'$do_error'(type_error(integer, X),plus(X,Y,Z)).
'$plus_error'(X,Y,Z) :-
nonvar(Y),
\+ integer(Y),
'$do_error'(type_error(integer, Y),plus(X,Y,Z)).
'$plus_error'(X,Y,Z) :-
nonvar(Z),
\+ integer(Z),
'$do_error'(type_error(integer, Z),plus(X,Y,Z)).
'$plus_error'(X,Y,Z) :-
'$do_error'(instantiation_error,plus(X,Y,Z)).
% M and N nonnegative integers, N is the successor of M
succ(M,N) :-
(
var(M)
->
(
integer(N),
N > 0
->
'$plus'(N,-1,M)
;
'$succ_error'(M,N)
)
;
integer(M),
M >= 0
->
(
var(N)
->
'$plus'(M,1,N)
;
integer(N),
N > 0
->
'$plus'(M,1,N)
;
'$succ_error'(M,N)
)
;
'$succ_error'(M,N)
).
'$succ_error'(M,N) :-
var(M),
var(N), !,
'$do_error'(instantiation_error,succ(M,N)).
'$succ_error'(M,N) :-
nonvar(M),
\+ integer(M),
'$do_error'(type_error(integer, M),succ(M,N)).
'$succ_error'(M,N) :-
nonvar(M),
M < 0,
'$do_error'(domain_error(not_less_than_zero, M),succ(M,N)).
'$succ_error'(M,N) :-
nonvar(N),
\+ integer(N),
'$do_error'(type_error(integer, N),succ(M,N)).
'$succ_error'(M,N) :-
nonvar(N),
N < 0,
'$do_error'(domain_error(not_less_than_zero, N),succ(M,N)).