This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/matrix.yap
Vitor Santos Costa fda10395b8 c-interface
2019-04-09 18:06:27 +01:00

1432 lines
34 KiB
Prolog
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-2006 *
* *
**************************************************************************
* *
* File: matrix.yap *
* Last rev: *
* mods: *
* comments: Have some fun with blobs *
* *
*************************************************************************/
/**
* @file matrix.yap
* @author VITOR SANTOS COSTA <vsc@VITORs-MBP.lan>
* @date Tue Nov 17 22:53:40 2015
*
* @brief Vector, Array and Matrix library
*
*
*/
:- module( matrix,
[(<==)/2, op(800, xfx, <==),
(+=)/2, op(800, xfx, +=),
(-=)/2, op(800, xfx, -=),
op(700, xfx, in),
op(700, xfx, ins),
op(450, xfx, ..), % should bind more tightly than \/
op(710, xfx, of), of/2,
matrix_new/3,
matrix_new/4,
matrix_new_set/4,
matrix_dims/2,
matrix_ndims/2,
matrix_size/2,
matrix_type/2,
matrix_to_list/2,
matrix_to_lists/2,
matrix_get/3,
matrix_set/3,
matrix_set_all/2,
matrix_add/3,
matrix_inc/2,
matrix_dec/2,
matrix_mult/2,
matrix_inc/3,
matrix_dec/3,
matrix_arg_to_offset/3,
matrix_offset_to_arg/3,
matrix_max/2,
matrix_maxarg/2,
matrix_min/2,
matrix_minarg/2,
matrix_sum/2,
matrix_sum_out/3,
matrix_sum_out_several/3,
matrix_sum_logs_out/3,
matrix_sum_logs_out_several/3,
matrix_add_to_all/2,
matrix_agg_lines/3,
matrix_agg_cols/3,
matrix_to_logs/1,
matrix_to_exps/1,
matrix_to_exps2/1,
matrix_to_logs/2,
matrix_to_exps/2,
matrix_op/4,
matrix_op_to_all/4,
matrix_op_to_lines/4,
matrix_op_to_cols/4,
matrix_shuffle/3,
matrix_transpose/2,
matrix_set_all_that_disagree/5,
matrix_expand/3,
matrix_select/4,
matrix_column/3,
matrix_get/2,
matrix_set/2,
foreach/2,
foreach/4,
op(50, yf, []),
op(50, yf, '()'),
op(100, xfy, '.'),
op(100, fy, '.')
]).
/** @defgroup matrix Matrix Library
@ingroup library
@{
This package provides a fast implementation of multi-dimensional
matrices of integers and floats. In contrast to dynamic arrays, these
matrices are multi-dimensional and compact. In contrast to static
arrays. these arrays are allocated in the stack, and disppear in
backtracking. Matrices are available by loading the library
`library(matrix)`. They are multimensional objects of type:
+ <tt>terms</tt>: Prolog terms
+ <tt>ints</tt>: bounded integers, represented as an opaque term. The
maximum integer depends on hardware, but should be obtained from the
natural size of the machine.
+ <tt>floats</tt>: floating-point numbers, represented as an opaque term.
Matrix elements can be accessed through the `matrix_get/2`
predicate or through an <tt>R</tt>-inspired access notation (that uses the ciao
style extension to `[]`). Examples include:
+ Access the second row, third column of matrix <tt>X</tt>. Indices start from
`0`,
~~~~
_E_ <== _X_[2,3]
~~~~
+ Access all the second row, the output is a list ofe elements.
~~~~
_L_ <== _X_[2,_]
~~~~
+ Access all the second, thrd and fourth rows, the output is a list of elements.
~~~~
_L_ <== _X_[2..4,_]
~~~~
+ Access all the fifth, sixth and eight rows, the output is a list of elements.
~~~~
_L_ <== _X_[2..4+3,_]
~~~~
The matrix library also supports a B-Prolog/ECliPSe inspired `foreach`iterator to iterate over
elements of a matrix:
+ Copy a vector, element by element.
~~~~
foreach(I in 0..N1, X[I] <== Y[I])
~~~~
+ The lower-triangular matrix _Z_ is the difference between the
lower-triangular and upper-triangular parts of _X_.
~~~~
foreach([I in 0..N1, J in I..N1], Z[I,J] <== X[I,J] - X[I,J])
~~~~
+ Add all elements of a matrix by using _Sum_ as an accumulator.
~~~~
foreach([I in 0..N1, J in 0..N1], plus(X[I,J]), 0, Sum)
~~~~
Notice that the library does not support all known matrix operations. Please
contact the YAP maintainers if you require extra functionality.
+ _X_ <== array[ _Dim1_,..., _Dimn_] of _Objects_
The of/2 operator can be used to create a new array of
_Objects_. The objects supported are:
+ `Unbound Variable`
create an array of free variables
+ `ints `
create an array of integers
+ `floats `
create an array of floating-point numbers
+ `_I_: _J_`
create an array with integers from _I_ to _J_
+ `[..]`
create an array from the values in a list
The dimensions can be given as an integer, and the matrix will be
indexed `C`-style from `0..( _Max_-1)`, or can be given
as an interval ` _Base_.. _Limit_`. In the latter case,
matrices of integers and of floating-point numbers should have the same
_Base_ on every dimension.
*/
/*
A matrix is an object with integer or floating point numbers. A matrix
may have a number of dimensions. These routines implement a number of
routine manipulation procedures.
'$matrix'(Type,D1,D2,...,Dn,data(......))
Type = int, float
Operations:
typedef enum {
MAT_SUM=0,
MAT_SUB=1,
MAT_TIMES=2,
MAT_DIV=3,
MAT_IDIV=4,
MAT_ZDIV=5
} op_type;
*/
/** @pred ?_LHS_ <== ?_RHS_ is semidet
General matrix assignment operation. It evaluates the right-hand side
according to the
left-hand side and to the matrix:
+ if _LHS_ is part of an integer or floating-point matrix,
perform non-backtrackable assignment.
+ other unify left-hand side and right-hand size.
The right-hand side supports the following operators:
+ `[]/2`
written as _M_[ _Offset_]: obtain an element or list of elements
of matrix _M_ at offset _Offset_.
+ `matrix/1`
create a vector from a list
+ `matrix/2`
create a matrix from a list. Options are:
+ dim=
a list of dimensions
+ type=
integers, floating-point or terms
+ base=
a list of base offsets per dimension (all must be the same for arrays of
integers and floating-points
+ `matrix/3`
create matrix giving two options
+ `dim/1`
list with matrix dimensions
+ `nrow/1`
number of rows in bi-dimensional matrix
+ `ncol/1`
number of columns in bi-dimensional matrix
+ `length/1`
size of a matrix
+ `size/1`
size of a matrix
+ `max/1`
maximum element of a numeric matrix
+ `maxarg/1`
argument of maximum element of a numeric matrix
+ `min/1`
minimum element of a numeric matrix
+ `minarg/1`
argument of minimum element of a numeric matrix
+ `list/1`
represent matrix as a list
+ `lists/2`
represent matrix as list of embedded lists
+ `../2`
_I_.. _J_ generates a list with all integers from _I_ to
_J_, included.
+ `+/2`
add two numbers, add two matrices element-by-element, or add a number to
all elements of a matrix or list.
+ `-/2 `
subtract two numbers, subtract two matrices or lists element-by-element, or subtract a number from
all elements of a matrix or list
+ `* /2`
multiply two numbers, multiply two matrices or lists
element-by-element, or multiply a number from all elements of a
matrix or list
+ `log/1`
natural logarithm of a number, matrix or list
+ `exp/1 `
natural exponentiation of a number, matrix or list
*/
/** @pred matrix_add(+ _Matrix_,+ _Position_,+ _Operand_)
Add _Operand_ to the element of _Matrix_ at position
_Position_.
*/
/** @pred matrix_agg_cols(+ _Matrix_,+Operator,+ _Aggregate_)
If _Matrix_ is a n-dimensional matrix, unify _Aggregate_ with
the one dimensional matrix where each element is obtained by adding all
Matrix elements with same first index. Currently, only addition is supported.
*/
/** @pred matrix_agg_lines(+ _Matrix_,+Operator,+ _Aggregate_)
If _Matrix_ is a n-dimensional matrix, unify _Aggregate_ with
the n-1 dimensional matrix where each element is obtained by adding all
_Matrix_ elements with same last n-1 index. Currently, only addition is supported.
*/
/** @pred matrix_arg_to_offset(+ _Matrix_,+ _Position_,- _Offset_)
Given matrix _Matrix_ return what is the numerical _Offset_ of
the element at _Position_.
*/
/** @pred matrix_column(+ _Matrix_,+ _Column_,- _NewMatrix_)
Select from _Matrix_ the column matching _Column_ as new matrix _NewMatrix_. _Column_ must have one less dimension than the original matrix.
*/
/** @pred matrix_dec(+ _Matrix_,+ _Position_)
Decrement the element of _Matrix_ at position _Position_.
*/
/** @pred matrix_dec(+ _Matrix_,+ _Position_,- _Element_)
Decrement the element of _Matrix_ at position _Position_ and
unify with _Element_.
*/
/** @pred matrix_dims(+ _Matrix_,- _Dims_)
Unify _Dims_ with a list of dimensions for _Matrix_.
*/
/** @pred matrix_expand(+ _Matrix_,+ _NewDimensions_,- _New_)
Expand _Matrix_ to occupy new dimensions. The elements in
_NewDimensions_ are either 0, for an existing dimension, or a
positive integer with the size of the new dimension.
*/
/** @pred matrix_get(+ _Matrix_,+ _Position_,- _Elem_)
Unify _Elem_ with the element of _Matrix_ at position
_Position_.
*/
/** @pred matrix_get(+ _Matrix_[+ _Position_],- _Elem_)
Unify _Elem_ with the element _Matrix_[ _Position_].
*/
/** @pred matrix_inc(+ _Matrix_,+ _Position_)
Increment the element of _Matrix_ at position _Position_.
*/
/** @pred matrix_inc(+ _Matrix_,+ _Position_,- _Element_)
Increment the element of _Matrix_ at position _Position_ and
unify with _Element_.
*/
/** @pred matrix_max(+ _Matrix_,+ _Max_)
Unify _Max_ with the maximum in matrix _Matrix_.
*/
/** @pred matrix_maxarg(+ _Matrix_,+ _Maxarg_)
Unify _Max_ with the position of the maximum in matrix _Matrix_.
*/
/** @pred matrix_min(+ _Matrix_,+ _Min_)
Unify _Min_ with the minimum in matrix _Matrix_.
*/
/** @pred matrix_minarg(+ _Matrix_,+ _Minarg_)
Unify _Min_ with the position of the minimum in matrix _Matrix_.
*/
/** @pred matrix_ndims(+ _Matrix_,- _Dims_)
Unify _NDims_ with the number of dimensions for _Matrix_.
*/
/** @pred matrix_new(+ _Type_,+ _Dims_,+ _List_,- _Matrix_)
Create a new matrix _Matrix_ of type _Type_, which may be one of
`ints` or `floats`, with dimensions _Dims_, and
initialized from list _List_.
*/
/** @pred matrix_new(+ _Type_,+ _Dims_,- _Matrix_)
Create a new matrix _Matrix_ of type _Type_, which may be one of
`ints` or `floats`, and with a list of dimensions _Dims_.
The matrix will be initialized to zeros.
~~~~~
?- matrix_new(ints,[2,3],Matrix).
Matrix = {..}
~~~~~
Notice that currently YAP will always write a matrix of numbers as `{..}`.
*/
/** @pred matrix_new_set(? _Dims_,+ _OldMatrix_,+ _Value_,- _NewMatrix_)
Create a new matrix _NewMatrix_ of type _Type_, with dimensions
_Dims_. The elements of _NewMatrix_ are set to _Value_.
*/
/** @pred matrix_offset_to_arg(+ _Matrix_,- _Offset_,+ _Position_)
Given a position _Position _ for matrix _Matrix_ return the
corresponding numerical _Offset_ from the beginning of the matrix.
*/
/** @pred matrix_op(+ _Matrix1_,+ _Matrix2_,+ _Op_,- _Result_)
_Result_ is the result of applying _Op_ to matrix _Matrix1_
and _Matrix2_. Currently, only addition (`+`) is supported.
*/
/** @pred matrix_op_to_all(+ _Matrix1_,+ _Op_,+ _Operand_,- _Result_)
_Result_ is the result of applying _Op_ to all elements of
_Matrix1_, with _Operand_ as the second argument. Currently,
only addition (`+`), multiplication (`\*`), and division
(`/`) are supported.
*/
/** @pred matrix_op_to_cols(+ _Matrix1_,+ _Cols_,+ _Op_,- _Result_)
_Result_ is the result of applying _Op_ to all elements of
_Matrix1_, with the corresponding element in _Cols_ as the
second argument. Currently, only addition (`+`) is
supported. Notice that _Cols_ will have n-1 dimensions.
*/
/** @pred matrix_op_to_lines(+ _Matrix1_,+ _Lines_,+ _Op_,- _Result_)
_Result_ is the result of applying _Op_ to all elements of
_Matrix1_, with the corresponding element in _Lines_ as the
second argument. Currently, only division (`/`) is supported.
*/
/** @pred matrix_select(+ _Matrix_,+ _Dimension_,+ _Index_,- _New_)
Select from _Matrix_ the elements who have _Index_ at
_Dimension_.
*/
/** @pred matrix_set(+ _Matrix_,+ _Position_,+ _Elem_)
Set the element of _Matrix_ at position
_Position_ to _Elem_.
*/
/** @pred matrix_set(+ _Matrix_[+ _Position_],+ _Elem_)
Set the element of _Matrix_[ _Position_] to _Elem_.
*/
/** @pred matrix_set_all(+ _Matrix_,+ _Elem_)
Set all element of _Matrix_ to _Elem_.
*/
/** @pred matrix_shuffle(+ _Matrix_,+ _NewOrder_,- _Shuffle_)
Shuffle the dimensions of matrix _Matrix_ according to
_NewOrder_. The list _NewOrder_ must have all the dimensions of
_Matrix_, starting from 0.
*/
/** @pred matrix_size(+ _Matrix_,- _NElems_)
Unify _NElems_ with the number of elements for _Matrix_.
*/
/** @pred matrix_sum(+ _Matrix_,+ _Sum_)
Unify _Sum_ with the sum of all elements in matrix _Matrix_.
*/
/** @pred matrix_to_list(+ _Matrix_,- _Elems_)
Unify _Elems_ with the list including all the elements in _Matrix_.
*/
/** @pred matrix_transpose(+ _Matrix_,- _Transpose_)
Transpose matrix _Matrix_ to _Transpose_. Equivalent to:
~~~~~
matrix_transpose(Matrix,Transpose) :-
matrix_shuffle(Matrix,[1,0],Transpose).
~~~~~
*/
/** @pred matrix_type(+ _Matrix_,- _Type_)
Unify _NElems_ with the type of the elements in _Matrix_.
*/
:- load_foreign_files([matrix], [], init_matrix).
:- multifile rhs_opaque/1, array_extension/2.
:- meta_predicate foreach(+,0), foreach(+,2, +, -).
:- use_module(library(maplist)).
:- use_module(library(mapargs)).
:- use_module(library(lists)).
( X <== '[]'(Dims0, array) of T ) :-
var(X),
( T== ints -> true ; T== floats),
!,
foldl( norm_dim, Dims0, Dims, Bases, 1, _Size ),
matrix_new( T , Dims, _, X ),
matrix_base(X, Bases).
( X <== '[]'(Dims0, array) of T ) :-
atom(X),
( T== ints -> true ; T== floats),
!,
foldl( norm_dim, Dims0, _Dims, _Bases, 1, Size ),
static_array( X, Size, [float] ).
( X <== '[]'(Dims0, array) of (I:J) ) :-
var(X),
integer(I),
integer(J),
!,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
matrix_seq(I, J, Dims, X),
matrixn_size(X, Size),
matrix_base(X, Bases).
( X <== '[]'(Dims0, array) of L ) :-
is_list(L),
!,
length( L, Size ), !,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
X <== matrix( L, [dim=Dims,base=Bases] ).
( X <== '[]'(Dims0, array) of Pattern ) :-
array_extension(Pattern, Goal),
!,
foldl( norm_dim, Dims0, Dims, Bases, 1, Size ),
call(Goal, Pattern, Dims, Size, L),
X <== matrix( L, [dim=Dims,base=Bases] ).
( LHS <== RHS ) :-
rhs(RHS, R),
set_lhs( LHS, R).
norm_dim( I..J, D, I, P0, P) :- !,
D is J+1-I,
P is P0*D.
norm_dim( I, I, 0, P0, P ) :-
P is P0*I.
rhs(RHS, RHS) :- var(RHS), !.
% base case
rhs(A, A) :- atom(A), !.
rhs(RHS, RHS) :- number(RHS), !.
rhs(RHS, RHS) :- opaque(RHS), !.
rhs(RHS, RHS) :- RHS = '$matrix'(_, _, _, _, _), !.
rhs(matrix(List), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [], RHS).
rhs(matrix(List, Opt1), RHS) :- !,
rhs( List, A1),
new_matrix(A1, Opt1, RHS).
rhs(matrix(List, Opt1, Opt2), RHS) :- !,
rhs( List, A1),
new_matrix(A1, [Opt1, Opt2], RHS).
rhs(dim(RHS), Dims) :- !,
rhs(RHS, X1),
matrix_dims( X1, Dims ).
rhs(dims(RHS), Dims) :- !,
rhs(RHS, X1),
matrix_dims( X1, Dims ).
rhs(nrow(RHS), NRow) :- !,
rhs(RHS, X1),
matrix_dims( X1, [NRow,_] ).
rhs(ncol(RHS), NCol) :- !,
rhs(RHS, X1),
matrix_dims( X1, [_,NCol] ).
rhs(length(RHS), Size) :- !,
rhs(RHS, X1),
matrix_size( X1, Size ).
rhs(size(RHS), Size) :- !,
rhs(RHS, X1),
matrix_size( X1, Size ).
rhs(max(RHS), Size) :- !,
rhs(RHS, X1),
matrix_max( X1, Size ).
rhs(min(RHS), Size) :- !,
rhs(RHS, X1),
matrix_min( X1, Size ).
rhs(maxarg(RHS), Size) :- !,
rhs(RHS, X1),
matrix_maxarg( X1, Size ).
rhs(minarg(RHS), Size) :- !,
rhs(RHS, X1),
matrix_minarg( X1, Size ).
rhs(list(RHS), List) :- !,
rhs(RHS, X1),
matrix_to_list( X1, List ).
rhs(lists(RHS), List) :- !,
rhs(RHS, X1),
matrix_to_lists( X1, List ).
rhs('[]'([Args], floats(RHS)), Val) :-
integer(RHS),
integer(Args),
!,
get_float_from_address(RHS,Args,Val).
rhs('[]'(Args, RHS), Val) :-
!,
rhs(RHS, X1),
matrix_dims( X1, Dims, Bases),
maplist( index(Range), Args, Dims, Bases, NArgs),
(
var(Range)
->
matrix_get( X1, NArgs, Val )
;
matrix_get_range( X1, NArgs, Val )
).
rhs('[]'([Args], floats(RHS)), Val) :-
atom(RHS),
integer(Args),
!,
array_element(RHS,Args,Val).
rhs('[]'(Args, RHS), Val) :-
!,
rhs(RHS, X1),
matrix_dims( X1, Dims, Bases),
maplist( index(Range), Args, Dims, Bases, NArgs),
(
var(Range)
->
array_element( X1, NArgs, Val )
;
matrix_get_range( X1, NArgs, Val )
).
rhs('..'(I, J), [I1|Is]) :- !,
rhs(I, I1),
rhs(J, J1),
once( foldl(inc, Is, I1, J1) ).
rhs([H|T], [NH|NT]) :- !,
rhs(H, NH),
rhs(T, NT).
rhs(log(RHS), Logs ) :- !,
rhs(RHS, X1),
matrix_to_logs( X1, Logs ).
rhs(exp(RHS), Logs ) :- !,
rhs(RHS, X1),
matrix_to_exps( X1, Logs ).
rhs(sum(RHS), Logs ) :- !,
rhs(RHS, X1),
matrix_sum( X1, Logs ).
rhs(S, NS) :-
rhs_opaque( S ), !,
S = NS.
rhs(E1+E2, V) :- !,
rhs(E1, R1),
rhs(E2, R2),
mplus(R1, R2, V).
rhs(E1-E2, V) :- !,
rhs(E1, R1),
rhs(E2, R2),
msub(R1, R2, V).
rhs(S, NS) :-
S =.. [N|As],
maplist(rhs, As, Bs),
NS =.. [N|Bs].
set_lhs(V, R) :- var(V), !, V = R.
set_lhs(V, R) :- number(V), !, V = R.
set_lhs(V, R) :- atom(V), !,
static_array_properties(V, N, _),
N1 is N-1,
foreach(I in 0..N1, V[I] <== R[I]).
set_lhs('[]'([Args], floats(RHS)), Val) :-
!,
integer(RHS),
integer(Args),
set_float_from_address(RHS,Args,Val).
set_lhs('[]'(Args, M), Val) :-
matrix_dims( M, Dims, Bases),
maplist( index(Range), Args, Dims, Bases, NArgs),
(
var(Range)
->
matrix_set( M, NArgs, Val )
;
matrix_set_range( M, NArgs, Val )
).
%
% ranges of arguments
%
index(Range, V, M, Base, Indx) :- var(V), !,
Max is (M-1)+Base,
index(Range, Base..Max, M, Base, Indx).
index(Range, '*', M, Base, Indx) :- !,
Max is (M-1)+Base,
index(Range, Base..Max, M, Base, Indx).
index(Range, Exp, M, _Base, Indx) :- !,
index(Exp, M, Indx0),
( integer(Indx0) -> Indx = Indx0 ;
Indx0 = [Indx] -> true ;
Indx0 = Indx, Range = range ).
index(I, _M, I ) :- integer(I), !.
index(I..J, _M, [I|O] ) :- !,
I1 is I, J1 is J,
once( foldl(inc, O, I1, J1) ).
index(I:J, _M, [I|O] ) :- !,
I1 is I, J1 is J,
once( foldl(inc, O, I1, J1) ).
index(I+J, M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
add_index(I1, J1, O).
index(I-J, M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
sub_index(I1, J1, O).
index(I*J, M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1*J1.
index(I div J, M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1 div J1.
index(I rem J, M, O ) :- !,
index(I, M, I1),
index(J, M, J1),
O is I1 rem J1.
index(I, M, NI ) :-
maplist(indx(M), I, NI).
indx(M, I, NI) :- index(I, M, NI).
add_index(I1, J1, O) :-
integer(I1),
integer(J1), !,
O is I1+J1.
add_index(I1, J1, O) :-
integer(I1), !,
maplist(plus(I1), J1, O).
add_index(I1, J1, O) :-
integer(J1), !,
maplist(plus(J1), I1, O).
add_index(I1, J1, O) :-
ord_union(I1, J1, O).
sub_index(I1, J1, O) :-
integer(I1),
integer(J1), !,
O is I1-J1.
sub_index(I1, J1, O) :-
integer(I1), !,
maplist(rminus(I1), J1, O).
sub_index(I1, J1, O) :-
integer(J1), !,
maplist(minus(J1), I1, O).
sub_index(I1, J1, O) :-
ord_subtract(I1, J1, O).
minus(X, Y, Z) :- Z is X-Y.
rminus(X, Y, Z) :- Z is Y-X.
times(X, Y, Z) :- Z is Y*X.
div(X, Y, Z) :- Z is X/Y.
rdiv(X, Y, Z) :- Z is Y/X.
zdiv(X, Y, Z) :- (X == 0 -> Z = 0 ; X == 0.0 -> Z = 0.0 ; Z is X / Y ).
mplus(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1+I2 ;
matrix(I2) -> matrix_op_to_all(I1, +, I2, V) ;
is_list(I2) -> maplist(plus(I1), I2, V) ;
V = I1+I2 ) ;
matrix(I1) ->
( number(I2) -> matrix_op_to_all(I1, +, I2, V) ;
matrix(I2) -> matrix_op(I1, I2, +, V) ;
V = I1+I2 ) ;
is_list(I1) ->
( number(I2) -> maplist(plus(I2), I1, V) ;
is_list(I2) -> maplist(plus, I1, I2, V) ;
V = I1+I2 ) ;
V = I1 +I2.
msub(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1-I2 ;
matrix(I2) -> matrix_op_to_all(I1, -, NI2, V) ;
is_list(I2) -> maplist(minus(I1), I2, V) ;
V = I1-I2 ) ;
matrix(I1) ->
( number(I2) -> NI2 is -I2, matrix_op_to_all(I1, +, NI2, V) ;
matrix(I2) -> matrix_op(I1, I2, -, V) ;
V = I1-I2 ) ;
is_list(I1) ->
( number(I2) -> NI2 is -I2, maplist(plus(NI2), I1, V) ;
is_list(I2) -> maplist(minus, I1, I2, V) ;
V = I1-I2 ) ;
V = I1-I2.
mtimes(I1, I2, V) :-
number(I1) ->
( number(I2) -> V is I1*I2 ;
matrix(I2) -> matrix_op_to_all(I1, *, I2, V) ;
is_list(I2) -> maplist(times(I1), I2, V) ;
V = I1*I2 ) ;
matrix(I1) ->
( number(I2) -> matrix_op_to_all(I1, *, I2, V) ;
matrix(I2) -> matrix_op(I1, I2, *, V) ;
V = I1*I2 ) ;
is_list(I1) ->
( number(I2) -> maplist(times(I2), I1, V) ;
is_list(I2) -> maplist(times, I1, I2, V) ;
V = I1*I2 ) ;
V = I1 *I2.
%
% three types of matrix: integers, floats and general terms.
%
matrix_new(terms, Dims, Data, '$matrix'(Dims, NDims, Size, Offsets, Matrix) ) :-
length(Dims,NDims),
foldl(size, Dims, 1, Size),
maplist(zero, Dims, Offsets),
functor( Matrix, c, Size),
Matrix =.. [c|Data].
matrix_new(ints,Dims,Data,Matrix) :-
length(Dims,NDims),
new_ints_matrix(NDims, Dims, Data, Matrix).
matrix_new(floats,Dims,Data,Matrix) :-
length(Dims,NDims),
new_floats_matrix(NDims, Dims, Data, Matrix).
matrix_dims( Mat, Dims) :-
( opaque(Mat) -> matrixn_dims( Mat, Dims ) ;
Mat = '$matrix'( Dims, _, _, _, _) ).
matrix_dims( Mat, Dims, Bases) :-
( opaque(Mat) -> matrixn_dims( Mat, Dims, Bases ) ;
Mat = '$matrix'( Dims, _, _, Bases, _) ).
matrix_ndims( Mat, NDims) :-
( opaque(Mat) -> matrixn_ndims( Mat, NDims ) ;
Mat = '$matrix'( _, NDims, _, _, _) ).
matrix_size( Mat, Size) :-
( opaque(Mat) -> matrixn_size( Mat, Size ) ;
Mat = '$matrix'( _, _, Size, _, _) ).
matrix_to_list( Mat, ToList) :-
( opaque(Mat) -> matrixn_to_list( Mat, ToList ) ;
Mat = '$matrix'( _, _, _, _, M), M=.. [_|ToList] ).
matrix_to_lists( Mat, ToList) :-
matrix_dims( Mat, [D|Dims] ),
D1 is D-1,
foreach( I in 0..D1, matrix_slicer( Dims, Mat, [I|L]-L), ToList, [] ).
matrix_slicer( [_], M, Pos-[_], [O|L0], L0) :- !,
O <== '[]'(Pos,M).
matrix_slicer( [D|Dims], M, Pos-[I|L], [O|L0], L0) :-
D1 is D-1,
foreach( I in 0..D1 , L^matrix_slicer( Dims, M, Pos-L), O, [] ).
matrix_get( Mat, Pos, El) :-
( opaque(Mat) -> matrixn_get( Mat, Pos, El ) ;
m_get(Mat, Pos, El) ).
matrix_get_range( Mat, Pos, Els) :-
slice(Pos, Keys),
maplist( matrix_get(Mat), Keys, Els).
slice([], [[]]).
slice([[H|T]|Extra], Els) :- !,
slice(Extra, Els0),
foldl(add_index_prefix( Els0 ), [H|T], Els, [] ).
slice([H|Extra], Els) :- !,
slice(Extra, Els0),
add_index_prefix( Els0 , H, Els, [] ).
add_index_prefix( [] , _H ) --> [].
add_index_prefix( [L|Els0] , H ) --> [[H|L]],
add_index_prefix( Els0 , H ).
matrix_set( Mat, Pos, Els) :-
slice(Pos, Keys),
maplist( matrix_set(Mat), Keys, Els).
matrix_set( Mat, Pos, El) :-
( opaque(Mat) -> matrixn_set( Mat, Pos, El ) ;
m_set(Mat, Pos, El) ).
matrix_new_set(ints,Dims,Elem,Matrix) :-
length(Dims,NDims),
new_ints_matrix_set(NDims, Dims, Elem, Matrix).
matrix_new_set(floats,Dims,Elem,Matrix) :-
length(Dims,NDims),
new_floats_matrix_set(NDims, Dims, Elem, Matrix).
matrix_type(Matrix,Type) :-
( matrix_type_as_number(Matrix, 0) -> Type = ints ;
opaque( Matrix ) -> Type = floats ;
Type = terms ).
matrix_base(Matrix, Bases) :-
( opaque( Matrix ) -> maplist('='(Base), Bases), matrixn_set_base( Matrix, Base ) ;
nb_setarg(4, Matrix, Bases ) ).
matrix_arg_to_offset(M, Index, Offset) :-
( opaque(M) -> matrixn_arg_to_offset( M, Index, Offset ) ;
M = '$matrix'(Dims, _, Size, Bases, _) -> foldl2(indx, Index, Dims, Bases, Size, _, 0, Offset) ).
matrix_offset_to_arg(M, Offset, Index) :-
( opaque(M) -> matrixn_offset_to_arg( M, Offset, Index ) ;
M = '$matrix'(Dims, _, Size, Bases, _) -> foldl2(offset, Index, Dims, Bases, Size, _, Offset, _) ).
matrix_max(M, Max) :-
( opaque(M) -> matrixn_max( M, Max ) ;
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(max, M, V0, Max) ;
M = [V0|L], foldl(max, L, V0, Max) ).
max(New, Old, Max) :- ( New >= Old -> New = Max ; Old = Max ).
matrix_maxarg(M, MaxArg) :-
( opaque(M) -> matrixn_maxarg( M, MaxArg );
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(maxarg, M, V0-0-0, _-Offset-_), matrix_offset_to_arg(M, Offset, MaxArg) ;
M = [V0|L], foldl(maxarg, L, V0-0-1, _Max-Off-_ ), MaxArg = [Off] ).
maxarg(New, Old-OPos-I0, Max-MPos-I) :- I is I0+1, ( New > Old -> New = Max, MPos = I0 ; Old = Max, MPos = OPos ).
matrix_min(M, Min) :-
( opaque(M) -> matrixn_min( M, Min ) ;
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(min, M, V0, Max) ;
M = [V0|L], foldl(min, L, V0, Max) ).
min(New, Old, Max) :- ( New =< Old -> New = Max ; Old = Max ).
matrix_minarg(M, MinArg) :-
( opaque(M) -> matrixn_minarg( M, MinArg );
M = '$matrix'(_, _, _, _, C) ->
arg(1,C,V0), foldargs(minarg, M, V0-0-0, _-Offset-_), matrix_offset_to_arg(M, Offset, MinArg) ;
M = [V0|L], foldl(minarg, L, V0-0-1, _Min-Off-_ ), MinArg = [Off] ).
minarg(New, Old-OPos-I0, Min-MPos-I) :- I is I0+1, ( New < Old -> New = Min, MPos = I0 ; Old = Min, MPos = OPos ).
matrix_to_logs(M, LogM) :-
( opaque(M) -> matrixn_to_logs( M, LogM ) ;
M = '$matrix'(A, B, D, E, C) ->
LogM = '$matrix'(A, B, D, E, LogC),
mapargs(log, C, LogC) ;
M = [V0|L] -> maplist(log, [V0|L], LogM ) ;
LogM is log(M) ).
log(X, Y) :- Y is log(X).
matrix_to_exps(M, ExpM) :-
( opaque(M) -> matrixn_to_exps( M, ExpM ) ;
M = '$matrix'(A, B, D, E, C) ->
ExpM = '$matrix'(A, B, D, E, ExpC),
mapargs(exp, C, ExpC) ;
M = [V0|L] -> maplist(exp, [V0|L], ExpM ) ;
ExpM is exp(M) ).
exp(X, Y) :- Y is exp(X).
matrix_agg_lines(M1,+,NM) :-
do_matrix_agg_lines(M1,0,NM).
/* other operations: *, logprod */
matrix_agg_cols(M1,+,NM) :-
do_matrix_agg_cols(M1,0,NM).
/* other operations: *, logprod */
matrix_op(M1,M2,+,NM) :-
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,0,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(plus, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,-,NM) :-
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,1,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(minus, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,*,NM) :-
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,2,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(times, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,/,NM) :-
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,3,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(div, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op(M1,M2,zdiv,NM) :-
( opaque(M1), opaque(M2) ->
do_matrix_op(M1,M2,5,NM) ;
matrix_m(M1, '$matrix'(A,B,D,E,C1)),
matrix_m(M2, '$matrix'(A,B,D,E,C2)),
mapargs(zdiv, C1, C2, C),
NM = '$matrix'(A,B,D,E,C) ).
matrix_op_to_all(M1,+,Num,NM) :-
( opaque(M1) ->
do_matrix_op_to_all(M1,0,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(plus(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,-,Num,NM) :-
( opaque(M1) ->
do_matrix_op_to_all(M1,1,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(minus(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,*,Num,NM) :-
( opaque(M1) ->
do_matrix_op_to_all(M1,2,Num,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(times(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
matrix_op_to_all(M1,/,Num,NM) :-
% can only use floats.
FNum is float(Num),
( opaque(M1) ->
do_matrix_op_to_all(M1,3,FNum,NM)
;
M1 = '$matrix'(A,B,D,E,C),
mapargs(div(Num), C, NC),
NM = '$matrix'(A,B,D,E,NC)
).
/* other operations: *, logprod */
matrix_op_to_lines(M1,M2,/,NM) :-
do_matrix_op_to_lines(M1,M2,3,NM).
/* other operations: *, logprod */
matrix_op_to_cols(M1,M2,+,NM) :-
do_matrix_op_to_cols(M1,M2,0,NM).
/* other operations: *, logprod */
matrix_transpose(M1,M2) :-
matrix_shuffle(M1,[1,0],M2).
size(N0, N1, N2) :-
N2 is N0*N1.
% use 1 to get access to matrix
m_get('$matrix'(Dims, _, Sz, Bases, M), Indx, V) :-
foldl2(indx, Indx, Dims, Bases, Sz, _, 1, Offset),
arg(Offset, M, V).
m_set('$matrix'(Dims, _, Sz, Bases, M), Indx, V) :-
foldl2(indx, Indx, Dims, Bases, Sz, _, 1, Offset),
arg(Offset, M, V).
indx( I, Dim, Base, BlkSz, NBlkSz, I0, IF) :-
NBlkSz is BlkSz div Dim ,
IF is (I-Base)*NBlkSz + I0.
offset( I, Dim, BlkSz, NBlkSz, Base, I0, IF) :-
NBlkSz is BlkSz div Dim,
I is I0 div NBlkSz + Base,
IF is I0 rem NBlkSz.
inc(I1, I, I1) :-
I1 is I+1.
new_matrix(M0, Opts0, M) :-
opaque(M), !,
matrix_to_list(M0, L),
new_matrix(L, Opts0, M).
new_matrix('$matrix'(_,_,_,_,C), Opts0, M) :- !,
C =..[_|L],
new_matrix(L, Opts0, M).
new_matrix(C, Opts0, M) :-
functor(C, c, _), !,
C =..[_|L],
new_matrix(L, Opts0, M).
new_matrix(List, Opts0, M) :-
foldl2(el_list(MDims), List, Flat, [], 0, Dim), !,
fix_opts(Opts0, Opts),
foldl2(process_new_opt, Opts, Type, TypeF, [Dim|MDims], Dims, Base),
( var(TypeF) -> guess_type( Flat, Type ) ; true ),
matrix_new( Type, Dims, Flat, M),
( nonvar(Base) -> matrix_base(M, Base); true ).
new_matrix([H|List], Opts0, M) :-
length( [H|List], Size),
fix_opts(Opts0, Opts),
foldl2(process_new_opt(Base), Opts, Type, TypeF, [Size], Dims),
( var(TypeF) -> guess_type( [H|List], Type ) ; true ),
matrix_new( Type, Dims, [H|List], M),
( nonvar(Base) -> matrix_base(M, Base); true ).
fix_opts(V, _) :-
var(V), !,
throw(error(instantiation_error, V)).
fix_opts(A=B, [A=B]).
fix_opts(A, A) :-
is_list(A), !.
fix_opts(V, _) :-
var(V), !,
throw(error(domain_error(options=V), new_matrix)).
guess_type( List, Type ) :-
maplist( integer, List), !,
Type = ints.
guess_type( List, Type ) :-
maplist( number, List), !,
Type = floats.
guess_type( _List, terms ).
process_new_opt(_Base, dim=Dim, Type, Type, _, Dim) :- !.
process_new_opt(_Base, type=Type, _, Type, Dim, Dim) :- !.
process_new_opt( Base, base=Base, Type, Type, Dim, Dim) :- !.
process_new_opt(_Base, Opt, Type, Type, Dim, Dim) :-
throw(error(domain_error(opt=Opt), new_matrix)).
el_list(_, V, _Els, _NEls, _I0, _I1) :-
var(V), !,
fail.
el_list([N|Extra], El, Els, NEls, I0, I1) :-
foldl2(el_list(Extra), El, Els, NEls, 0, N), !,
I1 is I0+1.
el_list([N], El, Els, NEls, I0, I1) :-
El = [_|_],
length(El, N),
append(El, NEls, Els),
I1 is I0+1.
foreach( Domain, Goal) :-
strip_module(Goal, M, Locals^NG), !,
term_variables(Domain+Locals, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [] ),
terms:reset_variables( LocalVars ).
foreach( Domain, Goal ) :-
strip_module(Goal, M, NG),
term_variables(Domain, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [] ),
terms:reset_variables( LocalVars ).
foreach( Domain, Goal, Inp, Out) :-
strip_module(Goal, M, Locals^NG), !,
term_variables(Domain+Locals, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [], Inp, Out).
foreach( Domain, Goal, Inp, Out ) :-
strip_module(Goal, M, NG),
term_variables(Domain, LocalVarsL),
LocalVars =.. [vs|LocalVarsL],
iterate( Domain, [], LocalVars, M:NG, [], [], Inp, Out ).
iterate( [], [], LocalVars, Goal, Vs, Bs ) :-
terms:freshen_variables(LocalVars),
Vs = Bs,
MG <== Goal,
once( MG ),
terms:reset_variables(LocalVars).
iterate( [], [H|Cont], LocalVars, Goal, Vs, Bs ) :-
iterate(H, Cont, LocalVars, Goal, Vs, Bs ).
iterate( [H|L], [], LocalVars, Goal, Vs, Bs ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs ).
iterate( [H|L], Cont, LocalVars, Goal, Vs, Bs ) :- !,
append(L, Cont, LCont),
iterate(H, LCont, LocalVars, Goal, Vs, Bs ).
iterate( [] ins _A .. _B, [H|L], LocalVars, Goal, Vs, Bs ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs ).
iterate( [] ins _A .. _B, [], LocalVars, Goal, Vs, Bs ) :- !,
iterate([], [], LocalVars, Goal, Vs, Bs ).
iterate( [V|Ps] ins A..B, Cont, LocalVars, Goal, Vs, Bs ) :-
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> true ;
A1 is NA+1,
iterate( Ps ins NA..NB, Cont, LocalVars, Goal, [V|Vs], [NA|Bs] ),
iterate( [V|Ps] ins A1..NB, Cont, LocalVars, Goal, Vs, Bs )
).
iterate( V in A..B, Cont, LocalVars, Goal, Vs, Bs) :-
var(V),
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> true ;
A1 is NA+1,
(Cont = [H|L] ->
iterate( H, L, LocalVars, Goal, [V|Vs], [NA|Bs] )
;
iterate( [], [], LocalVars, Goal, [V|Vs], [NA|Bs] )
),
iterate( V in A1..NB, Cont, LocalVars, Goal, Vs, Bs )
).
iterate( [], [], LocalVars, Goal, Vs, Bs, Inp, Out ) :-
terms:freshen_variables(LocalVars),
Vs = Bs,
MG <== Goal,
once( call(MG, Inp, Out) ),
terms:reset_variables(LocalVars).
iterate( [], [H|Cont], LocalVars, Goal, Vs, Bs, Inp, Out ) :-
iterate(H, Cont, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [H|L], [], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [H|L], Cont, LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
append(L, Cont, LCont),
iterate(H, LCont, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [] ins _A .. _B, [], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate([], [], LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [] ins _A .. _B, [H|L], LocalVars, Goal, Vs, Bs, Inp, Out ) :- !,
iterate(H, L, LocalVars, Goal, Vs, Bs, Inp, Out ).
iterate( [V|Ps] ins A..B, Cont, LocalVars, Goal, Vs, Bs, Inp, Out ) :-
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> Inp = Out ;
A1 is NA+1,
iterate( Ps ins A..B, Cont, LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid ),
iterate( [V|Ps] ins A1..NB, Cont, LocalVars, Goal, Vs, Bs, Mid, Out )
).
iterate( V in A..B, Cont, LocalVars, Goal, Vs, Bs, Inp, Out) :-
var(V),
eval(A, Vs, Bs, NA),
eval(B, Vs, Bs, NB),
( NA > NB -> Inp = Out ;
A1 is NA+1,
(Cont = [H|L] ->
iterate( H, L, LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid )
;
iterate( [], [], LocalVars, Goal, [V|Vs], [NA|Bs], Inp, Mid )
),
iterate( V in A1..NB, Cont, LocalVars, Goal, Vs, Bs, Mid, Out )
).
eval(I, _Vs, _Bs, I) :- integer(I), !.
eval(I, Vs, Bs, NI) :-
copy_term(I+Vs, IA+Bs),
NI <== IA.
matrix_seq(A, B, Dims, M) :-
ints(A, B, L),
matrix_new(ints, Dims, L, M).
ints(A,B,O) :-
( A > B -> O = [] ; O = [A|L], A1 is A+1, ints(A1,B,L) ).
zero(_, 0).
/** @} */