2159 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			2159 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
/***************************************************************************/
 | 
						|
/*                                                                         */
 | 
						|
/* The SLG System                                                          */
 | 
						|
/* Authors: Weidong Chen and David Scott Warren                            */
 | 
						|
/* Copyright (C) 1993 Southern Methodist University                        */
 | 
						|
/*               1993 SUNY at Stony Brook                                  */
 | 
						|
/* See file COPYRIGHT_SLG for copying policies and disclaimer.             */
 | 
						|
/*                                                                         */
 | 
						|
/***************************************************************************/
 | 
						|
 | 
						|
/*==========================================================================
 | 
						|
  File               : slg.pl
 | 
						|
  Last Modification  : November 14, 2007 by Fabrizio Riguzzi
 | 
						|
===========================================================================*/
 | 
						|
 | 
						|
/* ----------- beginning of system dependent features ---------------------
 | 
						|
   To run the SLG system under a version of Prolog other than Quintus,
 | 
						|
   comment out the following Quintus-specific code, and include the code
 | 
						|
   for the Prolog you are running.
 | 
						|
*/
 | 
						|
 | 
						|
% Quintus
 | 
						|
/* Begin Quintus specific code */
 | 
						|
% :- use_module(library(basics)).
 | 
						|
% :- dynamic 'slg$prolog'/1, 'slg$tab'/2.
 | 
						|
% :- dynamic slg_expanding/0.
 | 
						|
% :- dynamic wfs_trace/0.
 | 
						|
/* End Quintus specific code */
 | 
						|
 | 
						|
% Sicstus
 | 
						|
/* Begin Sicstus specific code */
 | 
						|
/* append([],L,L).
 | 
						|
 append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).
 | 
						|
 | 
						|
 member(X,[X|_]).
 | 
						|
 member(X,[_|L]) :- member(X,L).
 | 
						|
 | 
						|
 memberchk(X,[X|_]) :- !.
 | 
						|
 memberchk(X,[_|L]) :- memberchk(X,L).
 | 
						|
*/
 | 
						|
 :- dynamic 'slg$prolog'/1, 'slg$tab'/2.
 | 
						|
 :- dynamic slg_expanding/0.
 | 
						|
 :- dynamic wfs_trace/0.
 | 
						|
/* End Sicstus specific code */
 | 
						|
 | 
						|
% XSB
 | 
						|
/* Begin XSB specific code */
 | 
						|
/* To compile this under xsb, you must allocate more than the default stack
 | 
						|
   space when running xsb. E.g. use % xsb -m 2000
 | 
						|
*/
 | 
						|
%:- import member/2, memberchk/2, append/3, ground/1 from basics.
 | 
						|
%:- import numbervars/3 from num_vars.
 | 
						|
  
 | 
						|
%:- dynamic slg_expanding/0.
 | 
						|
%:- dynamic 'slg$prolog'/1, 'slg$tab'/2.
 | 
						|
%:- dynamic wfs_trace/0.
 | 
						|
/* End XSB specific code */
 | 
						|
 | 
						|
/* -------------- end of system dependent features ----------------------- */
 | 
						|
 | 
						|
/* -------------- beginning of slg_load routines -------------------------
 | 
						|
  An input file may contain three kinds of directives (in addition to 
 | 
						|
  regular Prolog clauses and commands):
 | 
						|
 | 
						|
  a) :- default(prolog).
 | 
						|
     :- default(tabled).
 | 
						|
     All predicates defined from now on are prolog (tabled) predicates
 | 
						|
     unless specified otherwise later.
 | 
						|
  b) :- tabled pred_name/arity.
 | 
						|
     pred_name/arity is a tabled predicate. A comma separated list
 | 
						|
     is also acceptable.
 | 
						|
 | 
						|
  c) :- prolog pred_name/arity.
 | 
						|
     pred_name/arity is a prolog predicate. A comma separated list
 | 
						|
     is also acceptable.
 | 
						|
 | 
						|
  Besides Prolog clauses, we allow general clauses where the body is a 
 | 
						|
  universal disjunction of literals. Such clauses are specified in the form
 | 
						|
         Head <-- Body.
 | 
						|
  (Maybe <-- can be viewed as "All".) The head must be an atom of a tabled
 | 
						|
  predicate and the body should be a disjunction of literals (separated by ';')
 | 
						|
  and should not contain cut. The head must be ground whenever it is called. 
 | 
						|
  All variables in the body that do not occur in the head are universally 
 | 
						|
  quantified.
 | 
						|
 | 
						|
  There is NO support for module facilities. In particular, ALL TABLED
 | 
						|
  PREDICATES SHOULD BE DEFINED IN MODULE 'user'.
 | 
						|
*/
 | 
						|
 | 
						|
:- op(1200,xfx,<--).
 | 
						|
:- op(1150,fx,[(tabled),(prolog),(default)]).
 | 
						|
:- op(900,xfx,<-).
 | 
						|
 | 
						|
:- assert('slg$tabled'(0,0)), retractall('slg$tabled'(_,_)).
 | 
						|
:- assert('slg$default'((prolog))).
 | 
						|
 | 
						|
do_term_expansion(end_of_file,_) :- !,
 | 
						|
	retractall('slg$default'(_)),
 | 
						|
	assert('slg$default'((prolog))),
 | 
						|
	retractall('slg$prolog'(_)),
 | 
						|
	retractall('slg$tab'(_,_)),
 | 
						|
	fail.
 | 
						|
do_term_expansion((:-Com),Clauses) :- !,
 | 
						|
	expand_command(Com,Clauses).
 | 
						|
do_term_expansion((H-->B),NewClause) :- !,
 | 
						|
	\+ slg_expanding,
 | 
						|
	assert(slg_expanding),
 | 
						|
	expand_term((H-->B),Clause),
 | 
						|
	retractall(slg_expanding),
 | 
						|
	do_term_expansion(Clause,NewClause).
 | 
						|
do_term_expansion((Head <-- Body),Clauses) :- !,
 | 
						|
	functor(Head,P,A),
 | 
						|
	Pred = P/A,
 | 
						|
	( 'slg$tab'(P,A) ->
 | 
						|
	  convert_univ_clause(Head,Body,Clauses)
 | 
						|
	; 'slg$prolog'(Pred) ->
 | 
						|
	  write('Error: Prolog predicate '), write(Pred),
 | 
						|
	  write(' in clauses with universal disjunction.'),nl,
 | 
						|
	  write('       Clause ignored: '), write((Head <-- Body)), nl,
 | 
						|
	  Clauses = []
 | 
						|
	; 'slg$default'(Default),
 | 
						|
	  ( Default == (prolog) ->
 | 
						|
	    write('Error: Prolog predicate '), write(Pred),
 | 
						|
	    write(' in clauses with universal disjunction.'),nl,
 | 
						|
	    write('       Clause ignored: '), write((Head <-- Body)), nl,
 | 
						|
	    Clauses = []
 | 
						|
	  ; assert('slg$tab'(P,A)),
 | 
						|
	    retractall('slg$tabled'(P,A)),
 | 
						|
	    assert('slg$tabled'(P,A)),
 | 
						|
	    functor(NewHead,P,A),
 | 
						|
	    Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
 | 
						|
                         (NewHead :- slg(NewHead))|RestClauses],
 | 
						|
            convert_univ_clause(Head,Body,RestClauses)
 | 
						|
	  )
 | 
						|
        ).
 | 
						|
do_term_expansion(Clause,Clauses) :-
 | 
						|
	( Clause = (Head :- Body) -> true; Head = Clause, Body = true ),
 | 
						|
	functor(Head,P,A),
 | 
						|
	Pred = P/A,
 | 
						|
	( 'slg$tab'(P,A) ->
 | 
						|
	  convert_tabled_clause(Head,Body,Clauses)
 | 
						|
        ; 'slg$prolog'(Pred) ->
 | 
						|
	  Clauses = Clause
 | 
						|
        ; 'slg$default'(Default),
 | 
						|
	  ( Default == (prolog) ->
 | 
						|
	    Clauses = Clause
 | 
						|
	  ; ( 'slg$tab'(P,A) ->
 | 
						|
	      convert_tabled_clause(Head,Body,Clauses)
 | 
						|
	    ; assert('slg$tab'(P,A)),
 | 
						|
	      retractall('slg$tabled'(P,A)),
 | 
						|
	      assert('slg$tabled'(P,A)),
 | 
						|
	      functor(NewHead,P,A),
 | 
						|
	      Clauses = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
 | 
						|
			 (NewHead :- slg(NewHead))|RestClauses],
 | 
						|
              convert_tabled_clause(Head,Body,RestClauses)
 | 
						|
	    )
 | 
						|
	  )
 | 
						|
        ).
 | 
						|
expand_command(tabled(Preds),Clauses) :-
 | 
						|
	expand_command_table(Preds,Clauses,[]).
 | 
						|
expand_command(prolog(Preds),Clauses) :-
 | 
						|
	expand_command_prolog(Preds,Clauses,[]).
 | 
						|
expand_command(multifile(Preds),(:-multifile(NewPreds))) :-
 | 
						|
	add_table_preds(Preds,NewPreds,[]).
 | 
						|
expand_command(dynamic(Preds),(:-dynamic(NewPreds))) :-
 | 
						|
	add_table_preds(Preds,NewPreds,[]).
 | 
						|
expand_command(default(D),[]) :-
 | 
						|
	( (D == (prolog); D == (tabled)) ->
 | 
						|
	  retractall('slg$default'(_)),
 | 
						|
	  assert('slg$default'(D))
 | 
						|
        ; write('Warning: illegal default '),
 | 
						|
	  write(D),
 | 
						|
	  write(' ignored.'),
 | 
						|
	  nl
 | 
						|
        ).
 | 
						|
 | 
						|
expand_command_table((Pred,Preds),Clauses0,Clauses) :- !,
 | 
						|
	expand_command_table_one(Pred,Clauses0,Clauses1),
 | 
						|
	expand_command_table(Preds,Clauses1,Clauses).
 | 
						|
expand_command_table(Pred,Clauses0,Clauses) :-
 | 
						|
	expand_command_table_one(Pred,Clauses0,Clauses).
 | 
						|
 | 
						|
expand_command_table_one(Pspec,Clauses0,Clauses) :-
 | 
						|
	  ( Pspec = P/A -> true; P = Pspec, A = 0 ),
 | 
						|
	  Pred = P/A,
 | 
						|
	  functor(H,P,A),
 | 
						|
	  ( ( predicate_property(H,built_in); slg_built_in(H) ) ->
 | 
						|
	    write('ERROR: Cannot table built_in '),
 | 
						|
	    write(Pred), nl,
 | 
						|
	    Clauses0 = Clauses
 | 
						|
	  ; 'slg$prolog'(Pred) ->
 | 
						|
	    write('ERROR: '),
 | 
						|
	    write(Pred),
 | 
						|
	    write(' assumed to be a Prolog predicate'),
 | 
						|
	    nl,
 | 
						|
	    tab(7),
 | 
						|
	    write('But later declared a tabled predicate.'),
 | 
						|
	    nl,
 | 
						|
	    Clauses0 = Clauses
 | 
						|
	  ; 'slg$tab'(P,A) ->
 | 
						|
	    Clauses0 = Clauses
 | 
						|
	  ; assert('slg$tab'(P,A)),
 | 
						|
	    retractall('slg$tabled'(P,A)),
 | 
						|
	    assert('slg$tabled'(P,A)),
 | 
						|
	    Clauses0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
 | 
						|
	                (H :- slg(H))|Clauses]
 | 
						|
	  ).
 | 
						|
 | 
						|
expand_command_prolog((Pred,Preds),Clauses0,Clauses) :- !,
 | 
						|
	expand_command_prolog_one(Pred,Clauses0,Clauses1),
 | 
						|
	expand_command_prolog(Preds,Clauses1,Clauses).
 | 
						|
expand_command_prolog(Pred,Clauses0,Clauses) :-
 | 
						|
	expand_command_prolog_one(Pred,Clauses0,Clauses).
 | 
						|
 | 
						|
expand_command_prolog_one(Pspec,Clauses0,Clauses) :-
 | 
						|
	  ( Pspec = P/A -> true; P = Pspec, A = 0 ),
 | 
						|
	  Pred = P/A,
 | 
						|
	  ( 'slg$tab'(P,A) ->
 | 
						|
	    write('ERROR: '),
 | 
						|
	    write(Pred),
 | 
						|
	    write(' assumed to be a tabled predicate'),
 | 
						|
	    nl,
 | 
						|
	    tab(7),
 | 
						|
	    write('But later declared a Prolog predicate.'),
 | 
						|
	    nl,
 | 
						|
	    Clauses0 = Clauses
 | 
						|
	  ; retractall('slg$tab'(P,A)),
 | 
						|
	    retractall('slg$tabled'(P,A)),
 | 
						|
	    ( 'slg$prolog'(Pred) ->
 | 
						|
	      true
 | 
						|
	    ; assert('slg$prolog'(Pred))
 | 
						|
	    ),
 | 
						|
	    Clauses0 = [(:- retractall('slg$tabled'(P,A)))|Clauses]
 | 
						|
          ).
 | 
						|
 | 
						|
add_table_preds(Preds,NewPreds0,NewPreds) :-
 | 
						|
	( Preds == [] ->
 | 
						|
	  NewPreds0 = NewPreds
 | 
						|
        ; Preds = [P|Ps] ->
 | 
						|
	  add_table_preds(P,NewPreds0,NewPreds1),
 | 
						|
	  add_table_preds(Ps,NewPreds1,NewPreds)
 | 
						|
        ; Preds = (P,Ps) ->
 | 
						|
	  add_table_preds(P,NewPreds0,NewPreds1),
 | 
						|
	  add_table_preds(Ps,NewPreds1,NewPreds)
 | 
						|
        ; ( Preds = P/A -> true; P = Preds, A = 0 ),
 | 
						|
	  ( 'slg$tab'(P,A) ->
 | 
						|
	    name(P,Pl),
 | 
						|
	    name(NewP,[115,108,103,36|Pl]), % 'slg$'
 | 
						|
	    NewA is A+1,
 | 
						|
	    NewPreds0 = [P/A,NewP/NewA|NewPreds]
 | 
						|
	  ; NewPreds0 = [P/A|NewPreds]
 | 
						|
          )
 | 
						|
        ).
 | 
						|
 | 
						|
convert_tabled_clause(Head,Body,Clauses0) :-
 | 
						|
	  conj_to_list(Body,Blist),
 | 
						|
	  extract_guard(Blist,Guard,[],Nbody,Clauses0,Clauses),
 | 
						|
	  list_to_conj(Guard,Gconj),
 | 
						|
	  new_slg_head(Head,Nbody,NewHead),
 | 
						|
	  ( Gconj == true ->
 | 
						|
	    Clauses = [NewHead]
 | 
						|
	  ; Clauses = [(NewHead :- Gconj)]
 | 
						|
          ).
 | 
						|
 | 
						|
convert_univ_clause(Head,Body,Clauses) :-
 | 
						|
	disj_to_list(Body,Blist),
 | 
						|
	new_slg_head(Head,all(Blist),NewHead),
 | 
						|
	Clauses = [(NewHead :- ( ground0(Head) -> 
 | 
						|
	                         true
 | 
						|
			       ; write('Error: Non-ground call '),
 | 
						|
			         write(Head),
 | 
						|
				 write(' in a clause with universal disjunction.'),
 | 
						|
				 nl
 | 
						|
			       ))].
 | 
						|
 | 
						|
ground0(X) :- ground(X).
 | 
						|
 | 
						|
conj_to_list(Term,List) :-
 | 
						|
	conj_to_list(Term,List,[]).
 | 
						|
conj_to_list(Term,List0,List) :-
 | 
						|
	( Term = (T1,T2) ->
 | 
						|
	  conj_to_list(T1,List0,List1),
 | 
						|
	  conj_to_list(T2,List1,List)
 | 
						|
        ; Term == true ->
 | 
						|
	  List0 = List
 | 
						|
        ; List0 = [Term|List]
 | 
						|
        ).
 | 
						|
 | 
						|
disj_to_list(Term,List) :-
 | 
						|
	disj_to_list(Term,List,[]).
 | 
						|
disj_to_list(Term,List0,List) :-
 | 
						|
	( Term = (T1;T2) ->
 | 
						|
	  disj_to_list(T1,List0,List1),
 | 
						|
	  disj_to_list(T2,List1,List)
 | 
						|
        ; Term == true ->
 | 
						|
	  List0 = List
 | 
						|
        ; List0 = [Term|List]
 | 
						|
        ).
 | 
						|
 | 
						|
extract_guard([],G,G,[],Cls,Cls).
 | 
						|
extract_guard([Lit|List],G0,G,Rest,Cls0,Cls) :-
 | 
						|
	( Lit = (\+N) ->
 | 
						|
	  Nlit = N
 | 
						|
        ; Nlit = Lit
 | 
						|
        ),
 | 
						|
	( ( predicate_property(Nlit,built_in); slg_built_in(Nlit) ) ->
 | 
						|
	  G0 = [Lit|G1],
 | 
						|
	  extract_guard(List,G1,G,Rest,Cls0,Cls)
 | 
						|
        ; functor(Nlit,P,A),
 | 
						|
	  Pred = P/A,
 | 
						|
	  ( 'slg$tab'(P,A) ->
 | 
						|
	    G0 = G,
 | 
						|
	    Rest = [Lit|List],
 | 
						|
	    Cls0 = Cls
 | 
						|
	  ; 'slg$prolog'(Pred) ->
 | 
						|
	    G0 = [Lit|G1],
 | 
						|
	    extract_guard(List,G1,G,Rest,Cls0,Cls)
 | 
						|
	  ; 'slg$default'((prolog)) ->
 | 
						|
	    G0 = [Lit|G1],
 | 
						|
	    assert('slg$prolog'(Pred)),
 | 
						|
	    Cls0 = [(:- 'slg$prolog'(Pred) -> true; assert('slg$prolog'(Pred)))|Cls1],
 | 
						|
	    extract_guard(List,G1,G,Rest,Cls1,Cls)
 | 
						|
	  ; 'slg$default'((tabled)) ->
 | 
						|
	    G0 = G,
 | 
						|
	    Rest = [Lit|List],
 | 
						|
	    assert('slg$tab'(P,A)),
 | 
						|
	    retractall('slg$tabled'(P,A)),
 | 
						|
            assert('slg$tabled'(P,A)),
 | 
						|
	    functor(Head,P,A),
 | 
						|
	    Cls0 = [(:- retractall('slg$tabled'(P,A)), assert('slg$tabled'(P,A))),
 | 
						|
                    (Head :- slg(Head))|Cls]
 | 
						|
	  )
 | 
						|
        ).
 | 
						|
 | 
						|
list_to_conj([],true).
 | 
						|
list_to_conj([Lit|List],G0) :-
 | 
						|
	( List == [] ->
 | 
						|
	  G0 = Lit
 | 
						|
        ; G0 = (Lit,G),
 | 
						|
	  list_to_conj(List,G)
 | 
						|
        ).
 | 
						|
 | 
						|
new_slg_head(Head,Body,NewHead) :-
 | 
						|
	functor(Head,P,A),
 | 
						|
	name(P,Pl),
 | 
						|
	name(Npred,[115,108,103,36|Pl]), % 'slg$'
 | 
						|
	Narity is A+1,
 | 
						|
	functor(NewHead,Npred,Narity),
 | 
						|
	arg(Narity,NewHead,Body),
 | 
						|
	put_in_args(0,A,Head,NewHead).
 | 
						|
 | 
						|
put_in_args(A,A,_,_).
 | 
						|
put_in_args(A0,A,Head,NewHead) :-
 | 
						|
	A0 < A,
 | 
						|
	A1 is A0+1,
 | 
						|
	arg(A1,Head,Arg),
 | 
						|
	arg(A1,NewHead,Arg),
 | 
						|
	put_in_args(A1,A,Head,NewHead).
 | 
						|
 | 
						|
slg_built_in(slg(_)).
 | 
						|
slg_built_in(_<-_).
 | 
						|
slg_built_in(slgall(_,_)).
 | 
						|
slg_built_in(slgall(_,_,_,_)).
 | 
						|
slg_built_in(emptytable(_)).
 | 
						|
slg_built_in(st(_,_)).
 | 
						|
slg_built_in(stnot(_,_)).
 | 
						|
slg_built_in(stall(_,_,_)).
 | 
						|
slg_built_in(stall(_,_,_,_,_)).
 | 
						|
slg_built_in(stselect(_,_,_,_)).
 | 
						|
slg_built_in(stselect(_,_,_,_,_,_)).
 | 
						|
slg_built_in(xtrace).
 | 
						|
slg_built_in(xnotrace).
 | 
						|
 | 
						|
/* ----------------- end of slg_load routines --------------------------- */
 | 
						|
 | 
						|
/* SLG tracing:
 | 
						|
   xtrace: turns SLG trace on, which prints out tables at various 
 | 
						|
           points
 | 
						|
   xnotrace: turns off SLG trace
 | 
						|
*/
 | 
						|
xtrace :- 
 | 
						|
    ( wfs_trace -> 
 | 
						|
      true 
 | 
						|
    ; assert(wfs_trace)
 | 
						|
    ).
 | 
						|
xnotrace :- 
 | 
						|
    ( wfs_trace -> 
 | 
						|
      retractall(wfs_trace) 
 | 
						|
    ; true
 | 
						|
    ).
 | 
						|
 | 
						|
/* isprolog(Call): Call is a Prolog subgoal */
 | 
						|
isprolog(Call) :-
 | 
						|
        functor(Call,P,A),
 | 
						|
        \+ 'slg$tabled'(P,A).
 | 
						|
 | 
						|
/* slg(Call):
 | 
						|
   It returns all true answers of Call under the well-founded semantics
 | 
						|
   one by one.
 | 
						|
*/
 | 
						|
slg(Call) :-
 | 
						|
        ( isprolog(Call) ->
 | 
						|
          call(Call)
 | 
						|
        ; oldt(Call,Tab),
 | 
						|
          ground(Call,Ggoal),
 | 
						|
          find(Tab,Ggoal,Ent),
 | 
						|
          ent_to_anss(Ent,Anss),
 | 
						|
          member_anss(d(Call,[]),Anss)
 | 
						|
        ).
 | 
						|
 | 
						|
/* Call<-Cons:
 | 
						|
   It returns all true or undefined answers of Call one by one. In
 | 
						|
   case of a true answer, Cons = []. For an undefined answer,
 | 
						|
   Cons is a list of delayed literals.
 | 
						|
*/
 | 
						|
Call<-Cons :-
 | 
						|
        ( isprolog(Call) ->
 | 
						|
          call(Call),
 | 
						|
          Cons = []
 | 
						|
        ; oldt(Call,Tab),
 | 
						|
          ground(Call,Ggoal),
 | 
						|
          find(Tab,Ggoal,Ent),
 | 
						|
          ent_to_anss(Ent,Anss),
 | 
						|
          member_anss(d(Call,Cons),Anss)
 | 
						|
        ).
 | 
						|
 | 
						|
/* emptytable(EmptTab): creates an initial empty stable.
 | 
						|
*/
 | 
						|
emptytable(0:[]).
 | 
						|
 | 
						|
/* slgall(Call,Anss):
 | 
						|
   slgall(Call,Anss,N0-Tab0,N-Tab):
 | 
						|
   If Call is a prolog call, findall is used, and Tab = Tab0;
 | 
						|
   If Call is an atom of a tabled predicate, SLG evaluation
 | 
						|
   is carried out.
 | 
						|
*/
 | 
						|
slgall(Call,Anss) :-
 | 
						|
	slgall(Call,Anss,0:[],_).
 | 
						|
slgall(Call,Anss,N0:Tab0,N:Tab) :-
 | 
						|
        ( isprolog(Call) ->
 | 
						|
          findall(Call,Call,Anss),
 | 
						|
	  N = N0, Tab = Tab0
 | 
						|
        ; ground(Call,Ggoal),
 | 
						|
          ( find(Tab0,Ggoal,Ent) ->
 | 
						|
            ent_to_anss(Ent,Answers),
 | 
						|
            Tab = Tab0
 | 
						|
          ; new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
 | 
						|
            add_tab_ent(Ggoal,Ent,Tab0,Tab1),
 | 
						|
            oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP),
 | 
						|
            find(Tab,Ggoal,NewEnt),
 | 
						|
            ent_to_anss(NewEnt,Answers)
 | 
						|
          ),
 | 
						|
          ansstree_to_list(Answers,Anss,[])
 | 
						|
        ).
 | 
						|
 | 
						|
/* st(Call,PSM):
 | 
						|
   stnot(Call,PSM):
 | 
						|
   It finds a stable model in which Call must be true (false).
 | 
						|
   Call must be ground.
 | 
						|
*/
 | 
						|
st(Call,PSM) :-
 | 
						|
	st_true_false(Call,true,PSM).
 | 
						|
stnot(Call,PSM) :-
 | 
						|
	st_true_false(Call,false,PSM).
 | 
						|
 | 
						|
st_true_false(Call,Val,PSM) :-
 | 
						|
	( isprolog(Call) ->
 | 
						|
	  PSM = [],
 | 
						|
	  call(Call)
 | 
						|
        ; ground(Call) ->
 | 
						|
	  wfs_newcall(Call,[],Tab1,0,_),
 | 
						|
	  find(Tab1,Call,Ent),
 | 
						|
	  ent_to_anss(Ent,Anss),
 | 
						|
	  ( succeeded(Anss) ->
 | 
						|
	    ( Val == true ->
 | 
						|
	      PSM = []
 | 
						|
	    ; fail
 | 
						|
	    )
 | 
						|
	  ; failed(Anss) ->
 | 
						|
	    ( Val == false ->
 | 
						|
	      PSM = []
 | 
						|
	    ; fail
 | 
						|
	    )
 | 
						|
	  ; assume_one(Call,Val,Tab1,Tab2,[],Abd1,A0,A1),
 | 
						|
	    collect_unds(Anss,A1,A),
 | 
						|
	    st(A0,A,Tab2,Tab3,Abd1,Abd,[],DAbd,[],_Plits),
 | 
						|
	    final_check(Abd,Tab3,_Tab,DAbd,PSM)
 | 
						|
	  )
 | 
						|
        ; write('Error: non-ground call '),
 | 
						|
	  write(Call),
 | 
						|
	  write(' in st/2.'),
 | 
						|
	  nl,
 | 
						|
	  fail
 | 
						|
        ).
 | 
						|
 | 
						|
/* stall(Call,Anss,PSM):
 | 
						|
   stall(Call,Anss,PSM,Tab0,Tab):
 | 
						|
   It computes a partial stable model PSM and collects all
 | 
						|
   answers of Call in that model.
 | 
						|
*/
 | 
						|
stall(Call,Anss,PSM) :-
 | 
						|
	stall(Call,Anss,PSM,0:[],_).
 | 
						|
 | 
						|
stall(Call,Anss,PSM,N0:Tab0,N:Tab) :-
 | 
						|
	( isprolog(Call) ->
 | 
						|
	  findall(Call,Call,Anss),
 | 
						|
	  PSM = [], N = N0, Tab = Tab0
 | 
						|
        ; ground(Call,Ggoal),
 | 
						|
	  ( find(Tab0,Ggoal,Ent) ->
 | 
						|
	    Tab1 = Tab0, N = N0
 | 
						|
          ; wfs_newcall(Call,Tab0,Tab1,N0,N),
 | 
						|
	    find(Tab1,Ggoal,Ent)
 | 
						|
          ),
 | 
						|
	  ent_to_delay(Ent,Delay),
 | 
						|
	  ( Delay == false ->
 | 
						|
	    Fent = Ent, PSM = [], Tab = Tab1
 | 
						|
	  ; ent_to_anss(Ent,Anss0),
 | 
						|
	    collect_unds(Anss0,A0,A),
 | 
						|
	    st(A0,A,Tab1,Tab2,[],Abd,[],DAbd,[],_Plits),
 | 
						|
	    final_check(Abd,Tab2,Tab,DAbd,PSM),
 | 
						|
	    find(Tab,Ggoal,Fent)
 | 
						|
	  ),
 | 
						|
	  ent_to_anss(Fent,Anss1),
 | 
						|
          ansstree_to_list(Anss1,Anss,[])
 | 
						|
        ).
 | 
						|
 | 
						|
/* stselect(Call,PSM0,Anss,PSM):
 | 
						|
   stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab):
 | 
						|
   It computes a partial stable model PSM in which all ground
 | 
						|
   literals in PSM0 are true, and returns all answers of Call
 | 
						|
   in the partial stable model. Call must be an atom of a tabled
 | 
						|
   or stable predicate.
 | 
						|
*/
 | 
						|
stselect(Call,PSM0,Anss,PSM) :-
 | 
						|
	stselect(Call,PSM0,Anss,PSM,0:[],_).
 | 
						|
 | 
						|
stselect(Call,PSM0,Anss,PSM,N0:Tab0,N:Tab) :-
 | 
						|
	( isprolog(Call) ->
 | 
						|
	  write('Error: Prolog predicate '),
 | 
						|
	  write(Call),
 | 
						|
	  write('stselect.'),
 | 
						|
	  fail
 | 
						|
        ; wfsoldt(Call,PSM0,Ent,Tab0,Tab1,N0,N),
 | 
						|
	  ent_to_delay(Ent,Delay),
 | 
						|
	  assume_list(PSM0,true,Tab1,Tab2,[],Abd0,A0,A1),
 | 
						|
	  ( Delay == false ->
 | 
						|
	    A1 = A2
 | 
						|
          ; ent_to_anss(Ent,Anss0),
 | 
						|
	    collect_unds(Anss0,A1,A2)
 | 
						|
          ),
 | 
						|
	  st(A0,A2,Tab2,Tab3,Abd0,Abd,[],DAbd,[],_Plits),
 | 
						|
	  final_check(Abd,Tab3,Tab,DAbd,PSM),
 | 
						|
	  ground(Call,Ggoal),
 | 
						|
	  find(Tab,Ggoal,Fent),
 | 
						|
	  ent_to_anss(Fent,Anss1),
 | 
						|
	  ansstree_to_list(Anss1,Anss,[])
 | 
						|
        ).
 | 
						|
 | 
						|
wfsoldt(Call,PSM0,Ent,Tab0,Tab,N0,N) :-
 | 
						|
	ground(Call,Ggoal),
 | 
						|
	( find(Tab0,Ggoal,Ent) ->
 | 
						|
	  Tab1 = Tab0, N1 = N0
 | 
						|
        ; wfs_newcall(Call,Tab0,Tab1,N0,N1),
 | 
						|
	  find(Tab1,Ggoal,Ent)
 | 
						|
        ),
 | 
						|
	wfsoldt_ground(PSM0,Tab1,Tab,N1,N).
 | 
						|
 | 
						|
wfsoldt_ground([],Tab,Tab,N,N).
 | 
						|
wfsoldt_ground([A|PSM],Tab0,Tab,N0,N) :-
 | 
						|
	( ground(A) ->
 | 
						|
	  true
 | 
						|
        ; write('Error: non-ground assumption in stable model selection: '),
 | 
						|
	  write(A), nl, fail
 | 
						|
        ),
 | 
						|
	( A = (\+G) ->
 | 
						|
	  true
 | 
						|
        ; A = G
 | 
						|
        ),
 | 
						|
	( isprolog(G) ->
 | 
						|
	  Tab1 = Tab0, N1 = N0,
 | 
						|
	  call(A)
 | 
						|
        ; find(Tab0,G,_) ->
 | 
						|
	  Tab1 = Tab0, N1 = N0
 | 
						|
        ; wfs_newcall(G,Tab0,Tab1,N0,N1)
 | 
						|
        ),
 | 
						|
	wfsoldt_ground(PSM,Tab1,Tab,N1,N).
 | 
						|
 | 
						|
wfs_newcall(Call,Tab0,Tab,N0,N) :-
 | 
						|
	new_init_call(Call,Ggoal,Ent0,[],S1,1,Dfn1),
 | 
						|
	add_tab_ent(Ggoal,Ent0,Tab0,Tab1),
 | 
						|
	oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,N0:[],N:_TP).
 | 
						|
	
 | 
						|
/* collect_unds(Anss,A0,A):
 | 
						|
   collects all delayed literals in answers Anss in a open-ended difference
 | 
						|
   list A0/A. These delayed literals are assumed either false or true in the
 | 
						|
   stable model computation.
 | 
						|
*/
 | 
						|
collect_unds([],A,A).
 | 
						|
collect_unds(l(_GH,Lanss),A1,A) :-
 | 
						|
	collect_unds_lanss(Lanss,A1,A).
 | 
						|
collect_unds(n2(T1,_,T2),A1,A) :-
 | 
						|
	collect_unds(T1,A1,A2),
 | 
						|
	collect_unds(T2,A2,A).
 | 
						|
collect_unds(n3(T1,_,T2,_,T3),A1,A) :-
 | 
						|
	collect_unds(T1,A1,A2),
 | 
						|
	collect_unds(T2,A2,A3),
 | 
						|
	collect_unds(T3,A3,A).
 | 
						|
 | 
						|
collect_unds_lanss([],A,A).
 | 
						|
collect_unds_lanss([d(_,D)|Lanss],A1,A) :-
 | 
						|
	collect_unds_list(D,A1,A2),
 | 
						|
	collect_unds_lanss(Lanss,A2,A).
 | 
						|
 | 
						|
collect_unds_list([],A,A).
 | 
						|
collect_unds_list([Lit|D],[Lit|A1],A) :-
 | 
						|
	collect_unds_list(D,A1,A).
 | 
						|
 | 
						|
/* st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits):
 | 
						|
   A0/A is an open-ended difference list containing a list of
 | 
						|
   delayed literals. st tries for each delayed literal to 
 | 
						|
   assume that it is true or false and checks to see if 
 | 
						|
   it leads to a partial stable model. Propagation of assumed
 | 
						|
   truth values is carried out as much as possible. It will 
 | 
						|
   fail if the relevant program contains p :- \+p.
 | 
						|
 | 
						|
   Abd0/Abd is an accumulator for a table of assumed truth 
 | 
						|
   values. They are checked against the table Tab0/Tab for
 | 
						|
   consistency later in check_consistency. DAbd0/DAbd is an 
 | 
						|
   accumulator for truth values of undefined literals that
 | 
						|
   are derived from assumed truth values of other literals.
 | 
						|
   Plits0/Plits is an accumulator for avoiding positive 
 | 
						|
   infinite loops in processing positive delayed literals.
 | 
						|
*/
 | 
						|
st(A0,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits) :-
 | 
						|
	( % empty difference list
 | 
						|
	  A0 == A ->
 | 
						|
	  Tab = Tab0, Abd = Abd0, DAbd = DAbd0, Plits = Plits0
 | 
						|
        ; A0 = [Lit|A1],
 | 
						|
	  ( % non-ground negative literals
 | 
						|
	    Lit = (Ggoal - (\+GH)) ->
 | 
						|
	    write('Error: cannot handle non-ground negative literals: '),
 | 
						|
	    write(\+GH), nl, fail
 | 
						|
	  ; % positive undefined literal
 | 
						|
	    Lit = Ggoal-GH ->
 | 
						|
	    ( % encountered before
 | 
						|
	      find(Plits0,Lit,_) ->
 | 
						|
	      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits)
 | 
						|
	    ; % otherwise, process undefined literals it depends upon
 | 
						|
	      addkey(Plits0,Lit,_,Plits1),
 | 
						|
	      find(Tab0,Ggoal,Ent),
 | 
						|
	      ent_to_anss(Ent,Anss),
 | 
						|
	      find(Anss,GH,Lanss),
 | 
						|
	      collect_unds_lanss(Lanss,A,NewA),
 | 
						|
	      st(A1,NewA,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits1,Plits)
 | 
						|
	    )
 | 
						|
	  ; % negative undefined literal
 | 
						|
	    Lit = (\+G) ->
 | 
						|
	    ( % has been assumed or derived to be true or false
 | 
						|
	      ( find(Abd0,G,_Val); find(DAbd0,G,_) ) -> 
 | 
						|
	      st(A1,A,Tab0,Tab,Abd0,Abd,DAbd0,DAbd,Plits0,Plits)
 | 
						|
	    ; find(Tab0,G,Gent),
 | 
						|
	      ent_to_anss(Gent,Ganss),
 | 
						|
	      ( % found to be false already
 | 
						|
	        failed(Ganss) ->
 | 
						|
		addkey(DAbd0,G,false,DAbd1),
 | 
						|
	        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits)
 | 
						|
	      ; % found to be true already 
 | 
						|
	        succeeded(Ganss) ->
 | 
						|
		addkey(DAbd0,G,true,DAbd1),
 | 
						|
	        st(A1,A,Tab0,Tab,Abd0,Abd,DAbd1,DAbd,Plits0,Plits)
 | 
						|
	      ; % create a choice point
 | 
						|
	        addkey(Abd0,G,Val,Abd1),
 | 
						|
		( Ganss = l(G,[d(G,Ds)]), memberchk(\+G,Ds) ->
 | 
						|
		  Val = false
 | 
						|
	        ; ( Val = false; Val = true )
 | 
						|
	        ),
 | 
						|
	        propagate_forward(G,Val,Tab0,Tab1,Abd1),
 | 
						|
	        A = [G-G|NewA], % make sure delayed literals of G are checked
 | 
						|
	        propagate_backward(G,Val,Ganss,Tab1,Tab2,Abd1,Abd2,NewA,NNA),
 | 
						|
	        st(A1,NNA,Tab2,Tab,Abd2,Abd,DAbd0,DAbd,Plits0,Plits)
 | 
						|
	      )
 | 
						|
	    )
 | 
						|
          )
 | 
						|
        ).
 | 
						|
 | 
						|
/* propagate_forward(G,Val,Tab0,Tab,Abd):
 | 
						|
   G has been assumed to be Val, and this information is propagated
 | 
						|
   using simplification or forward chaining links as much as 
 | 
						|
   possible.
 | 
						|
*/
 | 
						|
propagate_forward(G,Val,Tab0,Tab,Abd) :-
 | 
						|
	updatevs(Tab0,G,Ent0,Ent,Tab1),
 | 
						|
	Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist0),
 | 
						|
	Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn,Slist),
 | 
						|
	extract_known_by_abd(Slist0,Val,[],Slist,[],Klist),
 | 
						|
	simplify(Klist,Tab1,Tab,Abd).
 | 
						|
 | 
						|
/* The forward chaining is such that negative literals can fail 
 | 
						|
   or succeed by assumption, and positive literals can fail 
 | 
						|
   by assumption, but cannot succeed by assumption.
 | 
						|
   This avoids the construction of supported models that are 
 | 
						|
   not stable.
 | 
						|
*/
 | 
						|
extract_known_by_abd([],_,Slist,Slist,Klist,Klist).
 | 
						|
extract_known_by_abd([Link|Links],Val,Slist0,Slist,Klist0,Klist) :-
 | 
						|
	( Link = (_ : (\+ _)) ->
 | 
						|
	  ( Val == false ->
 | 
						|
	    Slist1 = Slist0, 
 | 
						|
	    Klist1 = [succ-Link|Klist0]
 | 
						|
	  ; Val == true ->
 | 
						|
	    Slist1 = Slist0, 
 | 
						|
	    Klist1 = [fail-Link|Klist0]
 | 
						|
	  ; Slist1 = [Link|Slist0], 
 | 
						|
	    Klist1 = Klist0
 | 
						|
	  )
 | 
						|
        ; % Link = (_ : _-GH) ->
 | 
						|
	  ( Val = false ->
 | 
						|
	    Slist1 = Slist0,
 | 
						|
	    Klist1 = [fail-Link|Klist0]
 | 
						|
	  ; % Val = true ->
 | 
						|
	    Slist1 = [Link|Slist0],
 | 
						|
	    Klist1 = Klist0
 | 
						|
	  )
 | 
						|
        ),
 | 
						|
	extract_known_by_abd(Links,Val,Slist1,Slist,Klist1,Klist).
 | 
						|
 | 
						|
/* propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA):
 | 
						|
   It tried to propagate the Val of G backward through answers
 | 
						|
   if possible. If G is assumed to be true, and G has only one
 | 
						|
   answer clause, then all literals in the body of the answer
 | 
						|
   clause must be true. If G is assumed to be false, then all
 | 
						|
   literals in answer clauses of G that have a single literal
 | 
						|
   are assumed to be false too. Otherwise, it is no-op.
 | 
						|
*/
 | 
						|
propagate_backward(G,Val,Ganss,Tab0,Tab,Abd0,Abd,A,NewA) :-
 | 
						|
	( Ganss = l(G,Lanss) ->
 | 
						|
	  ( Val == true, Lanss = [d(G,Ds)] ->
 | 
						|
	    assume_list(Ds,true,Tab0,Tab,Abd0,Abd,A,NewA)
 | 
						|
	  ; Val == false, findall(Lit,member(d(G,[Lit]),Lanss),Ds) ->
 | 
						|
	    assume_list(Ds,false,Tab0,Tab,Abd0,Abd,A,NewA)
 | 
						|
	  ; Tab = Tab0, Abd = Abd0, A = NewA
 | 
						|
          )
 | 
						|
        ; Tab = Tab0, Abd = Abd0, A = NewA
 | 
						|
        ).
 | 
						|
 | 
						|
assume_list([],_Val,Tab,Tab,Abd,Abd,A,A).
 | 
						|
assume_list([Lit|Lits],Val,Tab0,Tab,Abd0,Abd,A0,A) :-
 | 
						|
	assume_one(Lit,Val,Tab0,Tab1,Abd0,Abd1,A0,A1),
 | 
						|
	assume_list(Lits,Val,Tab1,Tab,Abd1,Abd,A1,A).
 | 
						|
 | 
						|
/* assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A):
 | 
						|
   Due to back propagation, Lit is assumed to be Val.
 | 
						|
   However, this assumption is carried out only if 
 | 
						|
   Lit is a delayed literal of a ground call or most
 | 
						|
   general call.
 | 
						|
*/
 | 
						|
assume_one(Ggoal-GH,_Val,Tab0,Tab,Abd0,Abd,A0,A) :-
 | 
						|
	Ggoal \== GH, 
 | 
						|
	!,
 | 
						|
	Tab = Tab0, Abd = Abd0, A = A0.
 | 
						|
assume_one(Lit,Val,Tab0,Tab,Abd0,Abd,A0,A) :-
 | 
						|
	( Lit = G-G ->
 | 
						|
	  GVal = Val
 | 
						|
        ; Lit = (\+G) ->
 | 
						|
	  ( Val == true -> GVal = false; GVal = true )
 | 
						|
        ; Lit = G ->
 | 
						|
	  GVal = Val
 | 
						|
        ),
 | 
						|
	( find(Abd0,G,V) ->              % already assumed
 | 
						|
	  ( V == GVal ->
 | 
						|
	    Tab = Tab0, Abd = Abd0, A = A0
 | 
						|
	  ; fail
 | 
						|
          )
 | 
						|
        ; find(Tab0,G,Gent),
 | 
						|
	  ent_to_anss(Gent,Ganss),
 | 
						|
	  ( failed(Ganss) ->             % already known
 | 
						|
	    ( GVal == true -> 
 | 
						|
	      fail
 | 
						|
	    ; Tab = Tab0, Abd = Abd0, A = A0
 | 
						|
	    )
 | 
						|
	  ; succeeded(Ganss) ->          % already known
 | 
						|
	    ( GVal == false -> 
 | 
						|
	      fail
 | 
						|
	    ; Tab = Tab0, Abd = Abd0, A = A0
 | 
						|
            )
 | 
						|
	  ; addkey(Abd0,G,GVal,Abd1),    % otherwise, propagate
 | 
						|
	    propagate_forward(G,GVal,Tab0,Tab1,Abd1),
 | 
						|
	    A0 = [G-G|A1],
 | 
						|
	    propagate_backward(G,Ganss,GVal,Tab1,Tab,Abd1,Abd,A1,A)
 | 
						|
	  )
 | 
						|
        ).
 | 
						|
 | 
						|
final_check(Abd,Tab0,Tab,DAbd,Alist) :-
 | 
						|
	check_consistency(Abd,Tab0,Tab,Alist0,Alist1),
 | 
						|
	add_dabd(DAbd,Alist1,[]),
 | 
						|
	sort(Alist0,Sorted),
 | 
						|
	listval_to_listlit(Sorted,Alist).
 | 
						|
 | 
						|
listval_to_listlit([],[]).
 | 
						|
listval_to_listlit([Val|Vlist],[Lit|Llist]) :-
 | 
						|
	val_to_lit(Val,Lit),
 | 
						|
	listval_to_listlit(Vlist,Llist).
 | 
						|
 | 
						|
val_to_lit(G-true,G).
 | 
						|
val_to_lit(G-false,\+G).
 | 
						|
 | 
						|
/* check_consistency(Abd,Tab0,Tab,Alist0,Alist):
 | 
						|
   A proposition may be assumed to be true, but no true answer
 | 
						|
   is derived at the end, which is inconsistency. A proposition
 | 
						|
   may be assumed to be false, but has a true answer. The latter
 | 
						|
   case is checked when the true answer is derived. Here Abd 
 | 
						|
   indicates the assumed truth values, and answers in Tab0
 | 
						|
   indicate the derived values by a fixpoint computation of
 | 
						|
   forward chaining.
 | 
						|
 | 
						|
   Also at the end of a fixpoint computation, a subgoal may
 | 
						|
   have only delayed answers with positive literals. These
 | 
						|
   have to be deleted in order for Tab0/Tab to be used
 | 
						|
   correctly later.
 | 
						|
*/
 | 
						|
check_consistency([],Tab,Tab,Alist,Alist).
 | 
						|
check_consistency(l(G,Val),Tab0,Tab,Alist0,Alist) :-
 | 
						|
	updatevs(Tab0,G,Ent0,Ent,Tab),
 | 
						|
	Ent0 = e(Nodes,ANegs,Anss0,_Delay,Comp,Dfn,Slist),
 | 
						|
	Ent = e(Nodes,ANegs,Anss,false,Comp,Dfn,Slist),
 | 
						|
	( Val == true ->
 | 
						|
	  succeeded(Anss0),
 | 
						|
	  Anss = l(G,[d(G,[])]), % delete answers with positive delays
 | 
						|
	  Alist0 = [G-Val|Alist]
 | 
						|
        ; % Val == false -> 
 | 
						|
	  Anss = [],
 | 
						|
	  Alist0 = [G-Val|Alist]
 | 
						|
        ).
 | 
						|
check_consistency(n2(T1,_,T2),Tab0,Tab,Alist0,Alist) :-
 | 
						|
	check_consistency(T1,Tab0,Tab1,Alist0,Alist1),
 | 
						|
	check_consistency(T2,Tab1,Tab,Alist1,Alist).
 | 
						|
check_consistency(n3(T1,_,T2,_,T3),Tab0,Tab,Alist0,Alist) :-
 | 
						|
	check_consistency(T1,Tab0,Tab1,Alist0,Alist1),
 | 
						|
	check_consistency(T2,Tab1,Tab2,Alist1,Alist2),
 | 
						|
	check_consistency(T3,Tab2,Tab,Alist2,Alist).
 | 
						|
 | 
						|
add_dabd([],Alist,Alist).
 | 
						|
add_dabd(l(G,Val),[G-Val|Alist],Alist).
 | 
						|
add_dabd(n2(T1,_,T2),Alist0,Alist) :-
 | 
						|
	add_dabd(T1,Alist0,Alist1),
 | 
						|
	add_dabd(T2,Alist1,Alist).
 | 
						|
add_dabd(n3(T1,_,T2,_,T3),Alist0,Alist) :-
 | 
						|
	add_dabd(T1,Alist0,Alist1),
 | 
						|
	add_dabd(T2,Alist1,Alist2),
 | 
						|
	add_dabd(T3,Alist2,Alist).
 | 
						|
 | 
						|
/* oldt(QueryAtom,Table): top level call for SLG resolution.
 | 
						|
   It returns a table consisting of answers for each relevant
 | 
						|
   subgoal. For stable predicates, it basically extract the 
 | 
						|
   relevant set of ground clauses by solving Prolog predicates
 | 
						|
   and other well-founded predicates.
 | 
						|
*/
 | 
						|
oldt(Call,Tab) :-
 | 
						|
    new_init_call(Call,Ggoal,Ent,[],S1,1,Dfn1),
 | 
						|
    add_tab_ent(Ggoal,Ent,[],Tab1),
 | 
						|
    oldt(Call,Ggoal,Tab1,Tab,S1,_S,Dfn1,_Dfn,maxint-maxint,_Dep,0:[],_TP),
 | 
						|
    ( wfs_trace -> 
 | 
						|
      nl, write('Final '), display_table(Tab), nl
 | 
						|
    ; true 
 | 
						|
    ).
 | 
						|
 | 
						|
/* oldt(Call,Ggoal,Tab0,Tab,Stack0,Stack,DFN0,DFN,Dep0,Dep,TP0,TP)
 | 
						|
   explores the initial set of edges, i.e., all the 
 | 
						|
   program clauses for Call. Ggoal is of the form 
 | 
						|
   Gcall-Gdfn, where Gcall is numbervar of Call and Gdfn
 | 
						|
   is the depth-first number of Gcall. Tab0/Tab,Stack0/Stack,
 | 
						|
   DFN0/DFN, and Dep0/Dep are accumulators for the table, 
 | 
						|
   the stack of subgoals, the DFN counter, and the dependencies.
 | 
						|
   TP0/TP is the accumulator for newly created clauses during
 | 
						|
   the processing of general clauss with universal disjunctions
 | 
						|
   in the body. These clauses are created in order to guarantee
 | 
						|
   polynomial data complexity in processing clauses with
 | 
						|
   universal disjuntions in the body of a clause. The newly 
 | 
						|
   created propositions are represented by numbers.
 | 
						|
*/
 | 
						|
oldt(Call,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    ( number(Call) ->
 | 
						|
      TP0 = (_ : Tcl),
 | 
						|
      find(Tcl,Call,Clause),
 | 
						|
      edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1)
 | 
						|
    ; findall(rule(d(Call,[]),Body),
 | 
						|
	      (new_slg_head(Call,Body,NewHead),call(NewHead)),
 | 
						|
	      Frames),
 | 
						|
      map_oldt(Frames,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1)
 | 
						|
    ),
 | 
						|
    comp_tab_ent(Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
map_oldt([],_Ggoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
map_oldt([Clause|Frames],Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
  edge_oldt(Clause,Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
  map_oldt(Frames,Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
/* edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
   Clause may be one of the following forms:
 | 
						|
          rule(d(H,Dlist),Blist)
 | 
						|
          rule(d(H,all(Dlist)),all(Blist))
 | 
						|
   where the second form is for general clauses with a universal
 | 
						|
   disjunction of literals in the body. Dlist is a list of delayed 
 | 
						|
   literals, and Blist is the list of literals to be solved.
 | 
						|
   Clause represents a directed edge from Ggoal to the left most 
 | 
						|
   subgoal in Blist.
 | 
						|
*/
 | 
						|
edge_oldt(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Clause = rule(Ans,B),
 | 
						|
    ( B == [] ->
 | 
						|
      ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
    ; B = [Lit|_] ->
 | 
						|
      ( Lit = (\+N) ->
 | 
						|
        neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
      ; pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
      )
 | 
						|
    ; B = all(Bl) ->
 | 
						|
      ( Bl == [] ->
 | 
						|
        ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
      ; Bl = [Lit|_],
 | 
						|
        ( Lit = (\+N) ->
 | 
						|
          aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
        ; apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
        )
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
ans_edge(Ans,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    ( add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab1) -> 
 | 
						|
      ( Mode = new_head -> 
 | 
						|
        returned_ans(Ans,Ggoal,RAns),
 | 
						|
        map_nodes(Nodes,RAns,Tab1,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
      ; Mode = no_new_head ->
 | 
						|
        Tab = Tab1, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
 | 
						|
      )
 | 
						|
    ; Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
 | 
						|
    ).
 | 
						|
 | 
						|
neg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Clause = rule(_,[\+N|_]),
 | 
						|
    ( ground(N) -> true
 | 
						|
    ; write('Flounder: '), write(\+N), nl, fail
 | 
						|
    ),
 | 
						|
    Node = (Ggoal:Clause),
 | 
						|
    Ngoal = N,                 % N is already ground
 | 
						|
    ( isprolog(N) ->           % if N is a Prolog predicate
 | 
						|
      ( call(N) ->             %    then just call
 | 
						|
        Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
 | 
						|
      ; apply_subst(Node,d(\+ N,[]),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
      )
 | 
						|
    ; ( find(Tab0,Ngoal,Nent) ->
 | 
						|
        Tab2 = Tab0, S2 = S0, Dfn2 = Dfn0, Dep1 = Dep0, TP1 = TP0
 | 
						|
      ; new_init_call(N,Ngoal,Ent,S0,S1,Dfn0,Dfn1),
 | 
						|
	add_tab_ent(Ngoal,Ent,Tab0,Tab1),
 | 
						|
	oldt(N,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,maxint-maxint,Ndep,TP0,TP1),
 | 
						|
	compute_mins(Dep0,Ndep,pos,Dep1),
 | 
						|
        find(Tab2,Ngoal,Nent)
 | 
						|
      ),
 | 
						|
      ent_to_comp(Nent,Ncomp),
 | 
						|
      ent_to_anss(Nent,Nanss),
 | 
						|
      ( succeeded(Nanss) ->
 | 
						|
	Tab = Tab2, S = S2, Dfn = Dfn2, Dep = Dep1, TP = TP1
 | 
						|
      ; failed(Nanss), Ncomp == true ->
 | 
						|
        apply_subst(Node,d(\+N,[]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP)
 | 
						|
      ; apply_subst(Node,d(\+N,[\+N]),Tab2,Tab,S2,S,Dfn2,Dfn,Dep1,Dep,TP1,TP)
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
pos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Clause = rule(_H,[N|_B]),
 | 
						|
    Node = (Ggoal:Clause),
 | 
						|
    ground(N,Ngoal),
 | 
						|
    ( isprolog(N) ->
 | 
						|
      findall(d(N,[]),call(N),Nanss),
 | 
						|
      map_anss_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
    ; ( find(Tab0,Ngoal,Nent) ->
 | 
						|
        ent_to_comp(Nent,Ncomp),
 | 
						|
        ent_to_anss(Nent,Nanss),
 | 
						|
        ( Ncomp \== true ->
 | 
						|
          update_lookup_mins(Ggoal,Node,Ngoal,pos,Tab0,Tab1,Dep0,Dep1),
 | 
						|
          map_anss(Nanss,Node,Ngoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep1,Dep,TP0,TP)
 | 
						|
        ; % N is completed. 
 | 
						|
          map_anss(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
        )
 | 
						|
      ; % otherwise N is new
 | 
						|
        new_pos_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
 | 
						|
        add_tab_ent(Ngoal,Ent,Tab0,Tab1),
 | 
						|
        oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP),
 | 
						|
        update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
aneg_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Clause = rule(_H,all([\+N|_B])),
 | 
						|
    Node = (Ggoal:Clause),
 | 
						|
    ground(N,Ngoal),
 | 
						|
    ( isprolog(N) ->
 | 
						|
      findall(d(N,[]),call(N),Nanss),
 | 
						|
      return_to_disj_list(Nanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
    ; ( find(Tab0,Ngoal,Nent) ->
 | 
						|
        ent_to_comp(Nent,Ncomp),
 | 
						|
        ent_to_anss(Nent,Nanss),
 | 
						|
        ( Ncomp \== true ->
 | 
						|
          update_lookup_mins(Ggoal,Node,Ngoal,aneg,Tab0,Tab,Dep0,Dep),
 | 
						|
          S = S0, Dfn = Dfn0, TP = TP0
 | 
						|
        ; % N is completed. 
 | 
						|
          return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
        )
 | 
						|
      ; % otherwise N is new
 | 
						|
        new_aneg_call(Ngoal,Node,Ent,S0,S1,Dfn0,Dfn1),
 | 
						|
        add_tab_ent(Ngoal,Ent,Tab0,Tab1),
 | 
						|
        oldt(N,Ngoal,Tab1,Tab2,S1,S,Dfn1,Dfn,maxint-maxint,Ndep,TP0,TP),
 | 
						|
        update_solution_mins(Ggoal,Ngoal,pos,Tab2,Tab,Ndep,Dep0,Dep)
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
apos_edge(Clause,Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Clause = rule(d(H,D),all([N|B])),
 | 
						|
    ( ground(N) -> true
 | 
						|
    ; write('Flounder in a universal disjunction: '), 
 | 
						|
      write(N), 
 | 
						|
      nl, 
 | 
						|
      fail
 | 
						|
    ),
 | 
						|
    pos_edge(rule(d(H,[]),[N]),Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    edge_oldt(rule(d(H,D),all(B)),Ggoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
apply_subst(Ggoal:Cl,d(An,Vr),Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    copy_term(Cl,rule(d(Ac,Vc),Body)),
 | 
						|
    ( Body = [Call|NBody] ->
 | 
						|
      Call = An,
 | 
						|
      append(Vr,Vc,Vn)
 | 
						|
    ; Body = all([Call|Calls]),
 | 
						|
      % Call = An,              % An is the numbervar-ed version of Call.
 | 
						|
      ( Vc == [] ->
 | 
						|
        Vn = all(Vr)
 | 
						|
      ; Vc = all(Vc0),
 | 
						|
        append(Vr,Vc0,Vn0),
 | 
						|
        Vn = all(Vn0)
 | 
						|
      ),
 | 
						|
      NBody = all(Calls)
 | 
						|
    ),
 | 
						|
    edge_oldt(rule(d(Ac,Vn),NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP).
 | 
						|
 | 
						|
/* map_nodes(Nodes,Ans,....):
 | 
						|
   return Ans to each of the waiting nodes in Nodes, where a node
 | 
						|
   is of the form Ggoal:Clause.
 | 
						|
*/  
 | 
						|
map_nodes([],_Ans,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
map_nodes([Node|Nodes],Ans,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    map_nodes(Nodes,Ans,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
map_anss([],_Node,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
map_anss(l(_GH,Lanss),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    ( Lanss == [] ->
 | 
						|
      Tab = Tab0, S = S0, Dfn = Dfn0, Dep = Dep0, TP = TP0
 | 
						|
    ; Lanss = [Ans|_],
 | 
						|
      returned_ans(Ans,Ngoal,RAns),
 | 
						|
      apply_subst(Node,RAns,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
    ).
 | 
						|
map_anss(n2(T1,_,T2),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    map_anss(T2,Node,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
map_anss(n3(T1,_,T2,_,T3),Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    map_anss(T1,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    map_anss(T2,Node,Ngoal,Tab1,Tab2,S1,S2,Dfn1,Dfn2,Dep1,Dep2,TP1,TP2),
 | 
						|
    map_anss(T3,Node,Ngoal,Tab2,Tab,S2,S,Dfn2,Dfn,Dep2,Dep,TP2,TP).
 | 
						|
 | 
						|
map_anss_list([],_Node,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
map_anss_list([Ans|Lanss],Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    apply_subst(Node,Ans,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    map_anss_list(Lanss,Node,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
/* return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
   Nanss: an answer table for Ngoal
 | 
						|
   Node: is of the form (Ggoal:Clause), where Clause is of the form
 | 
						|
         rule(d(H,D),all([\+N|B]))
 | 
						|
   It carries out resolution of each answer with Clause, and constructs
 | 
						|
   a new clause rule(Head,NBody), where the body is basically a 
 | 
						|
   conjunction of all the resolvents. If a resolvent is a disjunction
 | 
						|
   or a non-ground literal, a new proposition is created (which is 
 | 
						|
   actually represented by a number), which has a clause whose body
 | 
						|
   is the resolvent.
 | 
						|
*/
 | 
						|
return_to_disj(Nanss,Node,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Node = (Ggoal : Clause),
 | 
						|
    Clause = rule(Head,all(Body)),
 | 
						|
    TP0 = (N0 : Tcl0),
 | 
						|
    negative_return_all(Nanss,Body,Ngoal,NBody,[],N0,N,Tcl0,Tcl),
 | 
						|
    TP1 = (N : Tcl),
 | 
						|
    edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
 | 
						|
 | 
						|
negative_return_all([],_Body,_Ngoal,NBody,NBody,N,N,Tcl,Tcl).
 | 
						|
negative_return_all(l(_GH,Lanss),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
 | 
						|
    ( Lanss == [] ->
 | 
						|
      NBody0 = NBody, N = N0, Tcl = Tcl0
 | 
						|
    ; Lanss = [Ans|_],
 | 
						|
      negative_return_one(Ans,Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl)
 | 
						|
    ).
 | 
						|
negative_return_all(n2(T1,_,T2),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
 | 
						|
    negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
 | 
						|
    negative_return_all(T2,Body,Ngoal,NBody1,NBody,N1,N,Tcl1,Tcl).
 | 
						|
negative_return_all(n3(T1,_,T2,_,T3),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
 | 
						|
    negative_return_all(T1,Body,Ngoal,NBody0,NBody1,N0,N1,Tcl0,Tcl1),
 | 
						|
    negative_return_all(T2,Body,Ngoal,NBody1,NBody2,N1,N2,Tcl1,Tcl2),
 | 
						|
    negative_return_all(T3,Body,Ngoal,NBody2,NBody,N2,N,Tcl2,Tcl).
 | 
						|
 | 
						|
negative_return_one(d(H,Tv),Body,Ngoal,NBody0,NBody,N0,N,Tcl0,Tcl) :-
 | 
						|
    copy_term(Body,[\+Call|Bs]),
 | 
						|
    H = Call,
 | 
						|
    ( Tv == [] ->                    % no delay
 | 
						|
      ( (Bs = [Lit], ground(Lit)) -> % resovlent is a ground literal
 | 
						|
        NBody0 = [Lit|NBody],
 | 
						|
        N = N0, Tcl = Tcl0
 | 
						|
      ; Lit = N0,                    % otherwise, replace it with a number
 | 
						|
        N is N0+1,
 | 
						|
        NBody0 = [Lit|NBody],
 | 
						|
        Clause = rule(d(Lit,[]),all(Bs)),
 | 
						|
        add_tab_ent(Lit,Clause,Tcl0,Tcl)
 | 
						|
      )
 | 
						|
    ; ( ground(H) ->                 % if there is delay, always replace with number
 | 
						|
	NewTv = [\+H]
 | 
						|
      ; ground(H,GH),
 | 
						|
	NewTv = [Ngoal - (\+GH)]
 | 
						|
      ),
 | 
						|
      Lit = N0,
 | 
						|
      N is N0+1,
 | 
						|
      NBody0 = [Lit|NBody],
 | 
						|
      Clause = rule(d(Lit,all(NewTv)),all(Bs)),
 | 
						|
      add_tab_ent(Lit,Clause,Tcl0,Tcl)
 | 
						|
    ).
 | 
						|
 | 
						|
return_to_disj_list(Lanss,Node,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    Node = (Ggoal : Clause),
 | 
						|
    Clause = rule(Head,all(Body)),
 | 
						|
    TP0 = (N0 : Tcl0),
 | 
						|
    negative_return_list(Lanss,Body,NBody,[],N0,N,Tcl0,Tcl),
 | 
						|
    TP1 = (N : Tcl),
 | 
						|
    edge_oldt(rule(Head,NBody),Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP1,TP).
 | 
						|
 | 
						|
negative_return_list([],_Body,NBody,NBody,N,N,Tcl,Tcl).
 | 
						|
negative_return_list([d(H,[])|Lanss],Body,NBody0,NBody,N0,N,Tcl0,Tcl) :-
 | 
						|
    copy_term(Body,[\+Call|Bs]),
 | 
						|
    H = Call,
 | 
						|
    ( Bs = [Lit], ground(Lit) ->
 | 
						|
      NBody0 = [Lit|NBody1],
 | 
						|
      N1 = N0, Tcl1 = Tcl0
 | 
						|
    ; Lit = N0,
 | 
						|
      N1 is N0+1,
 | 
						|
      NBody0 = [Lit|NBody1],
 | 
						|
      Clause = rule(d(Lit,[]),all(Bs)),
 | 
						|
      add_tab_ent(Lit,Clause,Tcl0,Tcl1)
 | 
						|
    ),
 | 
						|
    negative_return_list(Lanss,Body,NBody1,NBody,N1,N,Tcl1,Tcl).
 | 
						|
 | 
						|
/* comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP)
 | 
						|
   check if Ggoal and subgoals on top of it on the stack are
 | 
						|
   completely evaluated.
 | 
						|
*/
 | 
						|
comp_tab_ent(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    ( Dep0 == maxint-maxint ->
 | 
						|
      process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
 | 
						|
    ; update_mins(Ggoal,Dep0,pos,Tab0,Tab1,Gdfn,Gdep),
 | 
						|
      Gdep = Gpmin-Gnmin,
 | 
						|
      ( Gdfn @=< Gpmin, Gnmin == maxint ->
 | 
						|
        process_pos_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
 | 
						|
      ; Gdfn @=< Gpmin, Gdfn @=< Gnmin ->
 | 
						|
        process_neg_scc(Ggoal,Tab1,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP)
 | 
						|
      ; Tab = Tab1, S0 = S, Dfn = Dfn0, Dep = Gdep, TP = TP0
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
process_pos_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
 | 
						|
    ( wfs_trace ->
 | 
						|
      write('Stack: '), nl, display_stack(S0,Tab0),
 | 
						|
      write('Completed call found: '), write(Ggoal), nl, 
 | 
						|
      display_table(Tab0),
 | 
						|
      write('Completing calls ......'), nl, nl
 | 
						|
    ; true
 | 
						|
    ),
 | 
						|
    pop_subgoals(Ggoal,S0,S1,[],Scc),
 | 
						|
    complete_comp(Scc,Tab0,Tab1,Alist,[]),
 | 
						|
    return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn0,Dfn,maxint-maxint,Dep,TP0,TP).
 | 
						|
 | 
						|
/* pop_subgoals(Ggoal,S0,S,Scc0,Scc)
 | 
						|
   pop off the stack subgoals up to and including Ggoal
 | 
						|
*/
 | 
						|
pop_subgoals(Ggoal,S0,S,Scc0,Scc) :-
 | 
						|
    S0 = [Sent|S1],
 | 
						|
    ( Ggoal == Sent ->
 | 
						|
      S = S1, 
 | 
						|
      Scc = [Sent|Scc0]
 | 
						|
    ; pop_subgoals(Ggoal,S1,S,[Sent|Scc0],Scc)
 | 
						|
    ).
 | 
						|
 | 
						|
/* complete_comp(Scc,Tab0,Tab,Alist0,Alist):
 | 
						|
   process the list Scc of subgoals that are 
 | 
						|
   completely evaluated.
 | 
						|
*/
 | 
						|
complete_comp([],Tab,Tab,Alist,Alist).
 | 
						|
complete_comp([Ggoal|Scc],Tab0,Tab,Alist0,Alist) :-
 | 
						|
    complete_one(Ggoal,Tab0,Tab1,Alist0,Alist1),
 | 
						|
    complete_comp(Scc,Tab1,Tab,Alist1,Alist).
 | 
						|
 | 
						|
/* complete_one(Ggoal,Tab0,Tab,Alist0,Alist)
 | 
						|
   process one subgoal that has been completely 
 | 
						|
   evaluated:
 | 
						|
   1. set its Nodes and Negs to [] and Comp to true;
 | 
						|
   2. simplify its answers and set up links
 | 
						|
      for further simplification later;
 | 
						|
   3. use the truth value of Ggoal to simplify
 | 
						|
      answers of other complete subgoals (possibly 
 | 
						|
      including itself).
 | 
						|
   4. set Alist0/Alist: a list of negation nodes with
 | 
						|
      universal disjunctions with associated answers
 | 
						|
      for the selected negative literal.
 | 
						|
*/
 | 
						|
complete_one(Ggoal,Tab0,Tab,Alist0,Alist) :-
 | 
						|
    updatevs(Tab0,Ggoal,Ent0,Ent,Tab1),
 | 
						|
    Ent0 = e(_Nodes,ANegs,Anss0,Delay,_Comp,Gdfn,Slist0),
 | 
						|
    Ent = e([],[],Anss,Delay,true,Gdfn,Slist),
 | 
						|
    ( Delay == true ->
 | 
						|
      reduce_ans(Anss0,Anss,Tab0),
 | 
						|
      setup_simp_links(Anss,Ggoal,Slist0,Slist1,Tab1,Tab2)
 | 
						|
    ; % Delay == false
 | 
						|
      Anss = Anss0,
 | 
						|
      Tab2 = Tab1,
 | 
						|
      Slist1 = Slist0
 | 
						|
    ),
 | 
						|
    extract_known(Ggoal,Anss,Slist1,Slist,Klist),
 | 
						|
    simplify(Klist,Tab2,Tab,[]),
 | 
						|
    ( ANegs == [] ->
 | 
						|
      Alist0 = Alist
 | 
						|
    ; Alist0 = [(Anss,Ggoal)-ANegs|Alist]
 | 
						|
    ).
 | 
						|
 | 
						|
setup_simp_links([],_,Slist,Slist,Tab,Tab).
 | 
						|
setup_simp_links(l(GH,Lanss),Ggoal,Slist0,Slist,Tab0,Tab) :-
 | 
						|
    setup_simp_links_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab).
 | 
						|
setup_simp_links(n2(T1,_,T2),Ggoal,Slist0,Slist,Tab0,Tab) :-
 | 
						|
    setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
 | 
						|
    setup_simp_links(T2,Ggoal,Slist1,Slist,Tab1,Tab).
 | 
						|
setup_simp_links(n3(T1,_,T2,_,T3),Ggoal,Slist0,Slist,Tab0,Tab) :-
 | 
						|
    setup_simp_links(T1,Ggoal,Slist0,Slist1,Tab0,Tab1),
 | 
						|
    setup_simp_links(T2,Ggoal,Slist1,Slist2,Tab1,Tab2),
 | 
						|
    setup_simp_links(T3,Ggoal,Slist2,Slist,Tab2,Tab).
 | 
						|
 | 
						|
/* setup_simp_link_list(Lanss,Ggoal-GH,Ggoal,Slist0,Slist,Tab0,Tab)
 | 
						|
   Ggoal-GH is to tell what portion of answers of Ggoal can be 
 | 
						|
   simplified.
 | 
						|
*/
 | 
						|
setup_simp_links_list([],_,_,Slist,Slist,Tab,Tab).
 | 
						|
setup_simp_links_list([d(_,D)|Anss],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
 | 
						|
    ( D = all(Ds) ->
 | 
						|
      true
 | 
						|
    ; Ds = D
 | 
						|
    ),
 | 
						|
    links_from_one_delay(Ds,GHead,Ggoal,Slist0,Slist1,Tab0,Tab1),
 | 
						|
    setup_simp_links_list(Anss,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
 | 
						|
 | 
						|
/* A link ((Ggoal-GH):Lit) in an entry for Ngoal means that 
 | 
						|
   the literal Lit in an answer with head GH in Ggoal can 
 | 
						|
   be potentially simplified if we know answers for Ngoal.
 | 
						|
*/
 | 
						|
links_from_one_delay([],_,_,Slist,Slist,Tab,Tab).
 | 
						|
links_from_one_delay([D|Ds],GHead,Ggoal,Slist0,Slist,Tab0,Tab) :-
 | 
						|
    ( D = (\+ Ngoal) ->
 | 
						|
      ( Ggoal == Ngoal ->
 | 
						|
        Tab1 = Tab0,
 | 
						|
	Slist1 = [GHead:D|Slist0]
 | 
						|
      ; add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1),
 | 
						|
	Slist1 = Slist0
 | 
						|
      )
 | 
						|
    ; D = (Ngoal-_) ->
 | 
						|
      ( Ggoal == Ngoal ->
 | 
						|
        Slist1 = [GHead:D|Slist0],
 | 
						|
        Tab1 = Tab0
 | 
						|
      ; Slist1 = Slist0,
 | 
						|
        add_link_to_ent(Tab0,Ngoal,GHead:D,Tab1)
 | 
						|
      )
 | 
						|
    ),
 | 
						|
    links_from_one_delay(Ds,GHead,Ggoal,Slist1,Slist,Tab1,Tab).
 | 
						|
 | 
						|
/* extract_known(Ggoal,Anss,Links,Slist,Klist):
 | 
						|
   Given Ggoal and its answers Anss, and its 
 | 
						|
   simplification Links, it partitioned Links 
 | 
						|
   into Slist and Klist of links, where Klist 
 | 
						|
   is a list of links that are known to be either
 | 
						|
   true or false.
 | 
						|
 | 
						|
   Klist is either of the form Val-Links, or a
 | 
						|
   list of the form Val-Link. In case of non-ground
 | 
						|
   calls, the corresponding portion of Anss has to 
 | 
						|
   be searched.
 | 
						|
*/
 | 
						|
extract_known(Ggoal,Anss,Links,Slist,Klist) :-
 | 
						|
    ( failed(Anss) ->
 | 
						|
      Klist = fail-Links,
 | 
						|
      Slist = []
 | 
						|
    ; Anss = l(GH,Lanss) ->
 | 
						|
      ( Ggoal == GH ->       % Ground or most general call
 | 
						|
	( memberchk(d(_,[]),Lanss) ->
 | 
						|
	  Klist = succ-Links,
 | 
						|
	  Slist = []
 | 
						|
        ; Klist = [],
 | 
						|
	  Slist = Links
 | 
						|
        )
 | 
						|
      ; % non-ground call
 | 
						|
	extract_known_anss(Links,Anss,[],Slist,[],Klist)
 | 
						|
      )
 | 
						|
    ; % non-ground call
 | 
						|
      extract_known_anss(Links,Anss,[],Slist,[],Klist)
 | 
						|
    ).
 | 
						|
      
 | 
						|
extract_known_anss([],_,Slist,Slist,Klist,Klist).
 | 
						|
extract_known_anss([Link|Links],Anss,Slist0,Slist,Klist0,Klist) :-
 | 
						|
    Link = (_:Lit),
 | 
						|
    extract_lit_val(Lit,Anss,true,Val),
 | 
						|
    ( Val == undefined ->
 | 
						|
      Slist1 = [Link|Slist0],
 | 
						|
      Klist1 = Klist0
 | 
						|
    ; Slist1 = Slist0,
 | 
						|
      Klist1 = [Val-Link|Klist0]
 | 
						|
    ),
 | 
						|
    extract_known_anss(Links,Anss,Slist1,Slist,Klist1,Klist).
 | 
						|
 | 
						|
/* extract_lit_val(Lit,Anss,Comp,Val):
 | 
						|
   extract the truth value of Lit according to Anss and Comp.
 | 
						|
   In case of a non-ground calls, the corresponding portion
 | 
						|
   of Anss has to be searched.
 | 
						|
*/
 | 
						|
extract_lit_val(Lit,Anss,Comp,Val) :-
 | 
						|
    ( Lit = (\+ _) ->
 | 
						|
      ( succeeded(Anss) ->
 | 
						|
        Val = fail
 | 
						|
      ; failed(Anss), Comp == true ->
 | 
						|
        Val = succ
 | 
						|
      ; Val = undefined
 | 
						|
      )
 | 
						|
    ; Lit = (_ - (\+GH)) ->
 | 
						|
      ( find(Anss,GH,Lanss) ->
 | 
						|
        ( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
 | 
						|
          Val = fail
 | 
						|
        ; Lanss == [], Comp == true ->
 | 
						|
	  Val = succ
 | 
						|
        ; Val = undefined
 | 
						|
        )
 | 
						|
      ; ( Comp == true ->
 | 
						|
	  Val = succ
 | 
						|
        ; Val = undefined
 | 
						|
        )
 | 
						|
      )
 | 
						|
    ; Lit = (_-GH) ->
 | 
						|
      ( find(Anss,GH,Lanss) ->
 | 
						|
        ( (\+ \+ memberchk(d(GH,[]),Lanss)) ->
 | 
						|
          Val = succ
 | 
						|
        ; Lanss == [], Comp == true ->
 | 
						|
	  Val = fail
 | 
						|
        ; Val = undefined
 | 
						|
        )
 | 
						|
      ; ( Comp == true ->
 | 
						|
	  Val = fail
 | 
						|
        ; Val = undefined
 | 
						|
        )
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
/* simplify(KnownLinks,Tab0,Tab,Abd):
 | 
						|
   Given a list of KnownLinks, Tab0 and Abd,
 | 
						|
   it tries to simplify answers according to
 | 
						|
   KnownLinks. When a subgoal is found to be
 | 
						|
   true or false according to answers, 
 | 
						|
   consistency with assumed truth values in Abd
 | 
						|
   is checked.
 | 
						|
*/
 | 
						|
simplify([],Tab,Tab,_Abd).
 | 
						|
simplify([Val-Link|Klist],Tab0,Tab,Abd) :-
 | 
						|
    simplify_one(Val,Link,Tab0,Tab1,Abd),
 | 
						|
    simplify(Klist,Tab1,Tab,Abd).
 | 
						|
simplify(Val-Links,Tab0,Tab,Abd) :-
 | 
						|
    simplify_list(Links,Val,Tab0,Tab,Abd).
 | 
						|
 | 
						|
simplify_list([],_,Tab,Tab,_Abd).
 | 
						|
simplify_list([Link|Links],Val,Tab0,Tab,Abd) :-
 | 
						|
    Link = (_ : Lit),
 | 
						|
    ( ( Lit = (\+_); Lit = (_ - (\+_)) ) ->
 | 
						|
      ( Val = fail -> LVal = succ; LVal = fail )
 | 
						|
    ; LVal = Val
 | 
						|
    ),
 | 
						|
    simplify_one(LVal,Link,Tab0,Tab1,Abd),
 | 
						|
    simplify_list(Links,Val,Tab1,Tab,Abd).
 | 
						|
 | 
						|
simplify_one(Val,Link,Tab0,Tab,Abd) :-
 | 
						|
    Link = ((Ngoal - GH) : Lit),
 | 
						|
    updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss0,Delay,Comp,Dfn,Slist0),
 | 
						|
    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
 | 
						|
    ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
 | 
						|
      simplify_anss(Lanss0,Val,Lit,[],Lanss,C),
 | 
						|
      ( C == true ->
 | 
						|
	( find(Abd,GH,Aval) ->
 | 
						|
	  ( Aval == true, Lanss == [] -> % deduced result inconsistent with assumption
 | 
						|
	    fail
 | 
						|
	  ; Aval == false, memberchk( d(_ , []), Lanss) ->
 | 
						|
	    fail
 | 
						|
	  ; true
 | 
						|
          )
 | 
						|
	; true
 | 
						|
        ),
 | 
						|
        extract_known(Ngoal,Anss,Slist0,Slist,Klist),
 | 
						|
        simplify(Klist,Tab1,Tab,Abd)
 | 
						|
      ; Tab = Tab0
 | 
						|
      )
 | 
						|
    ; Tab = Tab0
 | 
						|
    ).
 | 
						|
 | 
						|
/* simplify_anss(List,Val,Lit,Lanss0,Lanss,C):
 | 
						|
   Given a List of answers, Val of Lit, it 
 | 
						|
   simplifies the List and construct a new list
 | 
						|
   Lanss0/Lanss of answers. C is unified with true
 | 
						|
   if some simplification is carried out.
 | 
						|
 | 
						|
   As soon as a true answer is detected, all
 | 
						|
   other answers with the same head are deleted.
 | 
						|
*/
 | 
						|
simplify_anss([],_,_,Anss,Anss,_).
 | 
						|
simplify_anss([Ans|Rest],Val,Lit,Anss0,Anss,C) :-
 | 
						|
    ( simplified_ans(Ans,Val,Lit,NewAns,C) ->
 | 
						|
      ( NewAns = d(_,[]) ->
 | 
						|
        Anss = [NewAns]
 | 
						|
      ; Anss1 = [NewAns|Anss0],
 | 
						|
        simplify_anss(Rest,Val,Lit,Anss1,Anss,C)
 | 
						|
      )
 | 
						|
    ; C = true,
 | 
						|
      simplify_anss(Rest,Val,Lit,Anss0,Anss,C)
 | 
						|
    ).
 | 
						|
 | 
						|
simplified_ans(Ans,Val,Lit,NewAns,C) :-
 | 
						|
    Ans = d(H,Ds),
 | 
						|
    ( Ds == [] ->
 | 
						|
      NewAns = Ans
 | 
						|
    ; Ds = all(Dlist) ->
 | 
						|
      ( Val == fail ->
 | 
						|
        delete_lit(Dlist,Lit,NewDlist,[],C),
 | 
						|
        ( NewDlist == [] ->
 | 
						|
          fail
 | 
						|
        ; NewAns = d(H,all(NewDlist))
 | 
						|
        )
 | 
						|
      ; % Val == succ ->
 | 
						|
        ( memberchk(Lit,Dlist) ->
 | 
						|
          NewAns = d(H,[]),
 | 
						|
          C = true
 | 
						|
        ; NewAns = Ans
 | 
						|
        )
 | 
						|
      )
 | 
						|
    ; % Ds is a conjunction
 | 
						|
      ( Val == fail ->
 | 
						|
        ( memberchk(Lit,Ds) ->
 | 
						|
          fail
 | 
						|
        ; NewAns = Ans
 | 
						|
        )
 | 
						|
      ; % Val == succ ->
 | 
						|
        delete_lit(Ds,Lit,NewDs,[],C),
 | 
						|
        NewAns = d(H,NewDs)
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
/* delete_lit(Delays,Lit,Ds0,Ds,C):
 | 
						|
   deletes Lit from Delays. Delays is 
 | 
						|
   a list of delayed literals and it
 | 
						|
   is guaranteed to have no duplicates.
 | 
						|
*/
 | 
						|
delete_lit([],_,Ds,Ds,_).
 | 
						|
delete_lit([D|Rest],Lit,Ds0,Ds,C) :-
 | 
						|
    ( D == Lit ->
 | 
						|
      Ds0 = Rest,
 | 
						|
      C = true
 | 
						|
    ; Ds0 = [D|Ds1],
 | 
						|
      delete_lit(Rest,Lit,Ds1,Ds,C)
 | 
						|
    ).
 | 
						|
 | 
						|
% return answers to negative nodes within universal disjunctions
 | 
						|
return_aneg_nodes([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
return_aneg_nodes([(Anss,Ngoal)-ANegs|Alist],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    map_anegs(ANegs,Anss,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    return_aneg_nodes(Alist,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
map_anegs([],_Anss,_Ngoal,Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
map_anegs([Node|ANegs],Anss,Ngoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    return_to_disj(Anss,Node,Ngoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    map_anegs(ANegs,Anss,Ngoal,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
/* process a component of subgoals that may be involved in 
 | 
						|
   negative loops.
 | 
						|
*/
 | 
						|
process_neg_scc(Ggoal,Tab0,Tab,S0,S,Dfn0,Dfn,Dep,TP0,TP) :-
 | 
						|
    ( wfs_trace ->
 | 
						|
      write('Stack: '), nl, display_stack(S0,Tab0),
 | 
						|
      write('Possible negative loop: '), write(Ggoal), nl, 
 | 
						|
      display_table(Tab0)
 | 
						|
    ; true
 | 
						|
    ),
 | 
						|
    extract_subgoals(Ggoal,S0,Scc,[]),
 | 
						|
    reset_nmin(Scc,Tab0,Tab1,Ds,[]),
 | 
						|
    ( wfs_trace ->
 | 
						|
      write('Delaying: '), display_dlist(Ds)
 | 
						|
    ; true
 | 
						|
    ),
 | 
						|
    delay_and_cont(Ds,Tab1,Tab2,S0,S1,Dfn0,Dfn1,maxint-maxint,Dep1,TP0,TP1),
 | 
						|
    recomp_scc(Scc,Tab2,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
/* extract_subgoals(Ggoal,S0,Scc0,Scc)
 | 
						|
   extract subgoals that may be involved in negative loops,
 | 
						|
   but leave the stack of subgoals intact.
 | 
						|
*/
 | 
						|
extract_subgoals(Ggoal,[Sent|S],[Sent|Scc0],Scc) :-
 | 
						|
    ( Ggoal == Sent ->
 | 
						|
      Scc0 = Scc
 | 
						|
    ; extract_subgoals(Ggoal,S,Scc0,Scc)
 | 
						|
    ).
 | 
						|
 | 
						|
/* reset_nmin(Scc,Tab0,Tab,Dnodes0,Dnodes)
 | 
						|
   reset NegLink and collect all waiting nodes that need to be 
 | 
						|
   delayed. Dnodes0/Dnodes is a difference list.
 | 
						|
*/
 | 
						|
reset_nmin([],Tab,Tab,Ds,Ds).
 | 
						|
reset_nmin([Ggoal|Scc],Tab0,Tab,Ds0,Ds) :-
 | 
						|
    get_and_reset_negs(Tab0,Ggoal,ANegs,Tab1),
 | 
						|
    ( ANegs == [] ->
 | 
						|
      Ds0 = Ds1
 | 
						|
    ; Ds0 = [Ggoal-ANegs|Ds1]
 | 
						|
    ),
 | 
						|
    reset_nmin(Scc,Tab1,Tab,Ds1,Ds).
 | 
						|
 | 
						|
delay_and_cont([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
delay_and_cont([Ggoal-Negs|Dnodes],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    map_nodes(Negs,d(\+Ggoal,[\+Ggoal]),Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    delay_and_cont(Dnodes,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
recomp_scc([],Tab,Tab,S,S,Dfn,Dfn,Dep,Dep,TP,TP).
 | 
						|
recomp_scc([Ggoal|Scc],Tab0,Tab,S0,S,Dfn0,Dfn,Dep0,Dep,TP0,TP) :-
 | 
						|
    comp_tab_ent(Ggoal,Tab0,Tab1,S0,S1,Dfn0,Dfn1,Dep0,Dep1,TP0,TP1),
 | 
						|
    recomp_scc(Scc,Tab1,Tab,S1,S,Dfn1,Dfn,Dep1,Dep,TP1,TP).
 | 
						|
 | 
						|
/* routines for incremental update of dependency information
 | 
						|
*/
 | 
						|
 | 
						|
/* update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep)
 | 
						|
   update the PosLink and NegLink of Ggoal according to 
 | 
						|
   Dep and Sign
 | 
						|
*/
 | 
						|
update_mins(Ggoal,Dep,Sign,Tab0,Tab,Gdfn,Gdep) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep0,Slist),
 | 
						|
    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn:Gdep,Slist),
 | 
						|
    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
 | 
						|
    compute_mins(Gdep0,Dep,Sign,Gdep).
 | 
						|
 | 
						|
/* update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep)
 | 
						|
   There is a lookup edge (Node) from Ggoal to Ngoal 
 | 
						|
   with Sign. It adds Node to the corresponding waiting list
 | 
						|
   in Ngoal and then update the dependencies of Ggoal.
 | 
						|
*/
 | 
						|
update_lookup_mins(Ggoal,Node,Ngoal,Sign,Tab0,Tab,Dep0,Dep) :-
 | 
						|
    updatevs(Tab0,Ngoal,Ent0,Ent,Tab1),
 | 
						|
    ( Sign == pos ->
 | 
						|
      pos_to_newent(Ent0,Ent,Node)
 | 
						|
    ; Sign == aneg ->
 | 
						|
      aneg_to_newent(Ent0,Ent,Node)
 | 
						|
    ),
 | 
						|
    Ent0 = e(_,_,_,_,_,_Ndfn:Ndep,_),
 | 
						|
    compute_mins(Dep0,Ndep,Sign,Dep),
 | 
						|
    update_mins(Ggoal,Ndep,Sign,Tab1,Tab,_,_).
 | 
						|
 | 
						|
/* update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep)
 | 
						|
   There is an edge with Sign from Ggoal to Ngoal, where Ngoal is 
 | 
						|
   a new subgoal. Ndep is the final dependency information of 
 | 
						|
   Ngoal. Dep0/Dep is for the most recent enclosing new call.
 | 
						|
   This predicate is called after Ngoal is solved.
 | 
						|
*/
 | 
						|
update_solution_mins(Ggoal,Ngoal,Sign,Tab0,Tab,Ndep,Dep0,Dep) :-
 | 
						|
    find(Tab0,Ngoal,Nent),
 | 
						|
    ent_to_comp(Nent,Ncomp),
 | 
						|
    ( Ncomp == true ->
 | 
						|
      ( Ndep == maxint-maxint ->
 | 
						|
        Tab = Tab0, Dep = Dep0
 | 
						|
      ; update_mins(Ggoal,Ndep,pos,Tab0,Tab,_,_),
 | 
						|
        compute_mins(Dep0,Ndep,pos,Dep)
 | 
						|
      )
 | 
						|
    ; update_mins(Ggoal,Ndep,Sign,Tab0,Tab,_,_),
 | 
						|
      compute_mins(Dep0,Ndep,Sign,Dep)
 | 
						|
    ).
 | 
						|
 | 
						|
compute_mins(Gpmin-Gnmin,Npmin-Nnmin,Sign,Newpmin-Newnmin) :-
 | 
						|
    ( Sign == pos ->
 | 
						|
      min(Gpmin,Npmin,Newpmin),
 | 
						|
      min(Gnmin,Nnmin,Newnmin)
 | 
						|
    ; % (Sign == neg; Sign == aneg) ->
 | 
						|
      Newpmin=Gpmin,
 | 
						|
      min(Gnmin,Npmin,Imin), 
 | 
						|
      min(Imin,Nnmin,Newnmin)
 | 
						|
    ).
 | 
						|
    
 | 
						|
min(X,Y,M) :- ( X @< Y -> M=X; M=Y ).
 | 
						|
 | 
						|
%%%%%%%%%%%%%%% Local table manipulation predicates %%%%%%%%%%
 | 
						|
 | 
						|
/* Table Entry Structure:
 | 
						|
   For each Call, its table entry is identified with its number-vared
 | 
						|
   version -- Ggoal. Its value is a term of the form
 | 
						|
 | 
						|
    e(Nodes,ANegs,Anss,Delay,Comp,Dfn:Dep,Slist)
 | 
						|
 | 
						|
   where
 | 
						|
     Nodes:  positive suspension list
 | 
						|
     ANegs:  negative suspension list (for universal disjunction clauss)
 | 
						|
     Anss:   another table.
 | 
						|
     Delay:  whether Anss contains any answer with delay
 | 
						|
     Comp:   whether Call is completely evaluated or not
 | 
						|
     Dfn:    depth-first number of Gcall
 | 
						|
     Dep:    (PosLink-NegLink) --- dependency information
 | 
						|
     Slist:  a list of nodes whose answers may be simplified
 | 
						|
             if the truth value of Ggoal is known. Each element of Slist
 | 
						|
         is of the form (Ngoal-GH):Literal.
 | 
						|
   Stack Entry Structure:
 | 
						|
     Ggoal
 | 
						|
*/
 | 
						|
 | 
						|
/* routines for accessing individual fields of an entry
 | 
						|
*/
 | 
						|
ent_to_nodes(e(Nodes,_,_,_,_,_,_),Nodes).
 | 
						|
ent_to_anegs(e(_,ANegs,_,_,_,_,_),ANegs).
 | 
						|
ent_to_anss(e(_,_,Anss,_,_,_,_),Anss).
 | 
						|
ent_to_delay(e(_,_,_,Delay,_,_,_),Delay).
 | 
						|
ent_to_comp(e(_,_,_,_,Comp,_,_),Comp).
 | 
						|
ent_to_dfn(e(_,_,_,_,_,Dfn,_),Dfn).
 | 
						|
ent_to_slist(e(_,_,_,_,_,_,Slist),Slist).
 | 
						|
 | 
						|
get_and_reset_negs(Tab0,Ggoal,ANegs,Tab) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Gdfn: (Gpmin - _),Slist),
 | 
						|
    Ent = e(Nodes,[],Anss,Delay,Comp,Gdfn:Gpmin-maxint,Slist),
 | 
						|
    updatevs(Tab0,Ggoal,Ent0,Ent,Tab).
 | 
						|
 | 
						|
/* adding a new table entry
 | 
						|
*/
 | 
						|
add_tab_ent(Ggoal,Ent,Tab0,Tab) :- 
 | 
						|
    addkey(Tab0,Ggoal,Ent,Tab).
 | 
						|
 | 
						|
/* The following three routines are for creating
 | 
						|
   new calls
 | 
						|
*/
 | 
						|
/* a new call with empty suspensions 
 | 
						|
*/
 | 
						|
new_init_call(Call,Ggoal,Ent,S0,S,Dfn0,Dfn) :-
 | 
						|
    ground(Call,Ggoal),
 | 
						|
    S = [Ggoal|S0],
 | 
						|
    Dfn is Dfn0+1,
 | 
						|
    Ent = e([],[],[],false,false,Dfn0:Dfn0-maxint,[]).
 | 
						|
 | 
						|
/* a new call with an initial negative suspension from 
 | 
						|
   inside a universal disjunction
 | 
						|
*/
 | 
						|
new_aneg_call(Ngoal,Neg,Ent,S0,S,Dfn0,Dfn) :-
 | 
						|
    S = [Ngoal|S0],
 | 
						|
    Dfn is Dfn0+1,
 | 
						|
    Ent = e([],[Neg],[],false,false,Dfn0:Dfn0-maxint,[]).
 | 
						|
 | 
						|
/* a new call with an initial positive suspension
 | 
						|
*/
 | 
						|
new_pos_call(Ngoal,Node,Ent,S0,S,Dfn0,Dfn) :-
 | 
						|
    S = [Ngoal|S0],
 | 
						|
    Dfn is Dfn0+1,
 | 
						|
    Ent = e([Node],[],[],false,false,Dfn0:Dfn0-maxint,[]).
 | 
						|
 | 
						|
/* routines for adding more information to a
 | 
						|
   table entry.
 | 
						|
*/
 | 
						|
aneg_to_newent(Ent0,Ent,ANeg) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
 | 
						|
    Ent = e(Nodes,[ANeg|ANegs],Anss,Delay,Comp,Dfn,Slist).
 | 
						|
 | 
						|
pos_to_newent(Ent0,Ent,Node) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
 | 
						|
    Ent = e([Node|Nodes],ANegs,Anss,Delay,Comp,Dfn,Slist).
 | 
						|
 | 
						|
add_link_to_ent(Tab0,Ggoal,Link,Tab) :-
 | 
						|
    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
 | 
						|
    link_to_newent(Ent0,Ent,Link).
 | 
						|
 | 
						|
link_to_newent(Ent0,Ent,Link) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
 | 
						|
    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,[Link|Slist]).
 | 
						|
 | 
						|
/* routines for manipulating answers */
 | 
						|
ansstree_to_list([],L,L).
 | 
						|
ansstree_to_list(l(_GH,Lanss),L0,L) :-
 | 
						|
    attach(Lanss,L0,L).
 | 
						|
ansstree_to_list(n2(T1,_M,T2),L0,L) :-
 | 
						|
    ansstree_to_list(T1,L0,L1),
 | 
						|
    ansstree_to_list(T2,L1,L).
 | 
						|
ansstree_to_list(n3(T1,_M2,T2,_M3,T3),L0,L) :-
 | 
						|
    ansstree_to_list(T1,L0,L1),
 | 
						|
    ansstree_to_list(T2,L1,L2),
 | 
						|
    ansstree_to_list(T3,L2,L).
 | 
						|
 | 
						|
attach([],L,L).
 | 
						|
attach([d(H,B)|R],[X|L0],L) :-
 | 
						|
    ( B == [] ->
 | 
						|
      X = H
 | 
						|
    ; X = (H <- B)
 | 
						|
    ),
 | 
						|
    attach(R,L0,L).
 | 
						|
 | 
						|
member_anss(Ans,Anss) :-
 | 
						|
	member_anss_1(Anss,Ans).
 | 
						|
 | 
						|
member_anss_1(l(_,Lanss),Ans) :-
 | 
						|
	member(Ans,Lanss).
 | 
						|
member_anss_1(n2(T1,_,T2),Ans) :-
 | 
						|
	( member_anss_1(T1,Ans)
 | 
						|
        ; member_anss_1(T2,Ans)
 | 
						|
        ).
 | 
						|
member_anss_1(n3(T1,_,T2,_,T3),Ans) :-
 | 
						|
	( member_anss_1(T1,Ans)
 | 
						|
        ; member_anss_1(T2,Ans)
 | 
						|
        ; member_anss_1(T3,Ans)
 | 
						|
        ).
 | 
						|
 | 
						|
/* failed(Anss): Anss is empty */
 | 
						|
failed([]).
 | 
						|
failed(l(_,[])).
 | 
						|
 | 
						|
/* succeeded(Anss): Anss contains a single definite answer */
 | 
						|
succeeded(l(_,Lanss)) :-
 | 
						|
	memberchk(d(_,[]),Lanss).
 | 
						|
 | 
						|
/* add_ans(Tab0,Goal,Ans,Nodes,Mode,Tab):
 | 
						|
   If Ans is not subsumed by any existing answer then
 | 
						|
      Ans is added to Anss(Goal);
 | 
						|
      If some existing answer also has head H then
 | 
						|
         Mode = no_new_head
 | 
						|
      else 
 | 
						|
         Mode = new_head
 | 
						|
   else
 | 
						|
      fail.
 | 
						|
*/
 | 
						|
add_ans(Tab0,Ggoal,Ans,Nodes,Mode,Tab) :-
 | 
						|
    updatevs(Tab0,Ggoal,Ent0,Ent,Tab),
 | 
						|
    Ans = d(H,Ds),
 | 
						|
    ( Ds == [] ->
 | 
						|
      new_ans_ent(Ent0,Ent,Ans,Nodes,Mode)
 | 
						|
    ; setof(X,member(X,Ds),NewDs),
 | 
						|
      new_ans_ent(Ent0,Ent,d(H,NewDs),Nodes,Mode)
 | 
						|
    ).
 | 
						|
 | 
						|
new_ans_ent(Ent0,Ent,Ans,Nodes,Mode) :-
 | 
						|
    Ent0 = e(Nodes,ANegs,Anss0,Delay0,Comp,Dfn,Slist),
 | 
						|
    Ent = e(Nodes,ANegs,Anss,Delay,Comp,Dfn,Slist),
 | 
						|
    Ans = d(H,D),
 | 
						|
    ground(H,GH),
 | 
						|
    ( updatevs(Anss0,GH,Lanss0,Lanss,Anss) ->
 | 
						|
      ( D == [] ->
 | 
						|
        \+(memberchk(d(_,[]),Lanss0)),
 | 
						|
        Lanss = [Ans]
 | 
						|
      ; not_subsumed_ans(Ans,Lanss0),
 | 
						|
        Lanss = [Ans|Lanss0]
 | 
						|
      ),
 | 
						|
      Mode = no_new_head
 | 
						|
    ; addkey(Anss0,GH,[Ans],Anss),
 | 
						|
      Mode = new_head
 | 
						|
    ),
 | 
						|
    ( D == [] -> 
 | 
						|
      Delay = Delay0
 | 
						|
    ; Delay = true
 | 
						|
    ).
 | 
						|
 | 
						|
/* returned_ans(Ans,Ggoal,RAns):
 | 
						|
   determines whether SLG resolution or SLG factoring should 
 | 
						|
   be applied.
 | 
						|
*/
 | 
						|
returned_ans(d(H,Tv),Ggoal,d(H,NewTv)) :-
 | 
						|
    ( Tv = [] ->
 | 
						|
      NewTv = []
 | 
						|
    ; ground(H,GH),
 | 
						|
      NewTv = [Ggoal-GH]
 | 
						|
    ).
 | 
						|
 | 
						|
% reduce a list of answers, by reducing delay list, and by subsumption
 | 
						|
reduce_ans(Anss0,Anss,Tab) :-
 | 
						|
    reduce_completed_ans(Anss0,Anss,Tab).
 | 
						|
 | 
						|
% simplify all the delay lists in a list of answers.
 | 
						|
reduce_completed_ans([],[],_Tab).
 | 
						|
reduce_completed_ans(l(GH,Lanss0),l(GH,Lanss),Tab) :-
 | 
						|
    reduce_completed_anslist(Lanss0,[],Lanss,Tab).
 | 
						|
reduce_completed_ans(n2(T1,M,T2),n2(NT1,M,NT2),Tab) :-
 | 
						|
    reduce_completed_ans(T1,NT1,Tab),
 | 
						|
    reduce_completed_ans(T2,NT2,Tab).
 | 
						|
reduce_completed_ans(n3(T1,M2,T2,M3,T3),n3(NT1,M2,NT2,M3,NT3),Tab) :-
 | 
						|
    reduce_completed_ans(T1,NT1,Tab),
 | 
						|
    reduce_completed_ans(T2,NT2,Tab),
 | 
						|
    reduce_completed_ans(T3,NT3,Tab).
 | 
						|
 | 
						|
reduce_completed_anslist([],Lanss,Lanss,_Tab).
 | 
						|
reduce_completed_anslist([d(G,D0)|List],Lanss0,Lanss,Tab) :-
 | 
						|
    ( D0 = all(Dlist1) ->
 | 
						|
      ( filter_delays(Dlist1,[],Dlist,disj,V,Tab) ->
 | 
						|
        ( V == true ->       % true answer
 | 
						|
          Lanss = [d(G,[])]
 | 
						|
        ; Dlist == [] ->     % false answer, ignore
 | 
						|
          reduce_completed_anslist(List,Lanss0,Lanss,Tab)
 | 
						|
        ; reduce_completed_anslist(List,[d(G,all(Dlist))|Lanss0],Lanss,Tab)
 | 
						|
        )
 | 
						|
      ; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
 | 
						|
      )
 | 
						|
    ; ( filter_delays(D0,[],D,conj,_V,Tab) ->
 | 
						|
	( D == [] ->
 | 
						|
	  Lanss = [d(G,[])]
 | 
						|
        ; reduce_completed_anslist(List,[d(G,D)|Lanss0],Lanss,Tab)
 | 
						|
        )
 | 
						|
      ; reduce_completed_anslist(List,Lanss0,Lanss,Tab)
 | 
						|
      )
 | 
						|
    ).
 | 
						|
 | 
						|
% simplify a delay list by the completed table: delete true negations,
 | 
						|
%    fail if a false one.
 | 
						|
filter_delays([],Fds,Fds,_DC,_V,_Tab).
 | 
						|
filter_delays([Lit|Ds],Fds0,Fds,DC,V,Tab) :-
 | 
						|
    lit_to_call(Lit,Gcall),
 | 
						|
    find(Tab,Gcall,Gent),
 | 
						|
    ent_to_comp(Gent,Gcomp),
 | 
						|
    ent_to_anss(Gent,Ganss),
 | 
						|
    extract_lit_val(Lit,Ganss,Gcomp,Val),
 | 
						|
    ( Val == succ ->
 | 
						|
      ( DC == conj ->
 | 
						|
        filter_delays(Ds,Fds0,Fds,DC,V,Tab)
 | 
						|
      ; DC == disj ->
 | 
						|
        V = true
 | 
						|
      )
 | 
						|
    ; Val == fail ->
 | 
						|
      ( DC == conj ->
 | 
						|
        fail
 | 
						|
      ; DC == disj ->
 | 
						|
        filter_delays(Ds,Fds0,Fds,DC,V,Tab)
 | 
						|
      )
 | 
						|
    ; % Val == undefined
 | 
						|
      filter_delays(Ds,[Lit|Fds0],Fds,DC,V,Tab)
 | 
						|
    ).
 | 
						|
 | 
						|
lit_to_call(\+G,G).
 | 
						|
lit_to_call(Gcall-_,Gcall).
 | 
						|
 | 
						|
not_subsumed_ans(Ans,Lanss0) :-
 | 
						|
    \+
 | 
						|
    ( numbervars(Ans,0,_),
 | 
						|
      subsumed_ans1(Ans,Lanss0)
 | 
						|
    ).
 | 
						|
 | 
						|
% succeed if answer is subsumed by any in list1 or 2.
 | 
						|
subsumed_ans(Tv,List1,List2) :- 
 | 
						|
    \+ 
 | 
						|
    (numbervars(Tv,0,_),
 | 
						|
     \+ subsumed_ans1(Tv,List1),
 | 
						|
     \+ subsumed_ans1(Tv,List2)
 | 
						|
    ).
 | 
						|
 | 
						|
% check if a delay is subsumed one of the element in the list
 | 
						|
subsumed_ans1(d(T,V),List) :-
 | 
						|
    member(d(T,V1),List),
 | 
						|
    ( V1 == []
 | 
						|
    ; V = all(LV), V1 = all(LV1) ->
 | 
						|
      subset(LV,LV1)
 | 
						|
    ; subset(V1,V)
 | 
						|
    ).
 | 
						|
 | 
						|
/****************** auxiliary routines *******************/
 | 
						|
% variantchk/2 finds a variant in a list of atoms.
 | 
						|
variantchk(G,[G1|_]) :- variant(G,G1), !.
 | 
						|
variantchk(G,[_|L]) :- variantchk(G,L).
 | 
						|
 | 
						|
variant(A, B) :-
 | 
						|
    A == B
 | 
						|
     ->    true
 | 
						|
     ;     subsumes_chk(A, B),
 | 
						|
           subsumes_chk(B, A),
 | 
						|
           A = B.
 | 
						|
/*
 | 
						|
subsumes_chk(General, Specific) :-
 | 
						|
        \+ (    numbervars(Specific, 0, _),
 | 
						|
                \+ General = Specific
 | 
						|
         ).
 | 
						|
*/
 | 
						|
ground(O,C) :- ground(O) -> C = O ; copy_term(O,C), numbervars(C,0,_).
 | 
						|
 | 
						|
subset([],_).
 | 
						|
subset([E|L1],L2) :- memberchk(E,L2), subset(L1,L2).
 | 
						|
 | 
						|
reverse([],R,R).
 | 
						|
reverse([Goal|Scc],R0,R) :- reverse(Scc,[Goal|R0],R).
 | 
						|
 | 
						|
/***************** routines for debugging *******************/
 | 
						|
 | 
						|
% Debugging help: pretty-prints strongly connected components and local table.
 | 
						|
display_stack(Stack,Tab) :-
 | 
						|
    reverse(Stack,[],Rstack),
 | 
						|
    display_st(Rstack,Tab).
 | 
						|
display_st([],_Tab).
 | 
						|
display_st([Ggoal|Scc],Tab) :-
 | 
						|
    find(Tab,Ggoal,Ent),
 | 
						|
    ent_to_dfn(Ent,Dfn:Pmin-Nmin),
 | 
						|
    tab(2), 
 | 
						|
    write(Ggoal-Dfn),
 | 
						|
    write(':  '),
 | 
						|
    write('Pmin='),
 | 
						|
    write(Pmin),
 | 
						|
    write(';  '),
 | 
						|
    write('Nmin='),
 | 
						|
    write(Nmin),
 | 
						|
    write(';  '),
 | 
						|
    nl,
 | 
						|
    display_st(Scc,Tab).
 | 
						|
 | 
						|
display_dlist([]) :- nl,nl.
 | 
						|
display_dlist([Ngoal-_|Dlist]) :-
 | 
						|
    write(\+ Ngoal), 
 | 
						|
    write('; '), 
 | 
						|
    display_dlist(Dlist).
 | 
						|
 | 
						|
display_table(Tab) :-
 | 
						|
    write('Table: '), 
 | 
						|
    nl,
 | 
						|
    write_tab(Tab).
 | 
						|
 | 
						|
display_final(Tab) :-
 | 
						|
    write(' Final Set of Answers: '), 
 | 
						|
    nl,
 | 
						|
    display_final1(Tab).
 | 
						|
display_final1([]).
 | 
						|
display_final1(l(_,e(_,_,Anss,_,_,_,_))) :-
 | 
						|
    write_anss(Anss).
 | 
						|
display_final1(n2(X,_,Y)) :- 
 | 
						|
    display_final1(X),
 | 
						|
    display_final1(Y).
 | 
						|
display_final1(n3(X,_,Y,_,Z)) :- 
 | 
						|
    display_final1(X),
 | 
						|
    display_final1(Y),
 | 
						|
    display_final1(Z).
 | 
						|
 | 
						|
write_tab([]).
 | 
						|
write_tab(l(G,e(Nodes,ANegs,Anss,_,Comp,Dfn:_,_))) :-
 | 
						|
    write(' Entry: '),
 | 
						|
    write(G-Dfn),
 | 
						|
    write(': '),
 | 
						|
    ( Comp == true -> 
 | 
						|
      write('Complete!')
 | 
						|
    ; write('Incomplete!') 
 | 
						|
    ), 
 | 
						|
    nl,
 | 
						|
    ( Anss == [] -> 
 | 
						|
      true
 | 
						|
    ; write('   Anss: '), 
 | 
						|
      nl,
 | 
						|
      write_anss(Anss)
 | 
						|
    ),
 | 
						|
    ( ( Comp == true; Nodes == []) -> 
 | 
						|
      true 
 | 
						|
    ; write('   Nodes: '),
 | 
						|
      write(Nodes),
 | 
						|
      nl
 | 
						|
    ),
 | 
						|
    ( ( Comp == true; ANegs == []) ->
 | 
						|
      true
 | 
						|
    ; write('   ANegs: '),
 | 
						|
      write(ANegs),
 | 
						|
      nl
 | 
						|
    ).
 | 
						|
write_tab(n2(X,_,Y)) :- 
 | 
						|
    write_tab(X),
 | 
						|
    write_tab(Y).
 | 
						|
write_tab(n3(X,_,Y,_,Z)) :- 
 | 
						|
    write_tab(X),
 | 
						|
    write_tab(Y),
 | 
						|
    write_tab(Z).
 | 
						|
 | 
						|
write_anss([]).
 | 
						|
write_anss(l(_,Lanss)) :-
 | 
						|
    write_anss_list(Lanss).
 | 
						|
write_anss(n2(T1,_,T2)) :-
 | 
						|
    write_anss(T1),
 | 
						|
    write_anss(T2).
 | 
						|
write_anss(n3(T1,_,T2,_,T3)) :-
 | 
						|
    write_anss(T1),
 | 
						|
    write_anss(T2),
 | 
						|
    write_anss(T3).
 | 
						|
 | 
						|
write_anss_list([]).
 | 
						|
write_anss_list([Ans|Anss]) :-
 | 
						|
    write_ans(Ans),
 | 
						|
    write_anss_list(Anss).
 | 
						|
 | 
						|
write_ans(d(H,Ds)) :-
 | 
						|
    write('         '), 
 | 
						|
    write(H),
 | 
						|
    ( Ds == [] -> 
 | 
						|
      true
 | 
						|
    ; write(' :- '),
 | 
						|
      ( Ds = all([D|Ds1]) ->
 | 
						|
        ( D = (_-GH) ->
 | 
						|
          write(GH)
 | 
						|
        ; write(D)
 | 
						|
        ),
 | 
						|
        write_delay(Ds1,'; ')
 | 
						|
      ; Ds = [D|Ds1],
 | 
						|
        ( D = (_-GH) ->
 | 
						|
          write(GH)
 | 
						|
        ; write(D)
 | 
						|
        ),
 | 
						|
        write_delay(Ds1,', ')
 | 
						|
      )
 | 
						|
    ), 
 | 
						|
    write('.'), 
 | 
						|
    nl.
 | 
						|
write_delay([],_).
 | 
						|
write_delay([D|Ds1],Sep) :-
 | 
						|
    write(Sep),
 | 
						|
    ( D = (_Gcall-GH) -> 
 | 
						|
      write(GH)
 | 
						|
    ; write(D) 
 | 
						|
    ),
 | 
						|
    write_delay(Ds1,Sep).
 | 
						|
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
/* 
 | 
						|
This is a set of routines that supports indexed tables. Tables
 | 
						|
are sets of key-value_list pairs. With each key is associated a list
 | 
						|
of values. It uses 2-3 trees for the index (modified by D.S. Warren
 | 
						|
from Ivan Bratko: ``Prolog Programming for Artificial
 | 
						|
Intelligence'', Addison Wesley, 1986). Operations are: 
 | 
						|
 | 
						|
Keys must be ground! (so numbervar them)
 | 
						|
 | 
						|
addkey(Tree,Key,V,Tree1) adds a new Key with value V, returning 
 | 
						|
    new Tree1. Fails if the key is already there.
 | 
						|
 | 
						|
find(Tree,Key,V) finds the entry with Key and returns associated
 | 
						|
    values in V.
 | 
						|
 | 
						|
updatevs(Tree,Key,OldV,NewV,Tree1) replaces value of entry with key
 | 
						|
    Key and value OldV with NewV.
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
addkey(Tree,X,V,Tree1) :-
 | 
						|
	ins2(Tree,X,V,Trees),
 | 
						|
	cmb0(Trees,Tree1).
 | 
						|
addkey([],X,V,l(X,V)).
 | 
						|
 | 
						|
 | 
						|
find(l(X,V),Xs,V) :- X == Xs.
 | 
						|
find(n2(T1,M,T2),X,V) :-
 | 
						|
	M @=< X
 | 
						|
	 ->	find(T2,X,V)
 | 
						|
	 ;	find(T1,X,V).
 | 
						|
find(n3(T1,M2,T2,M3,T3),X,V) :-
 | 
						|
	M2 @=< X
 | 
						|
	 ->	(M3 @=< X
 | 
						|
		 ->	find(T3,X,V)
 | 
						|
		 ;	find(T2,X,V)
 | 
						|
		)
 | 
						|
	 ;	find(T1,X,V).
 | 
						|
 | 
						|
 | 
						|
% updatevs(Tab0,X,Ov,Nv,Tab) updates Tab0 to Tab, by replacing
 | 
						|
% Ov of entry with key X by Nv.
 | 
						|
/*
 | 
						|
updatevs(Tab0,X,Ov,Nv,Tab) :-
 | 
						|
	updatevs(Tab0,X,Ov,Nv),
 | 
						|
	Tab = Tab0.
 | 
						|
 | 
						|
updatevs(Tab,X,Ov,Nv) :-
 | 
						|
	( Tab = l(Xs,Ov), Xs == X ->
 | 
						|
	  setarg(2,Tab,Nv)
 | 
						|
        ; Tab = n2(T1,M,T2) ->
 | 
						|
	  ( M @=< X ->
 | 
						|
	    updatevs(T2,X,Ov,Nv)
 | 
						|
	  ; updatevs(T1,X,Ov,Nv)
 | 
						|
          )
 | 
						|
        ; Tab = n3(T1,M2,T2,M3,T3) ->
 | 
						|
	  ( M2 @=< X ->
 | 
						|
	    ( M3 @=< X ->
 | 
						|
	      updatevs(T3,X,Ov,Nv)
 | 
						|
	    ; updatevs(T2,X,Ov,Nv)
 | 
						|
	    )
 | 
						|
	  ; updatevs(T1,X,Ov,Nv)
 | 
						|
          )
 | 
						|
        ).
 | 
						|
*/
 | 
						|
 | 
						|
updatevs(l(X,Ov),Xs,Ov,Nv,l(X,Nv)) :- X == Xs.
 | 
						|
updatevs(n2(T1,M,T2),X,Ov,Nv,n2(NT1,M,NT2)) :-
 | 
						|
	M @=< X
 | 
						|
	 ->	NT1=T1, updatevs(T2,X,Ov,Nv,NT2)
 | 
						|
	 ;	NT2=T2, updatevs(T1,X,Ov,Nv,NT1).
 | 
						|
updatevs(n3(T1,M2,T2,M3,T3),X,Ov,Nv,n3(NT1,M2,NT2,M3,NT3)) :-
 | 
						|
	M2 @=< X
 | 
						|
	 ->	(M3 @=< X
 | 
						|
		 ->	NT2=T2, NT1=T1, updatevs(T3,X,Ov,Nv,NT3)
 | 
						|
		 ;	NT1=T1, NT3=T3, updatevs(T2,X,Ov,Nv,NT2)
 | 
						|
		)
 | 
						|
	 ;	NT2=T2, NT3=T3, updatevs(T1,X,Ov,Nv,NT1).
 | 
						|
 | 
						|
ins2(n2(T1,M,T2),X,V,Tree) :- 
 | 
						|
	M @=< X
 | 
						|
	 ->	ins2(T2,X,V,Tree1),
 | 
						|
		cmb2(Tree1,T1,M,Tree)
 | 
						|
	 ;	ins2(T1,X,V,Tree1),
 | 
						|
		cmb1(Tree1,M,T2,Tree).
 | 
						|
ins2(n3(T1,M2,T2,M3,T3),X,V,Tree) :- 
 | 
						|
	M2 @=< X
 | 
						|
	 ->	(M3 @=< X
 | 
						|
		 ->	ins2(T3,X,V,Tree1),
 | 
						|
			cmb4(Tree1,T1,M2,T2,M3,Tree)
 | 
						|
		 ;	ins2(T2,X,V,Tree1),
 | 
						|
			cmb5(Tree1,T1,M2,M3,T3,Tree)
 | 
						|
		)
 | 
						|
	 ;	ins2(T1,X,V,Tree1),
 | 
						|
		cmb3(Tree1,M2,T2,M3,T3,Tree).
 | 
						|
ins2(l(A,V),X,Vn,Tree) :-
 | 
						|
	A @=< X
 | 
						|
	 ->	(X @=< A
 | 
						|
		 ->	fail
 | 
						|
		 ;	Tree = t(l(A,V),X,l(X,Vn))
 | 
						|
		)
 | 
						|
	 ;	Tree = t(l(X,Vn),A,l(A,V)).
 | 
						|
 | 
						|
cmb0(t(Tree),Tree).
 | 
						|
cmb0(t(T1,M,T2),n2(T1,M,T2)).
 | 
						|
 | 
						|
cmb1(t(NT1),M,T2,t(n2(NT1,M,T2))).
 | 
						|
cmb1(t(NT1a,Mb,NT1b),M,T2,t(n3(NT1a,Mb,NT1b,M,T2))).
 | 
						|
 | 
						|
cmb2(t(NT2),T1,M,t(n2(T1,M,NT2))).
 | 
						|
cmb2(t(NT2a,Mb,NT2b),T1,M,t(n3(T1,M,NT2a,Mb,NT2b))).
 | 
						|
 | 
						|
cmb3(t(NT1),M2,T2,M3,T3,t(n3(NT1,M2,T2,M3,T3))).
 | 
						|
cmb3(t(NT1a,Mb,NT1b),M2,T2,M3,T3,t(n2(NT1a,Mb,NT1b),M2,n2(T2,M3,T3))).
 | 
						|
 | 
						|
cmb4(t(NT3),T1,M2,T2,M3,t(n3(T1,M2,T2,M3,NT3))).
 | 
						|
cmb4(t(NT3a,Mb,NT3b),T1,M2,T2,M3,t(n2(T1,M2,T2),M3,n2(NT3a,Mb,NT3b))).
 | 
						|
 | 
						|
cmb5(t(NT2),T1,M2,M3,T3,t(n3(T1,M2,NT2,M3,T3))).
 | 
						|
cmb5(t(NT2a,Mb,NT2b),T1,M2,M3,T3,t(n2(T1,M2,NT2a),Mb,n2(NT2b,M3,T3))).
 | 
						|
 | 
						|
start_slg:- assertz((
 | 
						|
	term_expansion(X,Y) :- !,
 | 
						|
	        do_term_expansion(X,Y)
 | 
						|
	    )).
 | 
						|
 |