67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			67 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
%% -*- prolog -*-
 | 
						|
%%=============================================================================
 | 
						|
%% Copyright (C) 2011 by Denys Duchier
 | 
						|
%%
 | 
						|
%% This program is free software: you can redistribute it and/or modify it
 | 
						|
%% under the terms of the GNU Lesser General Public License as published by the
 | 
						|
%% Free Software Foundation, either version 3 of the License, or (at your
 | 
						|
%% option) any later version.
 | 
						|
%% 
 | 
						|
%% This program is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
%% FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | 
						|
%% more details.
 | 
						|
%% 
 | 
						|
%% You should have received a copy of the GNU Lesser General Public License
 | 
						|
%% along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
%%=============================================================================
 | 
						|
 | 
						|
:- use_module(library(gecode)).
 | 
						|
:- use_module(library(maplist)).
 | 
						|
 | 
						|
% use alldiff constraints
 | 
						|
queens(N, Solution) :-
 | 
						|
	Space := space,
 | 
						|
	length(Queens, N),
 | 
						|
	Queens := intvars(Space,N,1,N),
 | 
						|
	Space += distinct(Queens),
 | 
						|
	foldl(inc, Queens, Inc, 0, _),
 | 
						|
	foldl(dec, Queens, Dec, 0, _),
 | 
						|
	Space += distinct(Inc,Queens),
 | 
						|
	Space += distinct(Dec,Queens),
 | 
						|
	Space += branch(Queens, 'INT_VAR_SIZE_MIN', 'INT_VAL_MIN'),
 | 
						|
	SolSpace := search(Space),
 | 
						|
	Solution := val(SolSpace,Queens).
 | 
						|
 | 
						|
inc(_, I0, I0, I) :-
 | 
						|
	I is I0+1.
 | 
						|
 | 
						|
dec(_, I0, I0, I) :-
 | 
						|
	I is I0-1.
 | 
						|
 | 
						|
%
 | 
						|
% Using gecode linear constraints for diagonals.
 | 
						|
%
 | 
						|
lqueens(N, Solution) :-
 | 
						|
	Space := space,
 | 
						|
	length(Queens, N),
 | 
						|
	Queens := intvars(Space,N,1,N),
 | 
						|
	Space += distinct(Queens),
 | 
						|
	lconstrain( Queens, Space, 0),
 | 
						|
	Space += branch(Queens, 'INT_VAR_SIZE_MIN', 'INT_VAL_MIN'),
 | 
						|
	SolSpace := search(Space),
 | 
						|
	Solution := val(SolSpace,Queens).
 | 
						|
 | 
						|
lconstrain([], _, _).
 | 
						|
lconstrain( [Q|Queens], Space, I0) :-
 | 
						|
	I is I0+1,
 | 
						|
	foldl(constrain(Q, I0, Space), Queens, I, _),
 | 
						|
	lconstrain( Queens, Space, I).
 | 
						|
 | 
						|
constrain(Q, I, Space, R, J, J1) :-
 | 
						|
	% Q+I != R+J, Q-I != R-J <=> Q-R != J-I, Q-R != I-J,
 | 
						|
	J1 is J+1,
 | 
						|
	Sum is I-J,
 | 
						|
	Diff is J-I,
 | 
						|
	Space += linear([1,-1], [Q,R], 'IRT_NQ', Diff),
 | 
						|
	Space += linear([1,-1], [Q,R], 'IRT_NQ', Sum). |