This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/sysbits.c
Vítor Santos Costa 272d28ae5f android
2015-03-16 17:25:09 +00:00

3265 lines
75 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: sysbits.c *
* Last rev: 4/03/88 *
* mods: *
* comments: very much machine dependent routines *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
// @{
/**
@addtogroup YAPOS
*/
/*
* In this routine we shall try to include the inevitably machine dependant
* routines. These include, for the moment : Time, A rudimentary form of
* signal handling, OS calls,
*
* Vitor Santos Costa, February 1987
*
*/
/* windows.h does not like absmi.h, this
should fix it for now */
#include "absmi.h"
#include "yapio.h"
#include "alloc.h"
#include <math.h>
#if STDC_HEADERS
#include <stdlib.h>
#endif
#if HAVE_WINDOWS_H
#include <windows.h>
#endif
#if HAVE_SYS_TIME_H && !_MSC_VER
#include <sys/time.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_SYS_WAIT_H && !defined(__MINGW32__) && !_MSC_VER
#include <sys/wait.h>
#endif
#if HAVE_STRING_H
#include <string.h>
#endif
#if !HAVE_STRNCAT
#define strncat(X,Y,Z) strcat(X,Y)
#endif
#if !HAVE_STRNCPY
#define strncpy(X,Y,Z) strcpy(X,Y)
#endif
#if HAVE_GETPWNAM
#include <pwd.h>
#endif
#include <ctype.h>
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if _MSC_VER || defined(__MINGW32__)
#include <windows.h>
/* required for DLL compatibility */
#if HAVE_DIRECT_H
#include <direct.h>
#endif
#include <io.h>
#else
#if HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#endif
/* CYGWIN seems to include this automatically */
#if HAVE_FENV_H && !defined(__CYGWIN__)
#include <fenv.h>
#endif
#if HAVE_READLINE_READLINE_H
#include <readline/readline.h>
#endif
static void InitTime(int);
static void InitWTime(void);
static Int p_sh( USES_REGS1 );
static Int p_shell( USES_REGS1 );
static Int p_system( USES_REGS1 );
static Int p_mv( USES_REGS1 );
static Int p_dir_sp( USES_REGS1 );
static void InitRandom(void);
static Int p_srandom( USES_REGS1 );
static Int p_alarm( USES_REGS1 );
static Int p_getenv( USES_REGS1 );
static Int p_putenv( USES_REGS1 );
static bool set_fpu_exceptions(bool);
#ifdef MACYAP
static int chdir(char *);
/* #define signal skel_signal */
#endif /* MACYAP */
#if DEBUG
void
LOG(const char *fmt, ...);
void
LOG(const char *fmt, ...)
{
FILE * fd;
va_list ap;
fd = fopen("c:\\cygwin\\Log.txt", "a");
va_start(ap, fmt);
vfprintf(fd, fmt, ap);
va_end(ap);
fclose( fd );
}
#endif
void exit(int);
#ifdef __WINDOWS__
void
Yap_WinError(char *yap_error)
{
char msg[256];
/* Error, we could not read time */
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), msg, 256,
NULL);
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s at %s", msg, yap_error);
}
#endif /* __WINDOWS__ */
#define is_valid_env_char(C) ( ((C) >= 'a' && (C) <= 'z') || ((C) >= 'A' && \
(C) <= 'Z') || (C) == '_' )
static int
is_directory(const char *FileName)
{
#ifdef __WINDOWS__
char s[YAP_FILENAME_MAX+1];
char *s0 = (char *)FileName;
char *s1 = s;
int ch;
// win32 syntax
if (s0[0] == '/' && s0[1] == '/' && isalpha(s0[2]) && s0[3] == '/')
{
s1[0] = s0[2];
s1[1] = ':';
s1[2] = '\\';
s0+=4;
s1+=3;
}
while ((ch = *s1++ = *s0++)) {
if (ch == '$') {
s1[-1] = '%';
ch = *s0;
// handle $(....)
if (ch == '{') {
s0++;
while ((ch = *s0++) != '}') {
*s1++ = ch;
if (ch == '\0') return FALSE;
}
*s1++ = '%';
} else {
while (((ch = *s1++ = *s0++) >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch == '-') || (ch >= '0' && ch <= '9') || (ch == '_'));
s1[-1] = '%';
*s1++ = ch;
if (ch == '\0') { s1--; s0--; }
}
} else if (ch == '/')
s1[-1] = '\\';
}
if (ExpandEnvironmentStrings(s, (LPSTR)FileName, YAP_FILENAME_MAX) == 0)
return FALSE;
DWORD dwAtts = GetFileAttributes( FileName );
if (dwAtts == INVALID_FILE_ATTRIBUTES)
return FALSE;
return (dwAtts & FILE_ATTRIBUTE_DIRECTORY);
#elif HAVE_LSTAT
struct stat buf;
if (lstat(FileName, &buf) == -1) {
/* return an error number */
return FALSE;
}
return S_ISDIR(buf.st_mode);
#else
return FALSE;
#endif
}
static int
dir_separator (int ch)
{
#ifdef MAC
return (ch == ':');
#elif ATARI || _MSC_VER
return (ch == '\\');
#elif defined(__MINGW32__) || defined(__CYGWIN__)
return (ch == '\\' || ch == '/');
#else
return (ch == '/');
#endif
}
int
Yap_dir_separator (int ch)
{
return dir_separator (ch);
}
#if __WINDOWS__
#include <psapi.h>
char *libdir = NULL;
#endif
static Int
initSysPath(Term tlib, Term tcommons, bool dir_done, bool commons_done) {
CACHE_REGS
int len;
#if __WINDOWS__
{
char *dir;
if ((dir = Yap_RegistryGetString("library")) &&
is_directory(dir)) {
if (! Yap_unify( tlib,
MkAtomTerm(Yap_LookupAtom(dir))) )
return FALSE;
}
dir_done = true;
if ((dir = Yap_RegistryGetString("prolog_commons")) &&
is_directory(dir)) {
if (! Yap_unify( tcommons,
MkAtomTerm(Yap_LookupAtom(dir))) )
return FALSE;
}
commons_done = true;
}
if (dir_done && commons_done)
return TRUE;
#endif
strncpy(LOCAL_FileNameBuf, YAP_SHAREDIR, YAP_FILENAME_MAX);
strncat(LOCAL_FileNameBuf,"/", YAP_FILENAME_MAX);
len = strlen(LOCAL_FileNameBuf);
if (!dir_done) {
strncat(LOCAL_FileNameBuf, "Yap", YAP_FILENAME_MAX);
if (is_directory(LOCAL_FileNameBuf))
{
if (! Yap_unify( tlib,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf))) )
return FALSE;
}
dir_done = true;
}
if (!commons_done) {
LOCAL_FileNameBuf[len] = '\0';
strncat(LOCAL_FileNameBuf, "PrologCommons", YAP_FILENAME_MAX);
if (is_directory(LOCAL_FileNameBuf)) {
if (! Yap_unify( tcommons,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf))) )
return FALSE;
}
commons_done = true;
}
if (dir_done && commons_done)
return TRUE;
#if __WINDOWS__
{
size_t buflen;
char *pt;
/* couldn't find it where it was supposed to be,
let's try using the executable */
if (!GetModuleFileName( NULL, LOCAL_FileNameBuf, YAP_FILENAME_MAX)) {
Yap_WinError( "could not find executable name" );
/* do nothing */
return FALSE;
}
buflen = strlen(LOCAL_FileNameBuf);
pt = LOCAL_FileNameBuf+buflen;
while (*--pt != '\\') {
/* skip executable */
if (pt == LOCAL_FileNameBuf) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name");
/* do nothing */
return FALSE;
}
}
while (*--pt != '\\') {
/* skip parent directory "bin\\" */
if (pt == LOCAL_FileNameBuf) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name");
/* do nothing */
return FALSE;
}
}
/* now, this is a possible location for the ROOT_DIR, let's look for a share directory here */
pt[1] = '\0';
/* grosse */
strncat(LOCAL_FileNameBuf,"lib\\Yap",YAP_FILENAME_MAX);
libdir = Yap_AllocCodeSpace(strlen(LOCAL_FileNameBuf)+1);
strncpy(libdir, LOCAL_FileNameBuf, strlen(LOCAL_FileNameBuf)+1);
pt[1] = '\0';
strncat(LOCAL_FileNameBuf,"share",YAP_FILENAME_MAX);
}
strncat(LOCAL_FileNameBuf,"\\", YAP_FILENAME_MAX);
len = strlen(LOCAL_FileNameBuf);
strncat(LOCAL_FileNameBuf, "Yap", YAP_FILENAME_MAX);
if (!dir_done && is_directory(LOCAL_FileNameBuf)) {
if (! Yap_unify( tlib,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf))) )
return FALSE;
}
dir_done = true;
LOCAL_FileNameBuf[len] = '\0';
strncat(LOCAL_FileNameBuf, "PrologCommons", YAP_FILENAME_MAX);
if (!commons_done && is_directory(LOCAL_FileNameBuf)) {
if (! Yap_unify( tcommons,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf))) )
return FALSE;
}
commons_done = true;
#endif
return dir_done && commons_done;
}
static Int
p_libraries_path( USES_REGS1 )
{
return initSysPath( ARG1, ARG2 , false, false );
}
static Int
p_library_dir( USES_REGS1 )
{
return initSysPath( ARG1, MkVarTerm(), false, true );
}
static Int
p_commons_dir( USES_REGS1 )
{
return initSysPath( MkVarTerm(), ARG1, true, false );
}
static Int
p_dir_sp ( USES_REGS1 )
{
#ifdef MAC
Term t = MkIntTerm(':');
Term t2 = MkIntTerm('/');
#elif ATARI || _MSC_VER || defined(__MINGW32__)
Term t = MkIntTerm('\\');
Term t2 = MkIntTerm('/');
#else
Term t = MkIntTerm('/');
Term t2 = MkIntTerm('/');
#endif
return Yap_unify_constant(ARG1,t) || Yap_unify_constant(ARG1,t2) ;
}
void
Yap_InitPageSize(void)
{
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
Yap_page_size = si.dwPageSize;
#elif HAVE_UNISTD_H
#if defined(__FreeBSD__) || defined(__DragonFly__)
Yap_page_size = getpagesize();
#elif defined(_AIX)
Yap_page_size = sysconf(_SC_PAGE_SIZE);
#elif !defined(_SC_PAGESIZE)
Yap_page_size = getpagesize();
#else
Yap_page_size = sysconf(_SC_PAGESIZE);
#endif
#else
bla bla
#endif
}
#ifdef SIMICS
#ifdef HAVE_GETRUSAGE
#undef HAVE_GETRUSAGE
#endif
#ifdef HAVE_TIMES
#undef HAVE_TIMES
#endif
#endif /* SIMICS */
#ifdef _WIN32
#if HAVE_GETRUSAGE
#undef HAVE_GETRUSAGE
#endif
#endif
#if HAVE_GETRUSAGE
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if THREADS
#define StartOfTimes (*(LOCAL_ThreadHandle.start_of_timesp))
#define last_time (*(LOCAL_ThreadHandle.last_timep))
#define StartOfTimes_sys (*(LOCAL_ThreadHandle.start_of_times_sysp))
#define last_time_sys (*(LOCAL_ThreadHandle.last_time_sysp))
#else
/* since the point YAP was started */
static struct timeval StartOfTimes;
/* since last call to runtime */
static struct timeval last_time;
/* same for system time */
static struct timeval last_time_sys;
static struct timeval StartOfTimes_sys;
#endif
/* store user time in this variable */
static void
InitTime (int wid)
{
struct rusage rusage;
#if THREADS
REMOTE_ThreadHandle(wid).start_of_timesp = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).last_timep = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).start_of_times_sysp = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).last_time_sysp = (struct timeval *)malloc(sizeof(struct timeval));
getrusage(RUSAGE_SELF, &rusage);
(*REMOTE_ThreadHandle(wid).last_timep).tv_sec =
(*REMOTE_ThreadHandle(wid).start_of_timesp).tv_sec =
rusage.ru_utime.tv_sec;
(*REMOTE_ThreadHandle(wid).last_timep).tv_usec =
(*REMOTE_ThreadHandle(wid).start_of_timesp).tv_usec =
rusage.ru_utime.tv_usec;
(*REMOTE_ThreadHandle(wid).last_time_sysp).tv_sec =
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).tv_sec =
rusage.ru_stime.tv_sec;
(*REMOTE_ThreadHandle(wid).last_time_sysp).tv_usec =
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).tv_usec =
rusage.ru_stime.tv_usec;
#else
getrusage(RUSAGE_SELF, &rusage);
last_time.tv_sec =
StartOfTimes.tv_sec =
rusage.ru_utime.tv_sec;
last_time.tv_usec =
StartOfTimes.tv_usec =
rusage.ru_utime.tv_usec;
last_time_sys.tv_sec =
StartOfTimes_sys.tv_sec =
rusage.ru_stime.tv_sec;
last_time_sys.tv_usec =
StartOfTimes_sys.tv_usec =
rusage.ru_stime.tv_usec;
#endif
}
UInt
Yap_cputime ( void )
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
return((rusage.ru_utime.tv_sec - StartOfTimes.tv_sec)) * 1000 +
((rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
*now = (rusage.ru_utime.tv_sec - StartOfTimes.tv_sec) * 1000 +
(rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000;
*interval = (rusage.ru_utime.tv_sec - last_time.tv_sec) * 1000 +
(rusage.ru_utime.tv_usec - last_time.tv_usec) / 1000;
last_time.tv_usec = rusage.ru_utime.tv_usec;
last_time.tv_sec = rusage.ru_utime.tv_sec;
}
void Yap_systime_interval(Int *now,Int *interval)
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
*now = (rusage.ru_stime.tv_sec - StartOfTimes_sys.tv_sec) * 1000 +
(rusage.ru_stime.tv_usec - StartOfTimes_sys.tv_usec) / 1000;
*interval = (rusage.ru_stime.tv_sec - last_time_sys.tv_sec) * 1000 +
(rusage.ru_stime.tv_usec - last_time_sys.tv_usec) / 1000;
last_time_sys.tv_usec = rusage.ru_stime.tv_usec;
last_time_sys.tv_sec = rusage.ru_stime.tv_sec;
}
#elif defined(_WIN32)
#ifdef __GNUC__
/* This is stolen from the Linux kernel.
The problem is that mingw32 does not seem to have acces to div */
#ifndef do_div
#define do_div(n,base) ({ \
unsigned long __upper, __low, __high, __mod; \
asm("":"=a" (__low), "=d" (__high):"A" (n)); \
__upper = __high; \
if (__high) { \
__upper = __high % (base); \
__high = __high / (base); \
} \
asm("divl %2":"=a" (__low), "=d" (__mod):"rm" (base), "0" (__low), "1" (__upper)); \
asm("":"=A" (n):"a" (__low),"d" (__high)); \
__mod; \
})
#endif
#endif
#include <time.h>
static FILETIME StartOfTimes, last_time;
static FILETIME StartOfTimes_sys, last_time_sys;
static clock_t TimesStartOfTimes, Times_last_time;
/* store user time in this variable */
static void
InitTime (int wid)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
/* WIN98 */
clock_t t;
t = clock ();
Times_last_time = TimesStartOfTimes = t;
} else {
#if THREADS
REMOTE_ThreadHandle(wid).start_of_timesp = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).last_timep = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).start_of_times_sysp = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).last_time_sysp = (struct _FILETIME *)malloc(sizeof(FILETIME));
(*REMOTE_ThreadHandle(wid).last_timep).dwLowDateTime =
UserTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).last_timep).dwHighDateTime =
UserTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).start_of_timesp).dwLowDateTime =
UserTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).start_of_timesp).dwHighDateTime =
UserTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).last_time_sysp).dwLowDateTime =
KernelTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).last_time_sysp).dwHighDateTime =
KernelTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).dwLowDateTime =
KernelTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).dwHighDateTime =
KernelTime.dwHighDateTime;
#else
last_time.dwLowDateTime =
UserTime.dwLowDateTime;
last_time.dwHighDateTime =
UserTime.dwHighDateTime;
StartOfTimes.dwLowDateTime =
UserTime.dwLowDateTime;
StartOfTimes.dwHighDateTime =
UserTime.dwHighDateTime;
last_time_sys.dwLowDateTime =
KernelTime.dwLowDateTime;
last_time_sys.dwHighDateTime =
KernelTime.dwHighDateTime;
StartOfTimes_sys.dwLowDateTime =
KernelTime.dwLowDateTime;
StartOfTimes_sys.dwHighDateTime =
KernelTime.dwHighDateTime;
#endif
}
}
#ifdef __GNUC__
static unsigned long long int
sub_utime(FILETIME t1, FILETIME t2)
{
ULARGE_INTEGER u[2];
memcpy((void *)u,(void *)&t1,sizeof(FILETIME));
memcpy((void *)(u+1),(void *)&t2,sizeof(FILETIME));
return
u[0].QuadPart - u[1].QuadPart;
}
#endif
UInt
Yap_cputime ( void )
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
clock_t t;
t = clock ();
return(((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC);
} else {
#ifdef __GNUC__
unsigned long long int t =
sub_utime(UserTime,StartOfTimes);
do_div(t,10000);
return((Int)t);
#endif
#ifdef _MSC_VER
__int64 t = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes;
return((Int)(t/10000));
#endif
}
}
void Yap_cputime_interval(Int *now,Int *interval)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
clock_t t;
t = clock ();
*now = ((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC;
*interval = (t - Times_last_time) * 1000 / CLOCKS_PER_SEC;
Times_last_time = t;
} else {
#ifdef __GNUC__
unsigned long long int t1 =
sub_utime(UserTime, StartOfTimes);
unsigned long long int t2 =
sub_utime(UserTime, last_time);
do_div(t1,10000);
*now = (Int)t1;
do_div(t2,10000);
*interval = (Int)t2;
#endif
#ifdef _MSC_VER
__int64 t1 = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes;
__int64 t2 = *(__int64 *)&UserTime - *(__int64 *)&last_time;
*now = (Int)(t1/10000);
*interval = (Int)(t2/10000);
#endif
last_time.dwLowDateTime = UserTime.dwLowDateTime;
last_time.dwHighDateTime = UserTime.dwHighDateTime;
}
}
void Yap_systime_interval(Int *now,Int *interval)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
*now = *interval = 0; /* not available */
} else {
#ifdef __GNUC__
unsigned long long int t1 =
sub_utime(KernelTime, StartOfTimes_sys);
unsigned long long int t2 =
sub_utime(KernelTime, last_time_sys);
do_div(t1,10000);
*now = (Int)t1;
do_div(t2,10000);
*interval = (Int)t2;
#endif
#ifdef _MSC_VER
__int64 t1 = *(__int64 *)&KernelTime - *(__int64 *)&StartOfTimes_sys;
__int64 t2 = *(__int64 *)&KernelTime - *(__int64 *)&last_time_sys;
*now = (Int)(t1/10000);
*interval = (Int)(t2/10000);
#endif
last_time_sys.dwLowDateTime = KernelTime.dwLowDateTime;
last_time_sys.dwHighDateTime = KernelTime.dwHighDateTime;
}
}
#elif HAVE_TIMES
#if defined(_WIN32)
#include <time.h>
#define TicksPerSec CLOCKS_PER_SEC
#else
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#endif
#if defined(__sun__) && (defined(__svr4__) || defined(__SVR4))
#if HAVE_LIMITS_H
#include <limits.h>
#endif
#define TicksPerSec CLK_TCK
#endif
#if defined(__alpha) || defined(__FreeBSD__) || defined(__linux__) || defined(__DragonFly__)
#if HAVE_TIME_H
#include <time.h>
#endif
#define TicksPerSec sysconf(_SC_CLK_TCK)
#endif
#if !TMS_IN_SYS_TIME
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#endif
static clock_t StartOfTimes, last_time;
static clock_t StartOfTimes_sys, last_time_sys;
/* store user time in this variable */
static void
InitTime (void)
{
struct tms t;
times (&t);
(*REMOTE_ThreadHandle(wid).last_timep) = StartOfTimes = t.tms_utime;
last_time_sys = StartOfTimes_sys = t.tms_stime;
}
UInt
Yap_cputime (void)
{
struct tms t;
times(&t);
return((t.tms_utime - StartOfTimes)*1000 / TicksPerSec);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
struct tms t;
times (&t);
*now = ((t.tms_utime - StartOfTimes)*1000) / TicksPerSec;
*interval = (t.tms_utime - last_time) * 1000 / TicksPerSec;
last_time = t.tms_utime;
}
void Yap_systime_interval(Int *now,Int *interval)
{
struct tms t;
times (&t);
*now = ((t.tms_stime - StartOfTimes_sys)*1000) / TicksPerSec;
*interval = (t.tms_stime - last_time_sys) * 1000 / TicksPerSec;
last_time_sys = t.tms_stime;
}
#else /* HAVE_TIMES */
#ifdef SIMICS
#include <sys/time.h>
/* since the point YAP was started */
static struct timeval StartOfTimes;
/* since last call to runtime */
static struct timeval last_time;
/* store user time in this variable */
static void
InitTime (int wid)
{
struct timeval tp;
gettimeofday(&tp,NULL);
(*REMOTE_ThreadHandle(wid).last_timep).tv_sec = (*REMOTE_ThreadHandle.start_of_timesp(wid)).tv_sec = tp.tv_sec;
(*REMOTE_ThreadHandle(wid).last_timep).tv_usec = (*REMOTE_ThreadHandle.start_of_timesp(wid)).tv_usec = tp.tv_usec;
}
UInt
Yap_cputime (void)
{
struct timeval tp;
gettimeofday(&tp,NULL);
if (StartOfTimes.tv_usec > tp.tv_usec)
return((tp.tv_sec - StartOfTimes.tv_sec - 1) * 1000 +
(StartOfTimes.tv_usec - tp.tv_usec) /1000);
else
return((tp.tv_sec - StartOfTimes.tv_sec)) * 1000 +
((tp.tv_usec - StartOfTimes.tv_usec) / 1000);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
struct timeval tp;
gettimeofday(&tp,NULL);
*now = (tp.tv_sec - StartOfTimes.tv_sec) * 1000 +
(tp.tv_usec - StartOfTimes.tv_usec) / 1000;
*interval = (tp.tv_sec - last_time.tv_sec) * 1000 +
(tp.tv_usec - last_time.tv_usec) / 1000;
last_time.tv_usec = tp.tv_usec;
last_time.tv_sec = tp.tv_sec;
}
void Yap_systime_interval(Int *now,Int *interval)
{
*now = *interval = 0; /* not available */
}
#endif /* SIMICS */
#ifdef COMMENTED_OUT
/* This code is not working properly. I left it here to help future ports */
#ifdef MPW
#include <files.h>
#include <Events.h>
#define TicksPerSec 60.0
static double
real_cputime ()
{
return (((double) TickCount ()) / TicksPerSec);
}
#endif /* MPW */
#ifdef LATTICE
#include "osbind.h"
static long *ptime;
gettime ()
{
*ptime = *(long *) 0x462;
}
static double
real_cputime ()
{
long thetime;
ptime = &thetime;
xbios (38, gettime);
return (((double) thetime) / (Getrez () == 2 ? 70 : 60));
}
#endif /* LATTICE */
#ifdef M_WILLIAMS
#include <osbind.h>
#include <xbios.h>
static long *ptime;
static long
readtime ()
{
return (*((long *) 0x4ba));
}
static double
real_cputime ()
{
long time;
time = Supexec (readtime);
return (time / 200.0);
}
#endif /* M_WILLIAMS */
#ifdef LIGHT
#undef FALSE
#undef TRUE
#include <FileMgr.h>
#define TicksPerSec 60.0
static double
real_cputime ()
{
return (((double) TickCount ()) / TicksPerSec);
}
#endif /* LIGHT */
#endif /* COMMENTED_OUT */
#endif /* HAVE_GETRUSAGE */
#if HAVE_GETHRTIME
#if HAVE_TIME_H
#include <time.h>
#endif
/* since the point YAP was started */
static hrtime_t StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(hrtime_t *)ALIGN_BY_TYPE(LastWtimePtr,hrtime_t))
static void
InitWTime (void)
{
StartOfWTimes = gethrtime();
}
static void
InitLastWtime(void) {
/* ask for twice the space in order to guarantee alignment */
LastWtimePtr = (void *)Yap_AllocCodeSpace(2*sizeof(hrtime_t));
LastWtime = StartOfWTimes;
}
Int
Yap_walltime (void)
{
hrtime_t tp = gethrtime();
/* return time in milliseconds */
return((Int)((tp-StartOfWTimes)/((hrtime_t)1000000)));
}
void Yap_walltime_interval(Int *now,Int *interval)
{
hrtime_t tp = gethrtime();
/* return time in milliseconds */
*now = (Int)((tp-StartOfWTimes)/((hrtime_t)1000000));
*interval = (Int)((tp-LastWtime)/((hrtime_t)1000000));
LastWtime = tp;
}
#elif HAVE_GETTIMEOFDAY
/* since the point YAP was started */
static struct timeval StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(struct timeval *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
gettimeofday(&StartOfWTimes,NULL);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeval));
LastWtime.tv_usec = StartOfWTimes.tv_usec;
LastWtime.tv_sec = StartOfWTimes.tv_sec;
}
Int
Yap_walltime (void)
{
struct timeval tp;
gettimeofday(&tp,NULL);
if (StartOfWTimes.tv_usec > tp.tv_usec)
return((tp.tv_sec - StartOfWTimes.tv_sec - 1) * 1000 +
(StartOfWTimes.tv_usec - tp.tv_usec) /1000);
else
return((tp.tv_sec - StartOfWTimes.tv_sec)) * 1000 +
((tp.tv_usec - LastWtime.tv_usec) / 1000);
}
void Yap_walltime_interval(Int *now,Int *interval)
{
struct timeval tp;
gettimeofday(&tp,NULL);
*now = (tp.tv_sec - StartOfWTimes.tv_sec) * 1000 +
(tp.tv_usec - StartOfWTimes.tv_usec) / 1000;
*interval = (tp.tv_sec - LastWtime.tv_sec) * 1000 +
(tp.tv_usec - LastWtime.tv_usec) / 1000;
LastWtime.tv_usec = tp.tv_usec;
LastWtime.tv_sec = tp.tv_sec;
}
#elif defined(_WIN32)
#include <sys/timeb.h>
#include <time.h>
/* since the point YAP was started */
static struct _timeb StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(struct timeb *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
_ftime(&StartOfWTimes);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeb));
LastWtime.time = StartOfWTimes.time;
LastWtime.millitm = StartOfWTimes.millitm;
}
Int
Yap_walltime (void)
{
struct _timeb tp;
_ftime(&tp);
if (StartOfWTimes.millitm > tp.millitm)
return((tp.time - StartOfWTimes.time - 1) * 1000 +
(StartOfWTimes.millitm - tp.millitm));
else
return((tp.time - StartOfWTimes.time)) * 1000 +
((tp.millitm - LastWtime.millitm) / 1000);
}
void Yap_walltime_interval(Int *now,Int *interval)
{
struct _timeb tp;
_ftime(&tp);
*now = (tp.time - StartOfWTimes.time) * 1000 +
(tp.millitm - StartOfWTimes.millitm);
*interval = (tp.time - LastWtime.time) * 1000 +
(tp.millitm - LastWtime.millitm) ;
LastWtime.millitm = tp.millitm;
LastWtime.time = tp.time;
}
#elif HAVE_TIMES
static clock_t StartOfWTimes;
#define LastWtime (*(clock_t *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
StartOfWTimes = times(NULL);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(clock_t));
LastWtime = StartOfWTimes;
}
Int
Yap_walltime (void)
{
clock_t t;
t = times(NULL);
return ((t - StartOfWTimes)*1000 / TicksPerSec));
}
void Yap_walltime_interval(Int *now,Int *interval)
{
clock_t t;
t = times(NULL);
*now = ((t - StartOfWTimes)*1000) / TicksPerSec;
*interval = (t - LastWtime) * 1000 / TicksPerSec;
}
#endif /* HAVE_TIMES */
#if HAVE_TIME_H
#include <time.h>
#endif
unsigned int current_seed;
static void
InitRandom (void)
{
current_seed = (unsigned int) time (NULL);
#if HAVE_RANDOM
srandom (current_seed);
#elif HAVE_RAND
srand (current_seed);
#endif
}
extern int rand(void);
double
Yap_random (void)
{
#if HAVE_RANDOM
/* extern long random (); */
return (((double) random ()) / 0x7fffffffL /* 2**31-1 */);
#elif HAVE_RAND
return (((double) (rand ()) / RAND_MAX));
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"random not available in this configuration");
return (0.0);
#endif
}
#if HAVE_RANDOM
static Int
p_init_random_state ( USES_REGS1 )
{
register Term t0 = Deref (ARG1);
char *old, *new;
if (IsVarTerm (t0)) {
return(Yap_unify(ARG1,MkIntegerTerm((Int)current_seed)));
}
if(!IsNumTerm (t0))
return (FALSE);
if (IsIntTerm (t0))
current_seed = (unsigned int) IntOfTerm (t0);
else if (IsFloatTerm (t0))
current_seed = (unsigned int) FloatOfTerm (t0);
else
current_seed = (unsigned int) LongIntOfTerm (t0);
new = (char *) malloc(256);
old = initstate(random(), new, 256);
return Yap_unify(ARG2, MkIntegerTerm((Int)old)) &&
Yap_unify(ARG3, MkIntegerTerm((Int)new));
}
static Int
p_set_random_state ( USES_REGS1 )
{
register Term t0 = Deref (ARG1);
char *old, * new;
if (IsVarTerm (t0)) {
return FALSE;
}
if (IsIntegerTerm (t0))
new = (char *) IntegerOfTerm (t0);
else
return FALSE;
old = setstate( new );
return Yap_unify(ARG2, MkIntegerTerm((Int)old));
}
static Int
p_release_random_state ( USES_REGS1 )
{
register Term t0 = Deref (ARG1);
char *old;
if (IsVarTerm (t0)) {
return FALSE;
}
if (IsIntegerTerm (t0))
old = (char *) IntegerOfTerm (t0);
else
return FALSE;
free( old );
return TRUE;
}
#endif
static Int
p_srandom ( USES_REGS1 )
{
register Term t0 = Deref (ARG1);
if (IsVarTerm (t0)) {
return(Yap_unify(ARG1,MkIntegerTerm((Int)current_seed)));
}
if(!IsNumTerm (t0))
return (FALSE);
if (IsIntTerm (t0))
current_seed = (unsigned int) IntOfTerm (t0);
else if (IsFloatTerm (t0))
current_seed = (unsigned int) FloatOfTerm (t0);
else
current_seed = (unsigned int) LongIntOfTerm (t0);
#if HAVE_RANDOM
srandom(current_seed);
#elif HAVE_RAND
srand(current_seed);
#endif
return (TRUE);
}
#if HAVE_SIGNAL_H
#include <signal.h>
#ifdef MPW
#define signal sigset
#endif
#ifdef MSH
#define SIGFPE SIGDIV
#endif
static void InitSignals(void);
#define PLSIG_PREPARED 0x01 /* signal is prepared */
#define PLSIG_THROW 0x02 /* throw signal(num, name) */
#define PLSIG_SYNC 0x04 /* call synchronously */
#define PLSIG_NOFRAME 0x08 /* Do not create a Prolog frame */
#define SIG_PROLOG_OFFSET 32 /* Start of Prolog signals */
#define SIG_EXCEPTION (SIG_PROLOG_OFFSET+0)
#ifdef O_ATOMGC
#define SIG_ATOM_GC (SIG_PROLOG_OFFSET+1)
#endif
#define SIG_GC (SIG_PROLOG_OFFSET+2)
#ifdef O_PLMT
#define SIG_THREAD_SIGNAL (SIG_PROLOG_OFFSET+3)
#endif
#define SIG_FREECLAUSES (SIG_PROLOG_OFFSET+4)
#define SIG_PLABORT (SIG_PROLOG_OFFSET+5)
static struct signame
{ int sig;
const char *name;
int flags;
} signames[] =
{
#ifdef SIGHUP
{ SIGHUP, "hup", 0},
#endif
{ SIGINT, "int", 0},
#ifdef SIGQUIT
{ SIGQUIT, "quit", 0},
#endif
{ SIGILL, "ill", 0},
{ SIGABRT, "abrt", 0},
#if HAVE_SIGFPE
{ SIGFPE, "fpe", PLSIG_THROW},
#endif
#ifdef SIGKILL
{ SIGKILL, "kill", 0},
#endif
{ SIGSEGV, "segv", 0},
#ifdef SIGPIPE
{ SIGPIPE, "pipe", 0},
#endif
#ifdef SIGALRM
{ SIGALRM, "alrm", PLSIG_THROW},
#endif
{ SIGTERM, "term", 0},
#ifdef SIGUSR1
{ SIGUSR1, "usr1", 0},
#endif
#ifdef SIGUSR2
{ SIGUSR2, "usr2", 0},
#endif
#ifdef SIGCHLD
{ SIGCHLD, "chld", 0},
#endif
#ifdef SIGCONT
{ SIGCONT, "cont", 0},
#endif
#ifdef SIGSTOP
{ SIGSTOP, "stop", 0},
#endif
#ifdef SIGTSTP
{ SIGTSTP, "tstp", 0},
#endif
#ifdef SIGTTIN
{ SIGTTIN, "ttin", 0},
#endif
#ifdef SIGTTOU
{ SIGTTOU, "ttou", 0},
#endif
#ifdef SIGTRAP
{ SIGTRAP, "trap", 0},
#endif
#ifdef SIGBUS
{ SIGBUS, "bus", 0},
#endif
#ifdef SIGSTKFLT
{ SIGSTKFLT, "stkflt", 0},
#endif
#ifdef SIGURG
{ SIGURG, "urg", 0},
#endif
#ifdef SIGIO
{ SIGIO, "io", 0},
#endif
#ifdef SIGPOLL
{ SIGPOLL, "poll", 0},
#endif
#ifdef SIGXCPU
{ SIGXCPU, "xcpu", PLSIG_THROW},
#endif
#ifdef SIGXFSZ
{ SIGXFSZ, "xfsz", PLSIG_THROW},
#endif
#ifdef SIGVTALRM
{ SIGVTALRM, "vtalrm", PLSIG_THROW},
#endif
#ifdef SIGPROF
{ SIGPROF, "prof", 0},
#endif
#ifdef SIGPWR
{ SIGPWR, "pwr", 0},
#endif
{ SIG_EXCEPTION, "prolog:exception", 0 },
#ifdef SIG_ATOM_GC
{ SIG_ATOM_GC, "prolog:atom_gc", 0 },
#endif
{ SIG_GC, "prolog:gc", 0 },
#ifdef SIG_THREAD_SIGNAL
{ SIG_THREAD_SIGNAL, "prolog:thread_signal", 0 },
#endif
{ -1, NULL, 0}
};
/* SWI emulation */
int
Yap_signal_index(const char *name)
{ struct signame *sn = signames;
char tmp[12];
if ( strncmp(name, "SIG", 3) == 0 && strlen(name) < 12 )
{ char *p = (char *)name+3, *q = tmp;
while ((*q++ = tolower(*p++))) {};
name = tmp;
}
for( ; sn->name; sn++ )
{ if ( !strcmp(sn->name, name) )
return sn->sig;
}
return -1;
}
#if HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#if HAVE_SYS_UCONTEXT_H
#include <sys/ucontext.h>
#endif
#if HAVE_SIGSEGV
static void
SearchForTrailFault(void *ptr, int sure)
{
/* If the TRAIL is very close to the top of mmaped allocked space,
then we can try increasing the TR space and restarting the
instruction. In the worst case, the system will
crash again
*/
#if OS_HANDLES_TR_OVERFLOW && !USE_SYSTEM_MALLOC
if ((ptr > (void *)LOCAL_TrailTop-1024 &&
TR < (tr_fr_ptr) LOCAL_TrailTop+(64*1024))) {
if (!Yap_growtrail(64*1024, TRUE)) {
Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP failed to reserve %ld bytes in growtrail", K64);
}
/* just in case, make sure the OS keeps the signal handler. */
/* my_signal_info(SIGSEGV, HandleSIGSEGV); */
} else
#endif /* OS_HANDLES_TR_OVERFLOW */
if (sure)
Yap_Error(FATAL_ERROR, TermNil,
"tried to access illegal address %p!!!!", ptr);
else
Yap_Error(FATAL_ERROR, TermNil,
"likely bug in YAP, segmentation violation");
}
/* This routine believes there is a continuous space starting from the
HeapBase and ending on TrailTop */
static void
HandleSIGSEGV(int sig, void *sipv, void *uap)
{
CACHE_REGS
void *ptr = TR;
int sure = FALSE;
if (LOCAL_PrologMode & ExtendStackMode) {
Yap_Error(FATAL_ERROR, TermNil, "OS memory allocation crashed at address %p, bailing out\n",LOCAL_TrailTop);
}
#if (defined(__svr4__) || defined(__SVR4))
siginfo_t *sip = sipv;
if (
sip->si_code != SI_NOINFO &&
sip->si_code == SEGV_MAPERR) {
ptr = sip->si_addr;
sure = TRUE;
}
#elif __linux__
siginfo_t *sip = sipv;
ptr = sip->si_addr;
sure = TRUE;
#endif
SearchForTrailFault( ptr, sure );
}
#endif /* SIGSEGV */
yap_error_number
Yap_MathException__( USES_REGS1 )
{
#if HAVE_FETESTEXCEPT
int raised;
// #pragma STDC FENV_ACCESS ON
if ((raised = fetestexcept( FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW)) ) {
feclearexcept(FE_ALL_EXCEPT);
if (raised & FE_OVERFLOW) {
return EVALUATION_ERROR_FLOAT_OVERFLOW;
} else if (raised & FE_DIVBYZERO) {
return EVALUATION_ERROR_ZERO_DIVISOR;
} else if (raised & FE_UNDERFLOW) {
return EVALUATION_ERROR_FLOAT_UNDERFLOW;
//} else if (raised & (FE_INVALID|FE_INEXACT)) {
// return EVALUATION_ERROR_UNDEFINED;
} else {
return EVALUATION_ERROR_UNDEFINED;
}
}
#elif _WIN32 && FALSE
unsigned int raised;
int err;
// Show original FP control word and do calculation.
err = _controlfp_s(&raised, 0, 0);
if (err) {
return EVALUATION_ERROR_UNDEFINED;
}
if (raised ) {
feclearexcept(FE_ALL_EXCEPT);
if (raised & FE_OVERFLOW) {
return EVALUATION_ERROR_FLOAT_OVERFLOW;
} else if (raised & FE_DIVBYZERO) {
return EVALUATION_ERROR_ZERO_DIVISOR;
} else if (raised & FE_UNDERFLOW) {
return EVALUATION_ERROR_FLOAT_UNDERFLOW;
//} else if (raised & (FE_INVALID|FE_INEXACT)) {
// return EVALUATION_ERROR_UNDEFINED;
} else {
return EVALUATION_ERROR_UNDEFINED;
}
}
#elif (defined(__svr4__) || defined(__SVR4))
switch(sip->si_code) {
case FPE_INTDIV:
return EVALUATION_ERROR_ZERO_DIVISOR;
break;
case FPE_INTOVF:
return EVALUATION_ERROR_INT_OVERFLOW;
break;
case FPE_FLTDIV:
return EVALUATION_ERROR_ZERO_DIVISOR;
break;
case FPE_FLTOVF:
return EVALUATION_ERROR_FLOAT_OVERFLOW;
break;
case FPE_FLTUND:
return EVALUATION_ERROR_FLOAT_UNDERFLOW;
break;
case FPE_FLTRES:
case FPE_FLTINV:
case FPE_FLTSUB:
default:
return EVALUATION_ERROR_UNDEFINED;
}
set_fpu_exceptions(0);
#endif
return LOCAL_matherror;
}
static Int
p_fpe_error( USES_REGS1 )
{
Yap_Error(LOCAL_matherror, LOCAL_mathtt, LOCAL_mathstring);
LOCAL_matherror = YAP_NO_ERROR;
LOCAL_mathtt = TermNil;
LOCAL_mathstring = NULL;
return FALSE;
}
#if HAVE_SIGFPE
static void
HandleMatherr(int sig, void *sipv, void *uapv)
{
CACHE_REGS
LOCAL_matherror = Yap_MathException( );
/* reset the registers so that we don't have trash in abstract machine */
Yap_external_signal( worker_id, YAP_FPE_SIGNAL );
}
#endif /* SIGFPE */
typedef void (*signal_handler_t)(int, void *, void *);
#if HAVE_SIGACTION
static void
my_signal_info(int sig, void * handler)
{
struct sigaction sigact;
sigact.sa_handler = handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = SA_SIGINFO;
sigaction(sig,&sigact,NULL);
}
static void
my_signal(int sig, void * handler)
{
struct sigaction sigact;
sigact.sa_handler= (void *)handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(sig,&sigact,NULL);
}
#else
static void
my_signal(int sig, void *handler)
{
signal(sig, handler);
}
static void
my_signal_info(int sig, void *handler)
{
if(signal(sig, (void *)handler) == SIG_ERR)
exit(1);
}
#endif
#if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT)
static RETSIGTYPE
ReceiveSignal (int s, void *x, void *y)
{
CACHE_REGS
LOCAL_PrologMode |= InterruptMode;
my_signal (s, ReceiveSignal);
switch (s)
{
case SIGINT:
// always direct SIGINT to console
Yap_external_signal( 0, YAP_INT_SIGNAL );
break;
case SIGALRM:
Yap_external_signal( worker_id, YAP_ALARM_SIGNAL );
break;
case SIGVTALRM:
Yap_external_signal( worker_id, YAP_VTALARM_SIGNAL );
break;
#ifndef MPW
#ifdef HAVE_SIGFPE
case SIGFPE:
Yap_external_signal( worker_id, YAP_FPE_SIGNAL );
break;
#endif
#endif
#if !defined(LIGHT) && !defined(_WIN32)
/* These signals are not handled by WIN32 and not the Macintosh */
case SIGQUIT:
case SIGKILL:
LOCAL_PrologMode &= ~InterruptMode;
Yap_Error(INTERRUPT_ERROR,MkIntTerm(s),NULL);
break;
#endif
#ifdef SIGUSR1
case SIGUSR1:
/* force the system to creep */
Yap_external_signal ( worker_id, YAP_USR1_SIGNAL);
break;
#endif /* defined(SIGUSR1) */
#ifdef SIGUSR2
case SIGUSR2:
/* force the system to creep */
Yap_external_signal ( worker_id, YAP_USR2_SIGNAL);
break;
#endif /* defined(SIGUSR2) */
#ifdef SIGPIPE
case SIGPIPE:
/* force the system to creep */
Yap_external_signal ( worker_id, YAP_PIPE_SIGNAL);
break;
#endif /* defined(SIGPIPE) */
#ifdef SIGHUP
case SIGHUP:
/* force the system to creep */
/* Just ignore SUGHUP Yap_signal (YAP_HUP_SIGNAL); */
break;
#endif /* defined(SIGHUP) */
default:
fprintf(stderr, "\n[ Unexpected signal ]\n");
exit (s);
}
LOCAL_PrologMode &= ~InterruptMode;
}
#endif
#if (_MSC_VER || defined(__MINGW32__))
static BOOL WINAPI
MSCHandleSignal(DWORD dwCtrlType) {
#if THREADS
if (REMOTE_InterruptsDisabled(0)) {
#else
if (LOCAL_InterruptsDisabled) {
#endif
return FALSE;
}
switch(dwCtrlType) {
case CTRL_C_EVENT:
case CTRL_BREAK_EVENT:
#if THREADS
Yap_external_signal(0, YAP_WINTIMER_SIGNAL);
REMOTE_PrologMode(0) |= InterruptMode;
#else
Yap_signal(YAP_WINTIMER_SIGNAL);
LOCAL_PrologMode |= InterruptMode;
#endif
return(TRUE);
default:
return(FALSE);
}
}
#endif
/* SIGINT can cause problems, if caught before full initialization */
static void
InitSignals (void)
{
if (GLOBAL_PrologShouldHandleInterrupts) {
#if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT)
my_signal (SIGQUIT, ReceiveSignal);
my_signal (SIGKILL, ReceiveSignal);
my_signal (SIGUSR1, ReceiveSignal);
my_signal (SIGUSR2, ReceiveSignal);
my_signal (SIGHUP, ReceiveSignal);
my_signal (SIGALRM, ReceiveSignal);
my_signal (SIGVTALRM, ReceiveSignal);
#endif
#ifdef SIGPIPE
my_signal (SIGPIPE, ReceiveSignal);
#endif
#if _MSC_VER || defined(__MINGW32__)
signal (SIGINT, SIG_IGN);
SetConsoleCtrlHandler(MSCHandleSignal,TRUE);
#else
my_signal (SIGINT, ReceiveSignal);
#endif
#ifdef HAVE_SIGFPE
my_signal (SIGFPE, HandleMatherr);
#endif
#if HAVE_SIGSEGV
my_signal_info (SIGSEGV, HandleSIGSEGV);
#endif
#ifdef YAPOR_COW
signal(SIGCHLD, SIG_IGN); /* avoid ghosts */
#endif
}
}
#endif /* HAVE_SIGNAL */
/* TrueFileName -> Finds the true name of a file */
#ifdef __MINGW32__
#include <ctype.h>
#endif
static int
volume_header(char *file)
{
#if _MSC_VER || defined(__MINGW32__)
char *ch = file;
int c;
while ((c = ch[0]) != '\0') {
if (isalnum(c)) ch++;
else return(c == ':');
}
#endif
return(FALSE);
}
int
Yap_volume_header(char *file)
{
return volume_header(file);
}
char * Yap_getcwd(const char *cwd, size_t cwdlen)
{
return PL_cwd((char *)cwd, cwdlen);
}
/******
TODO: rewrite to use wordexp
****/
static int
TrueFileName (char *source, char *root, char *result, int in_lib, int expand_root)
{
CACHE_REGS
char *work;
char ares1[YAP_FILENAME_MAX+1];
result[0] = '\0';
if (strlen(source) >= YAP_FILENAME_MAX) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s in true_file-name is larger than the buffer size (%d bytes)", source, strlen(source));
}
#if defined(__MINGW32__) || _MSC_VER
/* step 0: replace / by \ */
strncpy(ares1, source, YAP_FILENAME_MAX);
{
char *p = ares1, ch = p[0];
while (ch != '\0') {
if (ch == '/') p[0] = '\\';
p++;
ch = p[0];
}
}
source = ares1;
#endif
/* step 1: eating home information */
if (source[0] == '~') {
if (dir_separator(source[1]) || source[1] == '\0')
{
char *s;
source++;
#if defined(_WIN32)
s = getenv("HOMEDRIVE");
if (s != NULL)
strncpy (result, getenv ("HOMEDRIVE"), YAP_FILENAME_MAX);
s = getenv("HOMEPATH");
if (s != NULL)
strncpy (result, s, YAP_FILENAME_MAX);
#else
s = getenv ("HOME");
if (s != NULL)
strncpy (result, s, YAP_FILENAME_MAX);
#endif
} else {
#if HAVE_GETPWNAM
struct passwd *user_passwd;
char *res0 = result;
source++;
while (!dir_separator((*res0 = *source)) && *res0 != '\0')
res0++, source++;
*res0++ = '\0';
if ((user_passwd = getpwnam (result)) == NULL) {
return FALSE;
}
strncpy (result, user_passwd->pw_dir, YAP_FILENAME_MAX);
#else
return FALSE;
#endif
}
strncat (result, source, YAP_FILENAME_MAX);
} else if (source[0] == '$') {
/* follow SICStus expansion rules */
int ch;
char *s;
char *res0 = source+1;
if (*res0 == '{') {
res0++;
while ((ch = *res0) && is_valid_env_char (ch) && ch != '}') {
res0++;
}
*res0++ = '\0';
if (ch == '}') {
// {...}
source++;
ch = *res0;
}
} else {
while ((ch = *res0) && is_valid_env_char (ch)) {
res0++;
}
}
if (!(s = (char *) getenv (source+1))) {
return FALSE;
}
*res0 = ch;
strncpy (result, s, YAP_FILENAME_MAX);
strncat (result, res0, YAP_FILENAME_MAX);
} else {
strncpy (result, source, YAP_FILENAME_MAX);
}
/* step 3: get the full file name */
if (expand_root && !dir_separator(result[0]) && !volume_header(result)) {
if (!Yap_getcwd(ares1, YAP_FILENAME_MAX))
return FALSE;
#if _MSC_VER || defined(__MINGW32__)
strncat (ares1, "\\", YAP_FILENAME_MAX-1);
#else
strncat (ares1, "/", YAP_FILENAME_MAX-1);
#endif
if (root) {
if (!dir_separator(root[0]) && !volume_header(root)) {
strncat(ares1, root, YAP_FILENAME_MAX-1);
} else {
strncpy(ares1, root, YAP_FILENAME_MAX-1);
}
#if _MSC_VER || defined(__MINGW32__)
strncat (ares1, "\\", YAP_FILENAME_MAX-1);
#else
strncat (ares1, "/", YAP_FILENAME_MAX-1);
#endif
}
strncat (ares1, result, YAP_FILENAME_MAX-1);
if (in_lib) {
int tmpf;
if ((tmpf = open(ares1, O_RDONLY)) < 0) {
/* not in current directory, let us try the library */
if (Yap_LibDir != NULL) {
strncpy(LOCAL_FileNameBuf, Yap_LibDir, YAP_FILENAME_MAX);
#if HAVE_GETENV
} else {
char *yap_env = getenv("YAPLIBDIR");
if (yap_env != NULL) {
strncpy(ares1, yap_env, YAP_FILENAME_MAX);
#endif
} else {
#if __WINDOWS__
if (Yap_LibDir)
strncpy(ares1, Yap_LibDir, YAP_FILENAME_MAX);
else
#endif
strncpy(ares1, YAP_LIBDIR, YAP_FILENAME_MAX);
}
#if HAVE_GETENV
}
#endif
#if _MSC_VER || defined(__MINGW32__)
strncat(ares1,"\\", YAP_FILENAME_MAX-1);
#else
strncat(ares1,"/", YAP_FILENAME_MAX-1);
#endif
strncat(ares1,result, YAP_FILENAME_MAX-1);
if ((tmpf = open(ares1, O_RDONLY)) >= 0) {
close(tmpf);
strncpy (result, ares1, YAP_FILENAME_MAX);
}
} else {
strncpy (result, ares1, YAP_FILENAME_MAX);
close(tmpf);
}
} else {
strncpy (result, ares1, YAP_FILENAME_MAX);
}
}
/* step 4: simplifying the file name */
work = result;
while (*work != '\0')
{
char *new_work, *next_work;
if (*work++ != '.')
continue;
if (*work != '.')
{
if (!dir_separator(*work) || !dir_separator(work[-2]))
continue;
next_work = work + 1;
new_work = --work;
}
else
{
if (!dir_separator(work[1]) || !dir_separator(work[-2]))
continue;
next_work = work + 2;
work -= 2;
if (work == result)
return (FALSE);
while (!dir_separator(*--work) && work != result);
if (work == result && !dir_separator(work[0]))
return (FALSE);
new_work = ++work;
}
while ((*new_work++ = *next_work++)!=0);
}
if (work != result && dir_separator(work[-1])) {
/* should only do this on result being a directory */
int ch0 = work[-1];
work--;
work[0] = '\0';
if (!is_directory(result)) {
/* put it back: */
work[0] = ch0;
work++;
}
}
return TRUE;
}
int
Yap_TrueFileName (char *source, char *result, int in_lib)
{
return TrueFileName (source, NULL, result, in_lib, TRUE);
}
static Int
p_true_file_name ( USES_REGS1 )
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, NULL, LOCAL_FileNameBuf, FALSE, TRUE);
return Yap_unify(ARG2, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
static Int
p_expand_file_name ( USES_REGS1 )
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, NULL, LOCAL_FileNameBuf, FALSE, FALSE);
return Yap_unify(ARG2, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
static Int
p_true_file_name3 ( USES_REGS1 )
{
Term t = Deref(ARG1), t2 = Deref(ARG2);
char *root = NULL;
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
if (!IsVarTerm(t2)) {
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t2,"argument to true_file_name");
return FALSE;
}
root = RepAtom(AtomOfTerm(t2))->StrOfAE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, root, LOCAL_FileNameBuf, FALSE, FALSE);
return Yap_unify(ARG3, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
/* Executes $SHELL under Prolog */
/** @pred sh
Creates a new shell interaction.
*/
static Int
p_sh ( USES_REGS1 )
{ /* sh */
#ifdef HAVE_SYSTEM
char *shell;
shell = (char *) getenv ("SHELL");
if (shell == NULL)
shell = "/bin/sh";
if (system (shell) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s in sh/0", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "in sh/0");
#endif
return FALSE;
}
return TRUE;
#else
#ifdef MSH
register char *shell;
shell = "msh -i";
system (shell);
return (TRUE);
#else
Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this configuration");
return(FALSE);
#endif /* MSH */
#endif
}
/** shell(+Command:text, -Status:integer) is det.
Run an external command and wait for its completion.
*/
static Int
p_shell ( USES_REGS1 )
{ /* '$shell'(+SystCommand) */
#if _MSC_VER || defined(__MINGW32__)
char *cmd;
term_t A1 = Yap_InitSlot(ARG1 PASS_REGS);
if ( PL_get_chars(A1, &cmd, CVT_ALL|REP_FN|CVT_EXCEPTION) )
{ int rval = System(cmd);
return rval == 0;
}
return FALSE;
#else
#if HAVE_SYSTEM
char *shell;
register int bourne = FALSE;
Term t1 = Deref (ARG1);
const char *cmd;
shell = (char *) getenv ("SHELL");
if (!strcmp (shell, "/bin/sh"))
bourne = TRUE;
if (shell == NIL)
bourne = TRUE;
if (IsAtomTerm(t1))
cmd = RepAtom(AtomOfTerm(t1))->StrOfAE;
else if (IsStringTerm(t1))
cmd = StringOfTerm(t1);
else
return FALSE;
/* Yap_CloseStreams(TRUE); */
if (bourne)
return system( cmd ) == 0;
else {
int status = -1;
int child = fork ();
if (child == 0) { /* let the children go */
if (!execl (shell, shell, "-c", cmd , NULL)) {
exit(-1);
}
exit(TRUE);
}
{ /* put the father on wait */
int result = child < 0 ||
/* vsc:I am not sure this is used, Stevens say wait returns an integer.
#if NO_UNION_WAIT
*/
wait ((&status)) != child ||
/*
#else
wait ((union wait *) (&status)) != child ||
#endif
*/
status == 0;
return result;
}
}
#else /* HAVE_SYSTEM */
#ifdef MSH
register char *shell;
shell = "msh -i";
/* Yap_CloseStreams(); */
system (shell);
return TRUE;
#else
Yap_Error (SYSTEM_ERROR,TermNil,"shell not available in this configuration");
return FALSE;
#endif
#endif /* HAVE_SYSTEM */
#endif /* _MSC_VER */
}
/** system(+Command:text).
Run an external command.
*/
static Int
p_system ( USES_REGS1 )
{ /* '$system'(+SystCommand) */
#if _MSC_VER || defined(__MINGW32__)
char *cmd;
term_t A1 = Yap_InitSlot(ARG1 PASS_REGS);
if ( PL_get_chars(A1, &cmd, CVT_ALL|REP_FN|CVT_EXCEPTION) )
{ STARTUPINFO si;
PROCESS_INFORMATION pi;
ZeroMemory( &si, sizeof(si) );
si.cb = sizeof(si);
ZeroMemory( &pi, sizeof(pi) );
// Start the child process.
if( !CreateProcess( NULL, // No module name (use command line)
cmd, // Command line
NULL, // Process handle not inheritable
NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE
0, // No creation flags
NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure
&pi ) // Pointer to PROCESS_INFORMATION structure
)
{
Yap_Error( SYSTEM_ERROR, ARG1, "CreateProcess failed (%d).\n", GetLastError() );
return FALSE;
}
// Wait until child process exits.
WaitForSingleObject( pi.hProcess, INFINITE );
// Close process and thread handles.
CloseHandle( pi.hProcess );
CloseHandle( pi.hThread );
return TRUE;
}
return FALSE;
#elif HAVE_SYSTEM
Term t1 = Deref (ARG1);
const char *s;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR,t1,"argument to system/1 unbound");
return FALSE;
} else if (IsAtomTerm(t1)) {
s = RepAtom(AtomOfTerm(t1))->StrOfAE;
} else if (IsStringTerm(t1)) {
s = StringOfTerm(t1);
} else {
if (!Yap_GetName (LOCAL_FileNameBuf, YAP_FILENAME_MAX, t1)) {
Yap_Error(TYPE_ERROR_ATOM,t1,"argument to system/1");
return FALSE;
}
s = LOCAL_FileNameBuf;
}
/* Yap_CloseStreams(TRUE); */
#if _MSC_VER
_flushall();
#endif
if (system (s)) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR,t1,"%s in system(%s)", strerror(errno), s);
#else
Yap_Error(OPERATING_SYSTEM_ERROR,t1,"in system(%s)", s);
#endif
return FALSE;
}
return TRUE;
#else
#ifdef MSH
register char *shell;
shell = "msh -i";
/* Yap_CloseStreams(); */
system (shell);
return (TRUE);
#undef command
#else
Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this machine");
return(FALSE);
#endif
#endif /* HAVE_SYSTEM */
}
/* Rename a file */
/** @pred rename(+ _F_,+ _G_)
Renames file _F_ to _G_.
*/
static Int
p_mv ( USES_REGS1 )
{ /* rename(+OldName,+NewName) */
#if HAVE_LINK
int r;
char oldname[YAP_FILENAME_MAX], newname[YAP_FILENAME_MAX];
Term t1 = Deref (ARG1);
Term t2 = Deref (ARG2);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "first argument to rename/2 unbound");
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1, "first argument to rename/2 not atom");
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "second argument to rename/2 unbound");
} else if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2, "second argument to rename/2 not atom");
}
TrueFileName (RepAtom(AtomOfTerm(t1))->StrOfAE, NULL, oldname, FALSE, TRUE);
TrueFileName (RepAtom(AtomOfTerm(t2))->StrOfAE, NULL, newname, FALSE, TRUE);
if ((r = link (oldname, newname)) == 0 && (r = unlink (oldname)) != 0)
unlink (newname);
if (r != 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR,t2,"%s in rename(%s,%s)", strerror(errno),oldname,newname);
#else
Yap_Error(OPERATING_SYSTEM_ERROR,t2,"in rename(%s,%s)",oldname,newname);
#endif
return FALSE;
}
return TRUE;
#else
Yap_Error(SYSTEM_ERROR,TermNil,"rename/2 not available in this machine");
return (FALSE);
#endif
}
#ifdef MAC
void
Yap_SetTextFile (name)
char *name;
{
#ifdef MACC
SetFileType (name, 'TEXT');
SetFileSignature (name, 'EDIT');
#else
FInfo f;
FInfo *p = &f;
GetFInfo (name, 0, p);
p->fdType = 'TEXT';
#ifdef MPW
if (mpwshell)
p->fdCreator = 'MPS\0';
#endif
#ifndef LIGHT
else
p->fdCreator = 'EDIT';
#endif
SetFInfo (name, 0, p);
#endif
}
#endif
/* return YAP's environment */
static Int p_getenv( USES_REGS1 )
{
#if HAVE_GETENV
Term t1 = Deref(ARG1), to;
char *s, *so;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"first arg of getenv/2");
return(FALSE);
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1,
"first arg of getenv/2");
return(FALSE);
} else s = RepAtom(AtomOfTerm(t1))->StrOfAE;
if ((so = getenv(s)) == NULL)
return(FALSE);
to = MkAtomTerm(Yap_LookupAtom(so));
return(Yap_unify_constant(ARG2,to));
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"getenv not available in this configuration");
return (FALSE);
#endif
}
/* set a variable in YAP's environment */
static Int p_putenv( USES_REGS1 )
{
#if HAVE_PUTENV
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
char *s, *s2, *p0, *p;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"first arg to putenv/2");
return(FALSE);
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1,
"first arg to putenv/2");
return(FALSE);
} else s = RepAtom(AtomOfTerm(t1))->StrOfAE;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"second arg to putenv/2");
return(FALSE);
} else if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2,
"second arg to putenv/2");
return(FALSE);
} else s2 = RepAtom(AtomOfTerm(t2))->StrOfAE;
while (!(p0 = p = Yap_AllocAtomSpace(strlen(s)+strlen(s2)+3))) {
if (!Yap_growheap(FALSE, MinHeapGap, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, LOCAL_ErrorMessage);
return FALSE;
}
}
while ((*p++ = *s++) != '\0');
p[-1] = '=';
while ((*p++ = *s2++) != '\0');
if (putenv(p0) == 0)
return TRUE;
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil,
"in putenv(%s)", strerror(errno), p0);
#else
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil,
"in putenv(%s)", p0);
#endif
return FALSE;
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"putenv not available in this configuration");
return FALSE;
#endif
}
/* wrapper for alarm system call */
#if _MSC_VER || defined(__MINGW32__)
static DWORD WINAPI
DoTimerThread(LPVOID targ)
{
Int *time = (Int *)targ;
HANDLE htimer;
LARGE_INTEGER liDueTime;
htimer = CreateWaitableTimer(NULL, FALSE, NULL);
liDueTime.QuadPart = -10000000;
liDueTime.QuadPart *= time[0];
/* add time in usecs */
liDueTime.QuadPart -= time[1]*10;
/* Copy the relative time into a LARGE_INTEGER. */
if (SetWaitableTimer(htimer, &liDueTime,0,NULL,NULL,0) == 0) {
return(FALSE);
}
if (WaitForSingleObject(htimer, INFINITE) != WAIT_OBJECT_0)
fprintf(stderr,"WaitForSingleObject failed (%ld)\n", GetLastError());
Yap_signal (YAP_WINTIMER_SIGNAL);
/* now, say what is going on */
Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue));
ExitThread(1);
#if _MSC_VER
return(0L);
#endif
}
#endif
static Int
p_alarm( USES_REGS1 )
{
Term t = Deref(ARG1);
Term t2 = Deref(ARG2);
Int i1, i2;
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2");
return(FALSE);
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2");
return(FALSE);
}
i1 = IntegerOfTerm(t);
i2 = IntegerOfTerm(t2);
if (i1 == 0 && i2 == 0) {
#if _WIN32
Yap_get_signal( YAP_WINTIMER_SIGNAL );
#else
Yap_get_signal( YAP_ALARM_SIGNAL );
#endif
}
#if _MSC_VER || defined(__MINGW32__)
{
Term tout;
Int time[2];
time[0] = i1;
time[1] = i2;
if (time[0] != 0 && time[1] != 0) {
DWORD dwThreadId;
HANDLE hThread;
hThread = CreateThread(
NULL, /* no security attributes */
0, /* use default stack size */
DoTimerThread, /* thread function */
(LPVOID)time, /* argument to thread function */
0, /* use default creation flags */
&dwThreadId); /* returns the thread identifier */
/* Check the return value for success. */
if (hThread == NULL) {
Yap_WinError("trying to use alarm");
}
}
tout = MkIntegerTerm(0);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0));
}
#elif HAVE_SETITIMER && !SUPPORT_CONDOR
{
struct itimerval new, old;
new.it_interval.tv_sec = 0;
new.it_interval.tv_usec = 0;
new.it_value.tv_sec = i1;
new.it_value.tv_usec = i2;
if (setitimer(ITIMER_REAL, &new, &old) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno);
#endif
return FALSE;
}
return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) &&
Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec));
}
#elif HAVE_ALARM && !SUPPORT_CONDOR
{
Int left;
Term tout;
left = alarm(i1);
tout = MkIntegerTerm(left);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0)) ;
}
#else
/* not actually trying to set the alarm */
if (IntegerOfTerm(t) == 0)
return TRUE;
Yap_Error(SYSTEM_ERROR, TermNil,
"alarm not available in this configuration");
return FALSE;
#endif
}
static Int
p_virtual_alarm( USES_REGS1 )
{
Term t = Deref(ARG1);
Term t2 = Deref(ARG2);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2");
return(FALSE);
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2");
return(FALSE);
}
#if _MSC_VER || defined(__MINGW32__)
{
Term tout;
Int time[2];
time[0] = IntegerOfTerm(t);
time[1] = IntegerOfTerm(t2);
if (time[0] != 0 && time[1] != 0) {
DWORD dwThreadId;
HANDLE hThread;
hThread = CreateThread(
NULL, /* no security attributes */
0, /* use default stack size */
DoTimerThread, /* thread function */
(LPVOID)time, /* argument to thread function */
0, /* use default creation flags */
&dwThreadId); /* returns the thread identifier */
/* Check the return value for success. */
if (hThread == NULL) {
Yap_WinError("trying to use alarm");
}
}
tout = MkIntegerTerm(0);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0));
}
#elif HAVE_SETITIMER && !SUPPORT_CONDOR
{
struct itimerval new, old;
new.it_interval.tv_sec = 0;
new.it_interval.tv_usec = 0;
new.it_value.tv_sec = IntegerOfTerm(t);
new.it_value.tv_usec = IntegerOfTerm(t2);
if (setitimer(ITIMER_VIRTUAL, &new, &old) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno);
#endif
return FALSE;
}
return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) &&
Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec));
}
#else
/* not actually trying to set the alarm */
if (IntegerOfTerm(t) == 0)
return TRUE;
Yap_Error(SYSTEM_ERROR, TermNil,
"virtual_alarm not available in this configuration");
return FALSE;
#endif
}
#if HAVE_FPU_CONTROL_H
#include <fpu_control.h>
#endif
/* by default Linux with glibc is IEEE compliant anyway..., but we will pretend it is not. */
static bool
set_fpu_exceptions(bool flag)
{
if (flag) {
#if HAVE_FESETEXCEPTFLAG
fexcept_t excepts;
return fesetexceptflag(&excepts, FE_DIVBYZERO| FE_UNDERFLOW|FE_OVERFLOW) == 0;
#elif HAVE_FEENABLEEXCEPT
/* I shall ignore de-normalization and precision errors */
feenableexcept(FE_DIVBYZERO| FE_INVALID|FE_OVERFLOW);
#elif _WIN32
// Enable zero-divide, overflow and underflow exception
_controlfp_s(0, ~(_EM_ZERODIVIDE|_EM_UNDERFLOW|_EM_OVERFLOW), _MCW_EM); // Line B
#elif defined(__hpux)
# if HAVE_FESETTRAPENABLE
/* From HP-UX 11.0 onwards: */
fesettrapenable(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW);
# else
/*
Up until HP-UX 10.20:
FP_X_INV invalid operation exceptions
FP_X_DZ divide-by-zero exception
FP_X_OFL overflow exception
FP_X_UFL underflow exception
FP_X_IMP imprecise (inexact result)
FP_X_CLEAR simply zero to clear all flags
*/
fpsetmask(FP_X_INV|FP_X_DZ|FP_X_OFL|FP_X_UFL);
# endif
#endif /* __hpux */
#if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__)
/* I shall ignore denormalization and precision errors */
int v = _FPU_IEEE & ~(_FPU_MASK_IM|_FPU_MASK_ZM|_FPU_MASK_OM|_FPU_MASK_UM);
_FPU_SETCW(v);
#endif
#if HAVE_FETESTEXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
#ifdef HAVE_SIGFPE
my_signal (SIGFPE, HandleMatherr);
#endif
} else {
/* do IEEE arithmetic in the way the big boys do */
#if HAVE_FESETEXCEPTFLAG
fexcept_t excepts;
return fesetexceptflag(&excepts, 0) == 0;
#elif HAVE_FEENABLEEXCEPT
/* I shall ignore de-normalization and precision errors */
feenableexcept(0);
#elif _WIN32
// Enable zero-divide, overflow and underflow exception
_controlfp_s(0, (_EM_ZERODIVIDE|_EM_UNDERFLOW|_EM_OVERFLOW), _MCW_EM); // Line B
#elif defined(__hpux)
# if HAVE_FESETTRAPENABLE
fesettrapenable(FE_ALL_EXCEPT);
# else
fpsetmask(FP_X_CLEAR);
# endif
#endif /* __hpux */
#if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__)
/* this will probably not work in older releases of Linux */
int v = _FPU_IEEE;
_FPU_SETCW(v);
#endif
#ifdef HAVE_SIGFPE
my_signal (SIGFPE, SIG_IGN);
#endif
}
return true;
}
bool
Yap_set_fpu_exceptions(bool flag)
{
return set_fpu_exceptions(flag);
}
static Int
p_set_fpu_exceptions( USES_REGS1 ) {
if (Deref(ARG1) == MkAtomTerm(AtomTrue)) {
return set_fpu_exceptions(true);
} else {
return set_fpu_exceptions( false );
}
}
static Int
p_host_type( USES_REGS1 ) {
Term out = MkAtomTerm(Yap_LookupAtom(HOST_ALIAS));
return(Yap_unify(out,ARG1));
}
static Int
p_yap_home( USES_REGS1 ) {
Term out = MkAtomTerm(Yap_LookupAtom(YAP_ROOTDIR));
return(Yap_unify(out,ARG1));
}
static Int
p_yap_paths( USES_REGS1 ) {
Term out1, out2, out3;
const char *env_destdir = getenv("DESTDIR");
char destdir[YAP_FILENAME_MAX+1];
if (env_destdir) {
strncat(destdir, env_destdir, YAP_FILENAME_MAX );
strncat(destdir, "/" YAP_LIBDIR, YAP_FILENAME_MAX );
out1 = MkAtomTerm(Yap_LookupAtom(destdir));
} else {
out1 = MkAtomTerm(Yap_LookupAtom(YAP_LIBDIR));
}
if (env_destdir) {
strncat(destdir, env_destdir, YAP_FILENAME_MAX );
strncat(destdir, "/" YAP_SHAREDIR, YAP_FILENAME_MAX );
out2 = MkAtomTerm(Yap_LookupAtom(destdir));
} else {
#if __ANDROID__
out2 = MkAtomTerm(Yap_LookupAtom("/assets/share/Yap"));
#else
out2 = MkAtomTerm(Yap_LookupAtom(YAP_SHAREDIR));
#endif
}
if (env_destdir) {
strncat(destdir, env_destdir, YAP_FILENAME_MAX );
strncat(destdir, "/" YAP_BINDIR, YAP_FILENAME_MAX );
out3 = MkAtomTerm(Yap_LookupAtom(destdir));
} else {
out3 = MkAtomTerm(Yap_LookupAtom(YAP_BINDIR));
}
return(Yap_unify(out1,ARG1) &&
Yap_unify(out2,ARG2) &&
Yap_unify(out3,ARG3));
}
static Int
p_log_event( USES_REGS1 ) {
Term in = Deref(ARG1);
Atom at;
if (IsVarTerm(in))
return FALSE;
if (!IsAtomTerm(in))
return FALSE;
at = AtomOfTerm( in );
#if DEBUG
if (IsWideAtom(at) )
fprintf(stderr, "LOG %S\n", RepAtom(at)->WStrOfAE);
else if (IsBlob(at))
return FALSE;
else
fprintf(stderr, "LOG %s\n", RepAtom(at)->StrOfAE);
#endif
if (IsWideAtom(at) || IsBlob(at))
return FALSE;
#if __ANDROID__
__android_log_print(ANDROID_LOG_INFO, "YAP", " %s ",RepAtom(at)->StrOfAE);
#endif
return TRUE;
}
static Int
p_env_separator( USES_REGS1 ) {
#if defined(_WIN32)
return Yap_unify(MkIntegerTerm(';'),ARG1);
#else
return Yap_unify(MkIntegerTerm(':'),ARG1);
#endif
}
/*
* This is responsable for the initialization of all machine dependant
* predicates
*/
void
Yap_InitSysbits (void)
{
#if __simplescalar__
{
char *pwd = getenv("PWD");
strncpy(GLOBAL_pwd,pwd,YAP_FILENAME_MAX);
}
#endif
InitWTime ();
InitRandom ();
/* let the caller control signals as it sees fit */
InitSignals ();
}
void
Yap_InitTime( int wid )
{
InitTime( wid );
}
void
Yap_ReInitWallTime (void)
{
InitWTime();
if (Yap_heap_regs->last_wtime != NULL)
Yap_FreeCodeSpace(Yap_heap_regs->last_wtime);
InitLastWtime();
}
static Int
p_unix( USES_REGS1 )
{
#ifdef unix
return TRUE;
#else
#ifdef __unix__
return TRUE;
#else
#ifdef __APPLE__
return TRUE;
#else
return FALSE;
#endif
#endif
#endif
}
static Int
p_win32( USES_REGS1 )
{
#ifdef _WIN32
return TRUE;
#else
#ifdef __CYGWIN__
return TRUE;
#else
return FALSE;
#endif
#endif
}
static Int
p_enable_interrupts( USES_REGS1 )
{
LOCAL_InterruptsDisabled--;
if (LOCAL_Signals && !LOCAL_InterruptsDisabled) {
CreepFlag = Unsigned(LCL0);
if ( !Yap_only_has_signal( YAP_CREEP_SIGNAL ) )
EventFlag = Unsigned( LCL0 );
}
return TRUE;
}
static Int
p_disable_interrupts( USES_REGS1 )
{
LOCAL_InterruptsDisabled++;
CalculateStackGap( PASS_REGS1 );
return TRUE;
}
static Int
p_ld_path( USES_REGS1 )
{
return Yap_unify(ARG1,MkAtomTerm(Yap_LookupAtom(YAP_LIBDIR)));
}
static Int
p_address_bits( USES_REGS1 )
{
#if SIZEOF_INT_P==4
return Yap_unify(ARG1,MkIntTerm(32));
#else
return Yap_unify(ARG1,MkIntTerm(64));
#endif
}
#ifdef _WIN32
/* This code is from SWI-Prolog by Jan Wielemaker */
#define wstreq(s,q) (wcscmp((s), (q)) == 0)
static HKEY
reg_open_key(const wchar_t *which, int create)
{ HKEY key = HKEY_CURRENT_USER;
DWORD disp;
LONG rval;
while(*which)
{ wchar_t buf[256];
wchar_t *s;
HKEY tmp;
for(s=buf; *which && !(*which == '/' || *which == '\\'); )
*s++ = *which++;
*s = '\0';
if ( *which )
which++;
if ( wstreq(buf, L"HKEY_CLASSES_ROOT") )
{ key = HKEY_CLASSES_ROOT;
continue;
} else if ( wstreq(buf, L"HKEY_CURRENT_USER") )
{ key = HKEY_CURRENT_USER;
continue;
} else if ( wstreq(buf, L"HKEY_LOCAL_MACHINE") )
{ key = HKEY_LOCAL_MACHINE;
continue;
} else if ( wstreq(buf, L"HKEY_USERS") )
{ key = HKEY_USERS;
continue;
}
if ( RegOpenKeyExW(key, buf, 0L, KEY_READ, &tmp) == ERROR_SUCCESS )
{ RegCloseKey(key);
key = tmp;
continue;
}
if ( !create )
return NULL;
rval = RegCreateKeyExW(key, buf, 0, L"", 0,
KEY_ALL_ACCESS, NULL, &tmp, &disp);
RegCloseKey(key);
if ( rval == ERROR_SUCCESS )
key = tmp;
else
return NULL;
}
return key;
}
#define MAXREGSTRLEN 1024
static void
recover_space(wchar_t *k, Atom At)
{
if (At->WStrOfAE != k)
Yap_FreeCodeSpace((char *)k);
}
static wchar_t *
WideStringFromAtom(Atom KeyAt USES_REGS)
{
if (IsWideAtom(KeyAt)) {
return KeyAt->WStrOfAE;
} else {
int len = strlen(KeyAt->StrOfAE);
int sz = sizeof(wchar_t)*(len+1);
char *chp = KeyAt->StrOfAE;
wchar_t *kptr, *k;
k = (wchar_t *)Yap_AllocCodeSpace(sz);
while (k == NULL) {
if (!Yap_growheap(FALSE, sz, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, MkIntegerTerm(sz), "generating key in win_registry_get_value/3");
return FALSE;
}
}
kptr = k;
while ((*kptr++ = *chp++));
return k;
}
}
static Int
p_win_registry_get_value( USES_REGS1 )
{
DWORD type;
BYTE data[MAXREGSTRLEN];
DWORD len = sizeof(data);
wchar_t *k, *name;
HKEY key;
Term Key = Deref(ARG1);
Term Name = Deref(ARG2);
Atom KeyAt, NameAt;
if (IsVarTerm(Key)) {
Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound");
return FALSE;
}
if (!IsAtomTerm(Key)) {
Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value");
return FALSE;
}
KeyAt = AtomOfTerm(Key);
if (IsVarTerm(Name)) {
Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound");
return FALSE;
}
if (!IsAtomTerm(Name)) {
Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value");
return FALSE;
}
NameAt = AtomOfTerm(Name);
k = WideStringFromAtom(KeyAt PASS_REGS);
if ( !(key=reg_open_key(k, FALSE)) ) {
Yap_Error(EXISTENCE_ERROR_KEY, Key, "argument to win_registry_get_value");
recover_space(k, KeyAt);
return FALSE;
}
name = WideStringFromAtom(NameAt PASS_REGS);
if ( RegQueryValueExW(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) {
RegCloseKey(key);
switch(type) {
case REG_SZ:
recover_space(k, KeyAt);
recover_space(name, NameAt);
((wchar_t *)data)[len] = '\0';
return Yap_unify(MkAtomTerm(Yap_LookupMaybeWideAtom((wchar_t *)data)),ARG3);
case REG_DWORD:
recover_space(k, KeyAt);
recover_space(name, NameAt);
{
DWORD *d = (DWORD *)data;
return Yap_unify(MkIntegerTerm((Int)d[0]),ARG3);
}
default:
recover_space(k, KeyAt);
recover_space(name, NameAt);
return FALSE;
}
}
recover_space(k, KeyAt);
recover_space(name, NameAt);
return FALSE;
}
char *
Yap_RegistryGetString(char *name)
{
DWORD type;
BYTE data[MAXREGSTRLEN];
DWORD len = sizeof(data);
HKEY key;
char *ptr;
int i;
#if SIZEOF_INT_P == 8
if ( !(key=reg_open_key(L"HKEY_LOCAL_MACHINE/SOFTWARE/YAP/Prolog64", FALSE)) ) {
return NULL;
}
#else
if ( !(key=reg_open_key(L"HKEY_LOCAL_MACHINE/SOFTWARE/YAP/Prolog", FALSE)) ) {
return NULL;
}
#endif
if ( RegQueryValueEx(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) {
RegCloseKey(key);
switch(type) {
case REG_SZ:
ptr = malloc(len+2);
if (!ptr)
return NULL;
for (i=0; i<= len; i++)
ptr[i] = data[i];
ptr[len+1] = '\0';
return ptr;
default:
return NULL;
}
}
return NULL;
}
#endif
void
Yap_InitSysPreds(void)
{
CACHE_REGS
Term cm = CurrentModule;
/* can only do after heap is initialised */
InitLastWtime();
Yap_InitCPred ("srandom", 1, p_srandom, SafePredFlag);
#if HAVE_RANDOM
Yap_InitCPred ("init_random_state", 3, p_init_random_state, SafePredFlag);
Yap_InitCPred ("set_random_state", 2, p_set_random_state, SafePredFlag);
Yap_InitCPred ("release_random_state", 1, p_release_random_state, SafePredFlag);
#endif
Yap_InitCPred ("log_event", 1, p_log_event, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("sh", 0, p_sh, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$shell", 1, p_shell, SafePredFlag|SyncPredFlag|UserCPredFlag);
Yap_InitCPred ("system", 1, p_system, SafePredFlag|SyncPredFlag|UserCPredFlag);
Yap_InitCPred ("rename", 2, p_mv, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$yap_home", 1, p_yap_home, SafePredFlag);
Yap_InitCPred ("$yap_paths", 3, p_yap_paths, SafePredFlag);
Yap_InitCPred ("$dir_separator", 1, p_dir_sp, SafePredFlag);
Yap_InitCPred ("libraries_directories",2, p_libraries_path, 0);
Yap_InitCPred ("system_library", 1, p_library_dir, 0);
Yap_InitCPred ("commons_library", 1, p_commons_dir, 0);
Yap_InitCPred ("$alarm", 4, p_alarm, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$getenv", 2, p_getenv, SafePredFlag);
Yap_InitCPred ("$putenv", 2, p_putenv, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$set_fpu_exceptions",1, p_set_fpu_exceptions, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$host_type", 1, p_host_type, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$env_separator", 1, p_env_separator, SafePredFlag);
Yap_InitCPred ("$unix", 0, p_unix, SafePredFlag);
Yap_InitCPred ("$win32", 0, p_win32, SafePredFlag);
Yap_InitCPred ("$ld_path", 1, p_ld_path, SafePredFlag);
Yap_InitCPred ("$address_bits", 1, p_address_bits, SafePredFlag);
Yap_InitCPred ("$expand_file_name", 2, p_expand_file_name, SyncPredFlag);
Yap_InitCPred ("$fpe_error", 0, p_fpe_error, 0);
#ifdef _WIN32
Yap_InitCPred ("win_registry_get_value", 3, p_win_registry_get_value,0);
#endif
CurrentModule = HACKS_MODULE;
Yap_InitCPred ("virtual_alarm", 4, p_virtual_alarm, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("enable_interrupts", 0, p_enable_interrupts, SafePredFlag);
Yap_InitCPred ("disable_interrupts", 0, p_disable_interrupts, SafePredFlag);
CurrentModule = OPERATING_SYSTEM_MODULE;
Yap_InitCPred ("true_file_name", 2, p_true_file_name, SyncPredFlag);
Yap_InitCPred ("true_file_name", 3, p_true_file_name3, SyncPredFlag);
CurrentModule = cm;
}
#ifdef VAX
/* avoid longjmp botch */
int vax_absmi_fp;
typedef struct
{
int eh;
int flgs;
int ap;
int fp;
int pc;
int dummy1;
int dummy2;
int dummy3;
int oldfp;
int dummy4;
int dummy5;
int dummy6;
int oldpc;
}
*VaxFramePtr;
VaxFixFrame (dummy)
{
int maxframes = 100;
VaxFramePtr fp = (VaxFramePtr) (((int *) &dummy) - 6);
while (--maxframes)
{
fp = (VaxFramePtr) fp->fp;
if (fp->flgs == 0)
{
if (fp->oldfp >= &REGS[6] && fp->oldfp < &REGS[REG_SIZE])
fp->oldfp = vax_absmi_fp;
return;
}
}
}
#endif
#if defined(_WIN32)
#include <windows.h>
int WINAPI win_yap(HANDLE, DWORD, LPVOID);
int WINAPI win_yap(HANDLE hinst, DWORD reason, LPVOID reserved)
{
switch (reason)
{
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
}
return 1;
}
#endif
#if (defined(YAPOR) || defined(THREADS)) && !defined(USE_PTHREAD_LOCKING)
#ifdef sparc
void rw_lock_voodoo(void);
void
rw_lock_voodoo(void) {
/* code taken from the Linux kernel, it handles shifting between locks */
/* Read/writer locks, as usual this is overly clever to make it as fast as possible. */
/* caches... */
__asm__ __volatile__(
"___rw_read_enter_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_read_enter\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_read_enter_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
"___rw_read_exit_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_read_exit\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_read_exit_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
"___rw_write_enter_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_write_enter\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_write_enter_spin_on_wlock\n"
" ld [%g1], %g2\n"
"\n"
" .globl ___rw_read_enter\n"
"___rw_read_enter:\n"
" orcc %g2, 0x0, %g0\n"
" bne,a ___rw_read_enter_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
" ld [%g1], %g2\n"
" add %g2, 1, %g2\n"
" st %g2, [%g1]\n"
" retl\n"
" mov %g4, %o7\n"
" .globl ___rw_read_exit\n"
"___rw_read_exit:\n"
" orcc %g2, 0x0, %g0\n"
" bne,a ___rw_read_exit_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
" ld [%g1], %g2\n"
" sub %g2, 0x1ff, %g2\n"
" st %g2, [%g1]\n"
" retl\n"
" mov %g4, %o7\n"
" .globl ___rw_write_enter\n"
"___rw_write_enter:\n"
" orcc %g2, 0x0, %g0\n"
" bne ___rw_write_enter_spin_on_wlock\n"
" ld [%g1], %g2\n"
" andncc %g2, 0xff, %g0\n"
" bne,a ___rw_write_enter_spin_on_wlock\n"
" stb %g0, [%g1 + 3]\n"
" retl\n"
" mov %g4, %o7\n"
);
}
#endif /* sparc */
#endif /* YAPOR || THREADS */
//@