This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/ProbLog/problog_lbfgs.yap
Vitor Santos Costa 5ea98bcf53 LBFGS
2018-10-05 10:26:34 +01:00

1013 lines
35 KiB
Prolog

%xb%%% -*- Mode: Prolog; -*-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Date: 2011-04-21 14:18:59 +0200 (Thu, 21 Apr 2011) $
% $Revision: 6364 $
%
% This file is part of ProbLog
% http://dtai.cs.kuleuven.be/problog
%
% ProbLog was developed at Katholieke Universiteit Leuven
%
% Copyright 2008, 2009, 2010
% Katholieke Universiteit Leuven
%
% Main authors of this file:
% Bernd Gutmann, Vitor Santos Costa
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
%
% Copyright (c) 2000-2006, The Perl Foundation.
%
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed. Preamble
%
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
%
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement. Definitions
%
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
%
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
%
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
%
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
%
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
%
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
%
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
%
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
%
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
%
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
%
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
%
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
%
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
%
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
%
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
%
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version. (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version. (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
%
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
%
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
%
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
%
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
%
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
%
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
%
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
%
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
%
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
%
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- module(learning,[do_learning/1,
do_learning/2,
reset_learning/0,
sigmoid/3,
inv_sigmoid/3
]).
% switch on all the checks to reduce bug searching time
:- style_check(all).
:- yap_flag(unknown,error).
% load modules from the YAP library
:- use_module(library(lists), [member/2,max_list/2, min_list/2, sum_list/2]).
:- use_module(library(system), [file_exists/1, shell/2]).
:- use_module(library(rbtrees)).
:- use_module(library(lbfgs)).
% load our own modules
:- reexport(problog).
:- use_module('problog/logger').
:- use_module('problog/flags').
:- use_module('problog/os').
:- use_module('problog/print_learning').
:- use_module('problog/utils_lbdd').
:- use_module('problog/utils').
:- use_module('problog/tabling').
% used to indicate the state of the system
:- dynamic(values_correct/0).
:- dynamic(learning_initialized/0).
:- dynamic(current_iteration/1).
:- dynamic(example_count/1).
%:- dynamic(query_probability_intern/2).
%:- dynamic(query_gradient_intern/4).
:- dynamic(last_mse/1).
:- dynamic(query_is_similar/2).
:- dynamic(query_md5/2).
% used to identify queries which have identical proofs
:- dynamic(query_is_similar/2).
:- dynamic(query_md5/3).
% used to identify queries which have identical proofs
:- dynamic(query_is_similar/2).
:- dynamic(query_md5/3).
:- multifile(user:example/4).
:- multifile(user:problog_discard_example/1).
user:example(A,B,C,=) :-
current_predicate(user:example/3),
user:example(A,B,C),
\+ user:problog_discard_example(B).
:- multifile(user:test_example/4).
user:test_example(A,B,C,=) :-
current_predicate(user:test_example/3),
user:test_example(A,B,C),
\+ user:problog_discard_example(B).
%========================================================================
%= store the facts with the learned probabilities to a file
%========================================================================
save_model:-
current_iteration(Iteration),
create_factprobs_file_name(Iteration,Filename),
export_facts(Filename).
%========================================================================
%= find out whether some example IDs are used more than once
%= if so, complain and stop
%=
%========================================================================
check_examples :-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check example IDs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(
(user:example(ID,_,_,_), \+ atomic(ID))
->
(
format(user_error,'The example id of training example ~q ',[ID]),
format(user_error,'is not atomic (e.g foo42, 23, bar, ...).~n',[]),
throw(error(examples))
); true
),
(
(user:test_example(ID,_,_,_), \+ atomic(ID))
->
(
format(user_error,'The example id of test example ~q ',[ID]),
format(user_error,'is not atomic (e.g foo42, 23, bar, ...).~n',[]),
throw(error(examples))
); true
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check example probabilities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(
(user:example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
->
(
format(user_error,'The training example ~q does not have a valid probability value (~q).~n',[ID,P]),
throw(error(examples))
); true
),
(
(user:test_example(ID,_,P,_), (\+ number(P); P>1 ; P<0))
->
(
format(user_error,'The test example ~q does not have a valid probability value (~q).~n',[ID,P]),
throw(error(examples))
); true
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check that no example ID is repeated,
% and if it is repeated make sure the query is the same
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(
(
(
user:example(ID,QueryA,_,_),
user:example(ID,QueryB,_,_),
QueryA \= QueryB
) ;
(
user:test_example(ID,QueryA,_,_),
user:test_example(ID,QueryB,_,_),
QueryA \= QueryB
);
(
user:example(ID,QueryA,_,_),
user:test_example(ID,QueryB,_,_),
QueryA \= QueryB
)
)
->
(
format(user_error,'The example id ~q is used several times.~n',[ID]),
throw(error(examples))
); true
).
%========================================================================
%=
%========================================================================
reset_learning :-
retractall(learning_initialized),
retractall(values_correct),
retractall(current_iteration(_)),
retractall(example_count(_)),
% retractall(query_probability_intern(_,_)),%
% retractall(query_gradient_intern(_,_,_,_)),
retractall(last_mse(_)),
retractall(query_is_similar(_,_)),
retractall(query_md5(_,_,_)),
set_problog_flag(alpha,auto),
set_problog_flag(learning_rate,examples),
logger_reset_all_variables.
%========================================================================
%= initialize everything and perform Iterations times gradient descent
%= can be called several times
%= if it is called with an epsilon parameter, it stops when the change
%= in the MSE is smaller than epsilon
%========================================================================
do_learning(Iterations) :-
do_learning(Iterations,-1).
do_learning(Iterations,Epsilon) :-
current_predicate(user:example/4),
!,
integer(Iterations),
number(Epsilon),
Iterations>0,
do_learning_intern(Iterations,Epsilon).
do_learning(_,_) :-
format(user_error,'~n~Error: No training examples specified.~n~n',[]).
do_learning_intern(0,_) :-
!.
do_learning_intern(Iterations,Epsilon) :-
Iterations>0,
init_learning,
current_iteration(CurrentIteration),
retractall(current_iteration(_)),
NextIteration is CurrentIteration+1,
assertz(current_iteration(NextIteration)),
EndIteration is CurrentIteration+Iterations-1,
format_learning(1,'~nIteration ~d of ~d~n',[CurrentIteration,EndIteration]),
logger_set_variable(iteration,CurrentIteration),
logger_start_timer(duration),
% mse_testset,
% ground_truth_difference,
gradient_descent,
problog_flag(log_frequency,Log_Frequency),
(
( Log_Frequency>0, 0 =:= CurrentIteration mod Log_Frequency)
->
once(save_model);
true
),
% update_values,
(
last_mse(Last_MSE)
->
(
retractall(last_mse(_)),
logger_get_variable(mse_trainingset,Current_MSE),
assertz(last_mse(Current_MSE)),
!,
MSE_Diff is abs(Last_MSE-Current_MSE)
); (
logger_get_variable(mse_trainingset,Current_MSE),
assertz(last_mse(Current_MSE)),
MSE_Diff is Epsilon+1
)
),
(
(problog_flag(rebuild_bdds,BDDFreq),BDDFreq>0,0 =:= CurrentIteration mod BDDFreq)
->
(
retractall(values_correct),
retractall(query_is_similar(_,_)),
retractall(query_md5(_,_,_)),
empty_bdd_directory,
init_queries
); true
),
!,
logger_stop_timer(duration),
logger_write_data,
RemainingIterations is Iterations-1,
(
MSE_Diff>Epsilon
->
do_learning_intern(RemainingIterations,Epsilon);
true
).
%========================================================================
%= find proofs and build bdds for all training and test examples
%=
%=
%========================================================================
init_learning :-
learning_initialized,
!.
init_learning :-
check_examples,
% empty_output_directory,
logger_write_header,
format_learning(1,'Initializing everything~n',[]),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Check, if continuous facts are used.
% if yes, switch to problog_exact
% continuous facts are not supported yet.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
set_default_gradient_method,
( problog_flag(continuous_facts, true )
->
problog_flag(init_method,(_,_,_,_,OldCall)),
(
(
continuous_fact(_),
OldCall\=problog_exact_save(_,_,_,_,_)
)
->
(
format_learning(2,'Theory uses continuous facts.~nWill use problog_exact/3 as initalization method.~2n',[]),
set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile)))
);
true
)
;
problog_tabled(_)
->
(
format_learning(2,'Theory uses tabling.~nWill use problog_exact/3 as initalization method.~2n',[]),
set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile)))
);
true
),
succeeds_n_times(user:test_example(_,_,_,_),TestExampleCount),
format_learning(3,'~q test examples~n',[TestExampleCount]),
succeeds_n_times(user:example(_,_,_,_),TrainingExampleCount),
assertz(example_count(TrainingExampleCount)),
format_learning(3,'~q training examples~n',[TrainingExampleCount]),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% build BDD script for every example
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
once(init_queries),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% done
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
assertz(current_iteration(0)),
assertz(learning_initialized),
format_learning(1,'~n',[]).
empty_bdd_directory :-
current_key(_,I),
integer(I),
recorded(I,bdd(_,_,_),R),
erase(R),
fail.
empty_bdd_directory.
set_default_gradient_method :-
problog_flag(continuous_facts, true),
!,
problog_flag(init_method,OldMethod),
format_learning(2,'Theory uses continuous facts.~nWill use problog_exact/3 as initalization method.~2n',[]),
set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile))).
set_default_gradient_method :-
problog_tabled(_), problog_flag(fast_proofs,false),
!,
format_learning(2,'Theory uses tabling.~nWill use problog_exact/3 as initalization method.~2n',[]),
set_problog_flag(init_method,(Query,Probability,BDDFile,ProbFile,problog_exact_save(Query,Probability,_Status,BDDFile,ProbFile))).
%set_default_gradient_method :-
% problog_flag(init_method,(gene(X,Y),N,Bdd,graph2bdd(X,Y,N,Bdd))),
% !.
set_default_gradient_method.
%========================================================================
%= This predicate goes over all training and test examples,
%= calls the inference method of ProbLog and stores the resulting
%= BDDs
%========================================================================
init_queries :-
format_learning(2,'Build BDDs for examples~n',[]),
forall(user:test_example(ID,Query,_Prob,_),init_one_query(ID,Query,test)),
forall(user:example(ID,Query,_Prob,_),init_one_query(ID,Query,training)).
bdd_input_file(Filename) :-
problog_flag(output_directory,Dir),
concat_path_with_filename(Dir,'input.txt',Filename).
init_one_query(QueryID,Query,Type) :-
% format_learning(3,' ~q example ~q: ~q~n',[Type,QueryID,Query]),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if BDD file does not exist, call ProbLog
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(
recorded(QueryID, _, _)
->
format_learning(3,' Reuse existing BDD ~q~n~n',[QueryID])
;
b_setval(problog_required_keep_ground_ids,false),
problog_flag(init_method,(Query,N,Bdd,graph2bdd(X,Y,N,Bdd))),
Query =.. [_,X,Y]
->
Bdd = bdd(Dir, Tree, MapList),
(
graph2bdd(X,Y,N,Bdd)
->
rb_new(H0),
maplist_to_hash(MapList, H0, Hash),
Tree \= [],
tree_to_grad(Tree, Hash, [], Grad)
;
Bdd = bdd(-1,[],[]),
Grad=[]
),
recordz(QueryID,bdd(Dir, Grad, MapList),_)
;
problog_flag(init_method,(Query,NOf,Bdd,problog_kbest_as_bdd(Call,NOf,Bdd))) ->
b_setval(problog_required_keep_ground_ids,false),
rb_new(H0),
strip_module(Call,_,Goal),
!,
Bdd = bdd(Dir, Tree, MapList),
% trace,
problog:problog_kbest_as_bdd(Goal,NOf,Bdd),
maplist_to_hash(MapList, H0, Hash),
Tree \= [],
%put_code(0'.),
tree_to_grad(Tree, Hash, [], Grad),
recordz(QueryID,bdd(Dir, Grad, MapList),_)
;
problog_flag(init_method,(Query,NOf,Bdd,Call)) ->
b_setval(problog_required_keep_ground_ids,false),
rb_new(H0),
Bdd = bdd(Dir, Tree, MapList),
% trace,
problog:Call,
maplist_to_hash(MapList, H0, Hash),
Tree \= [],
%put_code(0'.),
tree_to_grad(Tree, Hash, [], Grad),
recordz(QueryID,bdd(Dir, Grad, MapList),_)
).
qprobability(bdd(Dir, Tree, MapList), Slope, Prob) :-
/* query_probability(21,6.775948e-01). */
run_sp(Tree, Slope, 1.0, Prob0),
(Dir == 1 -> Prob0 = Prob ; Prob is 1.0-Prob0).
qgradient(bdd(Dir, Tree, MapList), Slope, I, Grad) :-
member(I-_, MapList),
run_grad(Tree, I, Slope, 0.0, Grad0),
( Dir = 1 -> Grad = Grad0 ; Grad is -Grad0).
% writeln(grad(QueryID:I:Grad)),
% assert(query_gradient_intern(QueryID,I,p,Grad)),
% fail.
%gradient(QueryID, g, Slope) :-
% gradient(QueryID, l, Slope).
maplist_to_hash([], H0, H0).
maplist_to_hash([I-V|MapList], H0, Hash) :-
rb_insert(H0, V, I, H1),
maplist_to_hash(MapList, H1, Hash).
tree_to_grad([], _, Grad, Grad).
tree_to_grad([Node|Tree], H, Grad0, Grad) :-
node_to_gradient_node(Node, H, GNode),
tree_to_grad(Tree, H, [GNode|Grad0], Grad).
node_to_gradient_node(pp(P-G,X,L,R), H, gnodep(P,G,X,Id,PL,GL,PR,GR)) :-
rb_lookup(X,Id,H),
(L == 1 -> GL=0, PL=1 ; L == 0 -> GL = 0, PL=0 ; L = PL-GL),
(R == 1 -> GR=0, PR=1 ; R == 0 -> GR = 0, PR=0 ; R = PR-GR).
node_to_gradient_node(pn(P-G,X,L,R), H, gnoden(P,G,X,Id,PL,GL,PR,GR)) :-
rb_lookup(X,Id,H),
(L == 1 -> GL=0, PL=1 ; L == 0 -> GL = 0, PL=0 ; L = PL-GL),
(R == 1 -> GR=0, PR=1 ; R == 0 -> GR = 0, PR=0 ; R = PR-GR).
run_sp([], _, P0, P0).
run_sp(gnodep(P,_G, EP, _Id, PL, _GL, PR, _GR).Tree, Slope, _, PF) :-
P is EP*PL+ (1.0-EP)*PR,
run_sp(Tree, Slope, P, PF).
run_sp(gnoden(P,_G, EP, _Id, PL, _GL, PR, _GR).Tree, Slope, _, PF) :-
P is EP*PL + (1.0-EP)*(1.0 - PR),
run_sp(Tree, Slope, P, PF).
run_grad([], _I, _, G0, G0).
run_grad([gnodep(P,G, EP, Id, PL, GL, PR, GR)|Tree], I, Slope, _, GF) :-
P is EP*PL+ (1.0-EP)*PR,
G0 is EP*GL + (1.0-EP)*GR,
% don' t forget the -X
( I == Id -> G is G0+(PL-PR)* EP*(1-EP)*Slope ; G = G0 ),
run_grad(Tree, I, Slope, G, GF).
run_grad([gnoden(P,G, EP, Id, PL, GL, PR, GR)|Tree], I, Slope, _, GF) :-
P is EP*PL + (1.0-EP)*(1.0 - PR),
G0 is EP*GL - (1.0 - EP) * GR,
( I == Id -> G is G0+(PL+PR-1)*EP*(1-EP)*Slope ; G = G0 ),
run_grad(Tree, I, Slope, G, GF).
%========================================================================
%=
%=
%=
%========================================================================
query_probability(QueryID,Prob) :-
Prob <== qp[QueryID].
%========================================================================
%=
%=
%=
%========================================================================
% FIXME
ground_truth_difference :-
findall(Diff,(tunable_fact(FactID,GroundTruth),
\+continuous_fact(FactID),
\+ var(GroundTruth),
%% get_fact_probability(FactID,Prob),
Prob <== p[FactID],
Diff is abs(GroundTruth-Prob)),AllDiffs),
(
AllDiffs=[]
->
(
MinDiff=0.0,
MaxDiff=0.0,
DiffMean=0.0
) ;
(
length(AllDiffs,Len),
sum_list(AllDiffs,AllDiffsSum),
min_list(AllDiffs,MinDiff),
max_list(AllDiffs,MaxDiff),
DiffMean is AllDiffsSum/Len
)
),
logger_set_variable(ground_truth_diff,DiffMean),
logger_set_variable(ground_truth_mindiff,MinDiff),
logger_set_variable(ground_truth_maxdiff,MaxDiff).
%========================================================================
%= Calculates the mse of training and test data
%=
%= -Float
%========================================================================
mse_trainingset_only_for_linesearch(MSE) :-
update_values,
example_count(Example_Count),
bb_put(error_train_line_search,0.0),
forall(user:example(QueryID,_Query,QueryProb,Type),
(
once(update_query(QueryID,'.',probability)),
query_probability(QueryID,CurrentProb),
once(update_query_cleanup(QueryID)),
(
(Type == '='; (Type == '<', CurrentProb>QueryProb); (Type=='>',CurrentProb<QueryProb))
->
(
bb_get(error_train_line_search,Old_Error),
New_Error is Old_Error + (CurrentProb-QueryProb)**2,
bb_put(error_train_line_search,New_Error)
);true
)
)
),
bb_delete(error_train_line_search,Error),
MSE is Error/Example_Count,
format_learning(3,' (~8f)~n',[MSE]),
retractall(values_correct).
mse_testset :-
current_iteration(Iteration),
create_test_predictions_file_name(Iteration,File_Name),
open(File_Name,'write',Handle),
format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
format(Handle,"% Iteration, train/test, QueryID, Query, GroundTruth, Prediction %~n",[]),
format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
format_learning(2,'MSE_Test ',[]),
update_values,
bb_put(llh_test_queries,0.0),
findall(SquaredError,
(user:test_example(QueryID,Query,TrueQueryProb,Type),
once(update_query(QueryID,'+',probability)),
query_probability(QueryID,CurrentProb),
format(Handle,'ex(~q,test,~q,~q,~10f,~10f).~n',[Iteration,QueryID,Query,TrueQueryProb,CurrentProb]),
once(update_query_cleanup(QueryID)),
(
(Type == '='; (Type == '<', CurrentProb>QueryProb); (Type=='>',CurrentProb<QueryProb))
->
SquaredError is (CurrentProb-TrueQueryProb)**2;
SquaredError = 0.0
),
bb_get(llh_test_queries,Old_LLH_Test_Queries),
New_LLH_Test_Queries is Old_LLH_Test_Queries+log(CurrentProb),
bb_put(llh_test_queries,New_LLH_Test_Queries)
),
AllSquaredErrors),
close(Handle),
bb_delete(llh_test_queries,LLH_Test_Queries),
length(AllSquaredErrors,Length),
(
Length>0
->
(
sum_list(AllSquaredErrors,SumAllSquaredErrors),
min_list(AllSquaredErrors,MinError),
max_list(AllSquaredErrors,MaxError),
MSE is SumAllSquaredErrors/Length
);(
MSE=0.0,
MinError=0.0,
MaxError=0.0
)
),
logger_set_variable(mse_testset,MSE),
logger_set_variable(mse_min_testset,MinError),
logger_set_variable(mse_max_testset,MaxError),
logger_set_variable(llh_test_queries,LLH_Test_Queries),
format_learning(2,' (~8f)~n',[M]).
%========================================================================
%= Calculates the sigmoid function respectivly the inverse of it
%= warning: applying inv_sigmoid to 0.0 or 1.0 will yield +/-inf
%=
%= +Float, -Float
%========================================================================
sigmoid(T,Slope,Sig) :-
IN <== T,
OUT is 1/(1+exp(-IN*Slope)),
Sig <== OUT.
inv_sigmoid(T,Slope,InvSig) :-
InvSig <== -log(1/T-1)/Slope.
%========================================================================
%= Perform one iteration of gradient descent
%=
%= assumes that everything is initialized, if the current values
%= of query_probability/2 and query_gradient/4 are not up to date
%= they will be recalculated
%= finally, the values_correct/0 is retracted to signal that the
%= probabilities of the examples have to be recalculated
%========================================================================
save_old_probabilities :-
old_prob <== p.
% vsc: avoid silly search
gradient_descent :-
current_iteration(Iteration),
create_training_predictions_file_name(Iteration,File_Name),
Handle = user_error,
format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
format(Handle,"% Iteration, train/test, QueryID, Query, GroundTruth, Prediction %~n",[]),
format(Handle,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~n",[]),
format_learning(2,'Gradient ',[]),
findall(FactID,tunable_fact(FactID,GroundTruth),L), length(L,N),
% leash(0),trace,
lbfgs_initialize(N,X,0,Solver),
N1 is N-1,
forall(tunable_fact(FactID,GroundTruth), (X[FactID] <== 0.5)),
problog_flag(sigmoid_slope,Slope),
lbfgs_run(Solver,BestFA),
BestF <== BestFA[0],
format('~2nOptimization done~nWe found a minimum ~4f
.~2n',[BestF]),
forall(tunable_fact(FactID,GroundTruth), set_tunable(FactID,GroundTruth,X)),
lbfgs_finalize(Solver).
set_tunable(I, GroundTruth,P) :-
Pr <== P[I],
get_fact(I,Source),
format('fact(~d, ~q, ~4f, ~4f).~n',[I,Source,GroundTruth,Pr]),
set_fact_probability(I,Pr).
prob2log(X,Slope,FactID) :-
get_fact_probability(FactID, V0),
inv_sigmoid(V0, Slope, V).
log2prob(X,Slope,FactID) :-
V0 <== X[FactID],
sigmoid(V0, Slope, V).
bind_maplist([], Slope, X).
bind_maplist([Node-Theta|MapList], Slope, X) :-
Theta <== X[Node],
bind_maplist(MapList, Slope, X).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% start calculate gradient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
user:evaluate(L, X,Grad,N,_,_) :-
Handle = user_error,
problog_flag(sigmoid_slope,Slope),
Probs = X, %<== array[N] of floats,
N1 is N-1,
forall(between(0,N1,I),
(Grad[I] <== 0.0) %, sigmoid(X[I],Slope,Probs[I]) )
),
findall(LL,
compute_grad(N, X, Grad, Probs, Slope, Handle, LL),
LLs
),
sum_list(LLs,LLH_Training_Queries),
forall(tunable_fact(FactID,GroundTruth), (Z<==X[FactID],W<==Grad[FactID])),
L[0] <== LLH_Training_Queries.
compute_grad(N, X, Grad, Probs, Slope, Handle, LL) :-
user:example(QueryID,Query,QueryProb,Type),
recorded(QueryID, BDD, _),
BDD = bdd(Dir, GradTree, MapList),
bind_maplist(MapList, Slope, Probs),
qprobability(BDD,Slope,BDDProb),
gradientpair(BDD,Slope,BDDProb, QueryProb, Grad),
LL is (((BDDProb)-(QueryProb))**2).
gradientpair(BDD,Slope,BDDProb, QueryProb, Grad) :-
qgradient(BDD, Slope, FactID, GradValue),
% writeln(FactID),
G0 <== Grad[FactID],
GN is G0-GradValue*(QueryProb-BDDProb),
%writeln(FactID:(G0->GN)),
Grad[FactID] <== GN.
gradientpair(_BDD,_Slope,_BDDProb, _Grad).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% stop calculate gradient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
user:progress(FX,X,_G,X_Norm,G_Norm,Step,_N,Iteration,Ls,0) :-
problog_flag(sigmoid_slope,Slope),
X0 <== X[0],
X1 <== X[1],
format('~d. Iteration : (x0,x1)=(~4f,~4f) f(X)=~4f |X|=~4f |X\'|=~4f Step=~4f Ls=~4f~n',[Iteration,X0 ,X1,FX,X_Norm,G_Norm,Step,Ls]).
%========================================================================
%= initialize the logger module and set the flags for learning
%= don't change anything here! use set_problog_flag/2 instead
%========================================================================
init_flags :-
prolog_file_name(queries,Queries_Folder), % get absolute file name for './queries'
prolog_file_name(output,Output_Folder), % get absolute file name for './output'
problog_define_flag(bdd_directory, problog_flag_validate_directory, 'directory for BDD scripts', Queries_Folder,learning_general),
problog_define_flag(output_directory, problog_flag_validate_directory, 'directory for logfiles etc', Output_Folder,learning_general,flags:learning_output_dir_handler),
problog_define_flag(log_frequency, problog_flag_validate_posint, 'log results every nth iteration', 1, learning_general),
problog_define_flag(rebuild_bdds, problog_flag_validate_nonegint, 'rebuild BDDs every nth iteration', 0, learning_general),
problog_define_flag(reuse_initialized_bdds,problog_flag_validate_boolean, 'Reuse BDDs from previous runs',false, learning_general),
problog_define_flag(check_duplicate_bdds,problog_flag_validate_boolean,'Store intermediate results in hash table',true,learning_general),
problog_define_flag(init_method,problog_flag_validate_dummy,'ProbLog predicate to search proofs',(Query,Tree,problog:problog_kbest_as_bdd(Query,100,Tree)),learning_general,flags:learning_libdd_init_handler),
problog_define_flag(alpha,problog_flag_validate_number,'weight of negative examples (auto=n_p/n_n)',auto,learning_general,flags:auto_handler),
problog_define_flag(sigmoid_slope,problog_flag_validate_posnumber,'slope of sigmoid function',1.0,learning_general),
% problog_define_flag(continuous_facts,problog_flag_validate_boolean,'support parameter learning of continuous distributions',1.0,learning_general),
problog_define_flag(learning_rate,problog_flag_validate_posnumber,'Default learning rate (If line_search=false)',examples,learning_line_search,flags:examples_handler),
problog_define_flag(line_search, problog_flag_validate_boolean,'estimate learning rate by line search',false,learning_line_search),
problog_define_flag(line_search_never_stop, problog_flag_validate_boolean,'make tiny step if line search returns 0',true,learning_line_search),
problog_define_flag(line_search_tau, problog_flag_validate_indomain_0_1_open,'tau value for line search',0.618033988749,learning_line_search),
problog_define_flag(line_search_tolerance,problog_flag_validate_posnumber,'tolerance value for line search',0.05,learning_line_search),
problog_define_flag(line_search_interval, problog_flag_validate_dummy,'interval for line search',(0,100),learning_line_search,flags:linesearch_interval_handler).
init_logger :-
logger_define_variable(iteration, int),
logger_define_variable(duration,time),
logger_define_variable(mse_trainingset,float),
logger_define_variable(mse_min_trainingset,float),
logger_define_variable(mse_max_trainingset,float),
logger_define_variable(mse_testset,float),
logger_define_variable(mse_min_testset,float),
logger_define_variable(mse_max_testset,float),
logger_define_variable(gradient_mean,float),
logger_define_variable(gradient_min,float),
logger_define_variable(gradient_max,float),
logger_define_variable(ground_truth_diff,float),
logger_define_variable(ground_truth_mindiff,float),
logger_define_variable(ground_truth_maxdiff,float),
logger_define_variable(learning_rate,float),
logger_define_variable(alpha,float),
logger_define_variable(llh_training_queries,float),
logger_define_variable(llh_test_queries,float).
:- initialization(init_flags).
:- initialization(init_logger).