This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/stdpreds.c
2014-10-19 11:27:53 +01:00

2077 lines
53 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V. Santos Costa and Universidade do Porto 1985-- *
* *
**************************************************************************
* *
* File: stdpreds.c *
* comments: General-purpose C implemented system predicates *
* *
* Last rev: $Date: 2008-07-24 16:02:00 $,$Author: vsc $ *
* $Log: not supported by cvs2svn $
* Revision 1.131 2008/06/12 10:55:52 vsc
* fix syntax error messages
*
* Revision 1.130 2008/04/06 11:53:02 vsc
* fix some restore bugs
*
* Revision 1.129 2008/03/15 12:19:33 vsc
* fix flags
*
* Revision 1.128 2008/02/15 12:41:33 vsc
* more fixes to modules
*
* Revision 1.127 2008/02/13 10:15:35 vsc
* fix some bugs from yesterday plus improve support for modules in
* operators.
*
* Revision 1.126 2008/02/07 23:09:13 vsc
* don't break ISO standard in current_predicate/1.
* Include Nicos flag.
*
* Revision 1.125 2008/01/23 17:57:53 vsc
* valgrind it!
* enable atom garbage collection.
*
* Revision 1.124 2007/11/26 23:43:08 vsc
* fixes to support threads and assert correctly, even if inefficiently.
*
* Revision 1.123 2007/11/06 17:02:12 vsc
* compile ground terms away.
*
* Revision 1.122 2007/10/18 08:24:16 vsc
* fix global variables
*
* Revision 1.121 2007/10/10 09:44:24 vsc
* some more fixes to make YAP swi compatible
* fix absolute_file_name (again)
* fix setarg
*
* Revision 1.120 2007/10/08 23:02:15 vsc
* minor fixes
*
* Revision 1.119 2007/04/18 23:01:16 vsc
* fix deadlock when trying to create a module with the same name as a
* predicate (for now, just don't lock modules). obs Paulo Moura.
*
* Revision 1.118 2007/02/26 10:41:40 vsc
* fix prolog_flags for chr.
*
* Revision 1.117 2007/01/28 14:26:37 vsc
* WIN32 support
*
* Revision 1.116 2006/12/13 16:10:23 vsc
* several debugger and CLP(BN) improvements.
*
* Revision 1.115 2006/11/28 13:46:41 vsc
* fix wide_char support for name/2.
*
* Revision 1.114 2006/11/27 17:42:03 vsc
* support for UNICODE, and other bug fixes.
*
* Revision 1.113 2006/11/16 14:26:00 vsc
* fix handling of infinity in name/2 and friends.
*
* Revision 1.112 2006/11/08 01:56:47 vsc
* fix argument order in db statistics.
*
* Revision 1.111 2006/11/06 18:35:04 vsc
* 1estranha
*
* Revision 1.110 2006/10/10 14:08:17 vsc
* small fixes on threaded implementation.
*
* Revision 1.109 2006/09/15 19:32:47 vsc
* ichanges for QSAR
*
* Revision 1.108 2006/09/01 20:14:42 vsc
* more fixes for global data-structures.
* statistics on atom space.
*
* Revision 1.107 2006/08/22 16:12:46 vsc
* global variables
*
* Revision 1.106 2006/08/07 18:51:44 vsc
* fix garbage collector not to try to garbage collect when we ask for large
* chunks of stack in a single go.
*
* Revision 1.105 2006/06/05 19:36:00 vsc
* hacks
*
* Revision 1.104 2006/05/19 14:31:32 vsc
* get rid of IntArrays and FloatArray code.
* include holes when calculating memory usage.
*
* Revision 1.103 2006/05/18 16:33:05 vsc
* fix info reported by memory manager under DL_MALLOC and SYSTEM_MALLOC
*
* Revision 1.102 2006/04/28 17:53:44 vsc
* fix the expand_consult patch
*
* Revision 1.101 2006/04/28 13:23:23 vsc
* fix number of overflow bugs affecting threaded version
* make current_op faster.
*
* Revision 1.100 2006/02/05 02:26:35 tiagosoares
* MYDDAS: Top Level Functionality
*
* Revision 1.99 2006/02/05 02:17:54 tiagosoares
* MYDDAS: Top Level Functionality
*
* Revision 1.98 2005/12/17 03:25:39 vsc
* major changes to support online event-based profiling
* improve error discovery and restart on scanner.
*
* Revision 1.97 2005/11/22 11:25:59 tiagosoares
* support for the MyDDAS interface library
*
* Revision 1.96 2005/10/28 17:38:49 vsc
* sveral updates
*
* Revision 1.95 2005/10/21 16:09:02 vsc
* SWI compatible module only operators
*
* Revision 1.94 2005/09/08 22:06:45 rslopes
* BEAM for YAP update...
*
* Revision 1.93 2005/08/04 15:45:53 ricroc
* TABLING NEW: support to limit the table space size
*
* Revision 1.92 2005/07/20 13:54:27 rslopes
* solved warning: cast from pointer to integer of different size
*
* Revision 1.91 2005/07/06 19:33:54 ricroc
* TABLING: answers for completed calls can now be obtained by loading (new option) or executing (default) them from the trie data structure.
*
* Revision 1.90 2005/07/06 15:10:14 vsc
* improvements to compiler: merged instructions and fixes for ->
*
* Revision 1.89 2005/05/26 18:01:11 rslopes
* *** empty log message ***
*
* Revision 1.88 2005/04/27 20:09:25 vsc
* indexing code could get confused with suspension points
* some further improvements on oveflow handling
* fix paths in Java makefile
* changs to support gibbs sampling in CLP(BN)
*
* Revision 1.87 2005/04/07 17:48:55 ricroc
* Adding tabling support for mixed strategy evaluation (batched and local scheduling)
* UPDATE: compilation flags -DTABLING_BATCHED_SCHEDULING and -DTABLING_LOCAL_SCHEDULING removed. To support tabling use -DTABLING in the Makefile or --enable-tabling in configure.
* NEW: yap_flag(tabling_mode,MODE) changes the tabling execution mode of all tabled predicates to MODE (batched, local or default).
* NEW: tabling_mode(PRED,MODE) changes the default tabling execution mode of predicate PRED to MODE (batched or local).
*
* Revision 1.86 2005/03/13 06:26:11 vsc
* fix excessive pruning in meta-calls
* fix Term->int breakage in compiler
* improve JPL (at least it does something now for amd64).
*
* Revision 1.85 2005/03/02 19:48:02 vsc
* Fix some possible errors in name/2 and friends, and cleanup code a bit
* YAP_Error changed.
*
* Revision 1.84 2005/03/02 18:35:46 vsc
* try to make initialisation process more robust
* try to make name more robust (in case Lookup new atom fails)
*
* Revision 1.83 2005/03/01 22:25:09 vsc
* fix pruning bug
* make DL_MALLOC less enthusiastic about walking through buckets.
*
* Revision 1.82 2005/02/21 16:50:04 vsc
* amd64 fixes
* library fixes
*
* Revision 1.81 2005/02/08 04:05:35 vsc
* fix mess with add clause
* improves on sigsegv handling
*
* Revision 1.80 2005/01/05 05:32:37 vsc
* Ricardo's latest version of profiler.
*
* Revision 1.79 2004/12/28 22:20:36 vsc
* some extra bug fixes for trail overflows: some cannot be recovered that easily,
* some can.
*
* Revision 1.78 2004/12/08 04:45:03 vsc
* polish changes to undefp
* get rid of a few warnings
*
* Revision 1.77 2004/12/05 05:07:26 vsc
* name/2 should accept [] as a valid list (string)
*
* Revision 1.76 2004/12/05 05:01:25 vsc
* try to reduce overheads when running with goal expansion enabled.
* CLPBN fixes
* Handle overflows when allocating big clauses properly.
*
* Revision 1.75 2004/12/02 06:06:46 vsc
* fix threads so that they at least start
* allow error handling to work with threads
* replace heap_base by Yap_heap_base, according to Yap's convention for globals.
*
* Revision 1.74 2004/11/19 22:08:43 vsc
* replace SYSTEM_ERROR by out OUT_OF_WHATEVER_ERROR whenever appropriate.
*
* Revision 1.73 2004/11/19 17:14:14 vsc
* a few fixes for 64 bit compiling.
*
* Revision 1.72 2004/11/18 22:32:37 vsc
* fix situation where we might assume nonextsing double initialisation of C predicates (use
* Hidden Pred Flag).
* $host_type was double initialised.
*
* Revision 1.71 2004/07/23 21:08:44 vsc
* windows fixes
*
* Revision 1.70 2004/06/29 19:04:42 vsc
* fix multithreaded version
* include new version of Ricardo's profiler
* new predicat atomic_concat
* allow multithreaded-debugging
* small fixes
*
* Revision 1.69 2004/06/16 14:12:53 vsc
* miscellaneous fixes
*
* Revision 1.68 2004/05/14 17:11:30 vsc
* support BigNums in interface
*
* Revision 1.67 2004/05/14 16:33:45 vsc
* add Yap_ReadBuffer
*
* Revision 1.66 2004/05/13 20:54:58 vsc
* debugger fixes
* make sure we always go back to current module, even during initizlization.
*
* Revision 1.65 2004/04/27 15:14:36 vsc
* fix halt/0 and halt/1
* *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
#define HAS_CACHE_REGS 1
/*
* This file includes the definition of a miscellania of standard predicates
* for yap refering to: Consulting, Executing a C predicate from call,
* Comparisons (both general and numeric), Structure manipulation, Direct
* access to atoms and predicates, Basic support for the debugger
*
* It also includes a table where all C-predicates are initializated
*
*/
#include "Yap.h"
#include "Yatom.h"
#include "YapHeap.h"
#include "eval.h"
#include "yapio.h"
#include "pl-shared.h"
#ifdef TABLING
#include "tab.macros.h"
#endif /* TABLING */
#include <stdio.h>
#if HAVE_STRING_H
#include <string.h>
#endif
#if HAVE_MALLOC_H
#include <malloc.h>
#endif
#include <wchar.h>
static Int p_setval( USES_REGS1 );
static Int p_value( USES_REGS1 );
static Int p_values( USES_REGS1 );
#ifdef undefined
static CODEADDR *FindAtom(CODEADDR, int *);
#endif /* undefined */
static Int p_opdec( USES_REGS1 );
static Int p_univ( USES_REGS1 );
static Int p_abort( USES_REGS1 );
#ifdef BEAM
Int p_halt( USES_REGS1 );
#else
static Int p_halt( USES_REGS1 );
#endif
static Int init_current_predicate( USES_REGS1 );
static Int cont_current_predicate( USES_REGS1 );
static Int init_current_predicate_for_atom( USES_REGS1 );
static Int cont_current_predicate_for_atom( USES_REGS1 );
static OpEntry *NextOp(OpEntry * CACHE_TYPE);
static Int init_current_op( USES_REGS1 );
static Int cont_current_op( USES_REGS1 );
static Int init_current_atom_op( USES_REGS1 );
static Int cont_current_atom_op( USES_REGS1 );
static Int p_flags( USES_REGS1 );
static Int TrailMax(void);
static Int GlobalMax(void);
static Int LocalMax(void);
static Int p_statistics_heap_max( USES_REGS1 );
static Int p_statistics_global_max( USES_REGS1 );
static Int p_statistics_local_max( USES_REGS1 );
static Int p_statistics_heap_info( USES_REGS1 );
static Int p_statistics_stacks_info( USES_REGS1 );
static Int p_statistics_trail_info( USES_REGS1 );
static Term mk_argc_list( USES_REGS1 );
static Int p_argv( USES_REGS1 );
static Int p_cputime( USES_REGS1 );
static Int p_systime( USES_REGS1 );
static Int p_runtime( USES_REGS1 );
static Int p_walltime( USES_REGS1 );
static Int p_access_yap_flags( USES_REGS1 );
static Int p_set_yap_flags( USES_REGS1 );
static Int p_break( USES_REGS1 );
#ifdef BEAM
Int use_eam( USES_REGS1 );
Int eager_split( USES_REGS1 );
Int force_wait( USES_REGS1 );
Int commit( USES_REGS1 );
Int skip_while_var( USES_REGS1 );
Int wait_while_var( USES_REGS1 );
Int show_time( USES_REGS1 );
Int start_eam( USES_REGS1 );
Int cont_eam( USES_REGS1 );
extern int EAM;
extern int eam_am(PredEntry*);
extern int showTime(void);
Int start_eam( USES_REGS1 ) {
if (eam_am((PredEntry *) 0x1)) return (TRUE);
else { cut_fail(); return (FALSE); }
}
Int cont_eam( USES_REGS1 ) {
if (eam_am((PredEntry *) 0x2)) return (TRUE);
else { cut_fail(); return (FALSE); }
}
Int use_eam( USES_REGS1 ) {
if (EAM) EAM=0;
else { Yap_PutValue(AtomCArith,0); EAM=1; }
return(TRUE);
}
Int commit( USES_REGS1 ) {
if (EAM) {
printf("Nao deveria ter sido chamado commit do stdpreds\n");
exit(1);
}
return(TRUE);
}
Int skip_while_var( USES_REGS1 ) {
if (EAM) {
printf("Nao deveria ter sido chamado skip_while_var do stdpreds\n");
exit(1);
}
return(TRUE);
}
Int wait_while_var( USES_REGS1 ) {
if (EAM) {
printf("Nao deveria ter sido chamado wait_while_var do stdpreds\n");
exit(1);
}
return(TRUE);
}
Int force_wait( USES_REGS1 ) {
if (EAM) {
printf("Nao deveria ter sido chamado force_wait do stdpreds\n");
exit(1);
}
return(TRUE);
}
Int eager_split( USES_REGS1 ) {
if (EAM) {
printf("Nao deveria ter sido chamado eager_split do stdpreds\n");
exit(1);
}
return(TRUE);
}
Int show_time( USES_REGS1 ) /* MORE PRECISION */
{
return (showTime());
}
#endif /* BEAM */
static Int
p_setval( USES_REGS1 )
{ /* '$set_value'(+Atom,+Atomic) */
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
if (!IsVarTerm(t1) && IsAtomTerm(t1) &&
(!IsVarTerm(t2) && (IsAtomTerm(t2) || IsNumTerm(t2)))) {
Yap_PutValue(AtomOfTerm(t1), t2);
return (TRUE);
}
return (FALSE);
}
static Int
p_value( USES_REGS1 )
{ /* '$get_value'(+Atom,?Val) */
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR,t1,"get_value/2");
return (FALSE);
}
if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM,t1,"get_value/2");
return (FALSE);
}
return (Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1))));
}
static Int
p_values( USES_REGS1 )
{ /* '$values'(Atom,Old,New) */
Term t1 = Deref(ARG1), t3 = Deref(ARG3);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR,t1,"set_value/2");
return (FALSE);
}
if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM,t1,"set_value/2");
return (FALSE);
}
if (!Yap_unify_constant(ARG2, Yap_GetValue(AtomOfTerm(t1))))
return (FALSE);
if (!IsVarTerm(t3)) {
if (IsAtomTerm(t3) || IsNumTerm(t3)) {
Yap_PutValue(AtomOfTerm(t1), t3);
} else
return (FALSE);
}
return (TRUE);
}
static Int
p_opdec( USES_REGS1 )
{ /* '$opdec'(p,type,atom) */
/* we know the arguments are integer, atom, atom */
Term p = Deref(ARG1), t = Deref(ARG2), at = Deref(ARG3);
Term tmod = Deref(ARG4);
if (tmod == TermProlog) {
tmod = PROLOG_MODULE;
}
return Yap_OpDec((int) IntOfTerm(p), RepAtom(AtomOfTerm(t))->StrOfAE,
AtomOfTerm(at), tmod);
}
#ifdef NO_STRTOD
#if HAVE_CTYPE_H
#include <ctype.h>
#endif
double
strtod(s, pe)
char *s, **pe;
{
double r = atof(s);
*pe = s;
while (*s == ' ')
++s;
if (*s == '+' || *s == '-')
++s;
if (!isdigit(*s))
return (r);
while (isdigit(*s))
++s;
if (*s == '.')
++s;
while (isdigit(*s))
++s;
if (*s == 'e' || *s == 'E')
++s;
if (*s == '+' || *s == '-')
++s;
while (isdigit(*s))
++s;
*pe = s;
return (r);
}
#else
#include <stdlib.h>
#endif
#ifndef INFINITY
#define INFINITY (1.0/0.0)
#endif
static UInt
runtime( USES_REGS1 )
{
return(Yap_cputime()-Yap_total_gc_time()-Yap_total_stack_shift_time());
}
/* $runtime(-SinceInterval,-SinceStart) */
static Int
p_runtime( USES_REGS1 )
{
Int now, interval,
gc_time,
ss_time;
Term tnow, tinterval;
Yap_cputime_interval(&now, &interval);
gc_time = Yap_total_gc_time();
now -= gc_time;
ss_time = Yap_total_stack_shift_time();
now -= ss_time;
interval -= (gc_time-LOCAL_LastGcTime)+(ss_time-LOCAL_LastSSTime);
LOCAL_LastGcTime = gc_time;
LOCAL_LastSSTime = ss_time;
tnow = MkIntegerTerm(now);
tinterval = MkIntegerTerm(interval);
return( Yap_unify_constant(ARG1, tnow) &&
Yap_unify_constant(ARG2, tinterval) );
}
/* $cputime(-SinceInterval,-SinceStart) */
static Int
p_cputime( USES_REGS1 )
{
Int now, interval;
Yap_cputime_interval(&now, &interval);
return( Yap_unify_constant(ARG1, MkIntegerTerm(now)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval)) );
}
static Int
p_systime( USES_REGS1 )
{
Int now, interval;
Yap_systime_interval(&now, &interval);
return( Yap_unify_constant(ARG1, MkIntegerTerm(now)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval)) );
}
static Int
p_walltime( USES_REGS1 )
{
Int now, interval;
Yap_walltime_interval(&now, &interval);
return( Yap_unify_constant(ARG1, MkIntegerTerm(now)) &&
Yap_unify_constant(ARG2, MkIntegerTerm(interval)) );
}
static Int
p_univ( USES_REGS1 )
{ /* A =.. L */
unsigned int arity;
register Term tin;
Term twork, t2;
Atom at;
tin = Deref(ARG1);
t2 = Deref(ARG2);
if (IsVarTerm(tin)) {
/* we need to have a list */
Term *Ar;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "(=..)/2");
return(FALSE);
}
if (!IsPairTerm(t2)) {
if (t2 == TermNil)
Yap_Error(DOMAIN_ERROR_NON_EMPTY_LIST, t2, "(=..)/2");
else
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return (FALSE);
}
twork = HeadOfTerm(t2);
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return(FALSE);
}
if (IsNumTerm(twork)) {
Term tt = TailOfTerm(t2);
if (IsVarTerm(tt) || tt != MkAtomTerm(AtomNil)) {
Yap_Error(TYPE_ERROR_ATOM, twork, "(=..)/2");
return (FALSE);
}
return (Yap_unify_constant(ARG1, twork));
}
if (!IsAtomTerm(twork)) {
Yap_Error(TYPE_ERROR_ATOM, twork, "(=..)/2");
return (FALSE);
}
at = AtomOfTerm(twork);
twork = TailOfTerm(t2);
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return(FALSE);
} else if (!IsPairTerm(twork)) {
if (twork != TermNil) {
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return(FALSE);
}
return (Yap_unify_constant(ARG1, MkAtomTerm(at)));
}
build_compound:
/* build the term directly on the heap */
Ar = HR;
HR++;
while (!IsVarTerm(twork) && IsPairTerm(twork)) {
*HR++ = HeadOfTerm(twork);
if (HR > ASP - 1024) {
/* restore space */
HR = Ar;
if (!Yap_gcl((ASP-HR)*sizeof(CELL), 2, ENV, gc_P(P,CP))) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, LOCAL_ErrorMessage);
return FALSE;
}
twork = TailOfTerm(Deref(ARG2));
goto build_compound;
}
twork = TailOfTerm(twork);
}
if (IsVarTerm(twork)) {
Yap_Error(INSTANTIATION_ERROR, twork, "(=..)/2");
return(FALSE);
}
if (twork != TermNil) {
Yap_Error(TYPE_ERROR_LIST, ARG2, "(=..)/2");
return (FALSE);
}
#ifdef SFUNC
DOES_NOT_WORK();
{
SFEntry *pe = (SFEntry *) Yap_GetAProp(at, SFProperty);
if (pe)
twork = MkSFTerm(Yap_MkFunctor(at, SFArity),
arity, CellPtr(TR), pe->NilValue);
else
twork = Yap_MkApplTerm(Yap_MkFunctor(at, arity),
arity, CellPtr(TR));
}
#else
arity = HR-Ar-1;
if (at == AtomDot && arity == 2) {
Ar[0] = Ar[1];
Ar[1] = Ar[2];
HR --;
twork = AbsPair(Ar);
} else {
*Ar = (CELL)(Yap_MkFunctor(at, arity));
twork = AbsAppl(Ar);
}
#endif
return (Yap_unify(ARG1, twork));
}
if (IsAtomicTerm(tin)) {
twork = MkPairTerm(tin, MkAtomTerm(AtomNil));
return (Yap_unify(twork, ARG2));
}
if (IsRefTerm(tin))
return (FALSE);
if (IsApplTerm(tin)) {
Functor fun = FunctorOfTerm(tin);
if (IsExtensionFunctor ( fun ) ) {
twork = MkPairTerm(tin, MkAtomTerm(AtomNil));
return (Yap_unify(twork, ARG2));
}
arity = ArityOfFunctor(fun);
at = NameOfFunctor(fun);
#ifdef SFUNC
if (arity == SFArity) {
CELL *p = CellPtr(TR);
CELL *q = ArgsOfSFTerm(tin);
int argno = 1;
while (*q) {
while (*q > argno++)
*p++ = MkVarTerm();
++q;
*p++ = Deref(*q++);
}
twork = Yap_ArrayToList(CellPtr(TR), argno - 1);
while (IsIntTerm(twork)) {
if (!Yap_gc(2, ENV, gc_P(P,CP))) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, LOCAL_ErrorMessage);
return(FALSE);
}
twork = Yap_ArrayToList(CellPtr(TR), argno - 1);
}
} else
#endif
{
while (HR+arity*2 > ASP-1024) {
if (!Yap_gcl((arity*2)*sizeof(CELL), 2, ENV, gc_P(P,CP))) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, LOCAL_ErrorMessage);
return(FALSE);
}
tin = Deref(ARG1);
}
twork = Yap_ArrayToList(RepAppl(tin) + 1, arity);
}
} else {
/* We found a list */
at = AtomDot;
twork = Yap_ArrayToList(RepPair(tin), 2);
}
twork = MkPairTerm(MkAtomTerm(at), twork);
return (Yap_unify(ARG2, twork));
}
static Int
p_abort( USES_REGS1 )
{ /* abort */
/* make sure we won't go creeping around */
Yap_Error(PURE_ABORT, TermNil, "");
return(FALSE);
}
#ifdef BEAM
extern void exit_eam(char *s);
Int
#else
static Int
#endif
p_halt( USES_REGS1 )
{ /* halt */
Term t = Deref(ARG1);
Int out;
#ifdef BEAM
if (EAM) exit_eam("\n\n[ Prolog execution halted ]\n");
#endif
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"halt/1");
return(FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER,t,"halt/1");
return(FALSE);
}
out = IntegerOfTerm(t);
Yap_exit(out);
return TRUE;
}
static Int
cont_current_predicate( USES_REGS1 )
{
PredEntry *pp = (PredEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(3,1));
UInt Arity;
Term name;
while (pp != NULL) {
if (pp->PredFlags & HiddenPredFlag) {
pp = pp->NextPredOfModule;
} else
break;
}
if (pp == NULL)
cut_fail();
EXTRA_CBACK_ARG(3,1) = (CELL)MkIntegerTerm((Int)(pp->NextPredOfModule));
if (pp->FunctorOfPred == FunctorModule)
return FALSE;
if (pp->ModuleOfPred != IDB_MODULE) {
Arity = pp->ArityOfPE;
if (Arity)
name = MkAtomTerm(NameOfFunctor(pp->FunctorOfPred));
else
name = MkAtomTerm((Atom)pp->FunctorOfPred);
} else {
if (pp->PredFlags & NumberDBPredFlag) {
name = MkIntegerTerm(pp->src.IndxId);
Arity = 0;
} else if (pp->PredFlags & AtomDBPredFlag) {
name = MkAtomTerm((Atom)pp->FunctorOfPred);
Arity = 0;
} else {
Functor f = pp->FunctorOfPred;
name = MkAtomTerm(NameOfFunctor(f));
Arity = ArityOfFunctor(f);
}
}
if (pp->PredFlags & HiddenPredFlag)
return FALSE;
return
Yap_unify(ARG2,name) &&
Yap_unify(ARG3, MkIntegerTerm((Int)Arity));
}
static Int
init_current_predicate( USES_REGS1 )
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1) || !IsAtomTerm(t1)) cut_fail();
EXTRA_CBACK_ARG(3,1) = MkIntegerTerm((Int)Yap_ModulePred(t1));
return cont_current_predicate( PASS_REGS1 );
}
static Int
cont_current_predicate_for_atom( USES_REGS1 )
{
Prop pf = (Prop)IntegerOfTerm(EXTRA_CBACK_ARG(3,1));
Term mod = Deref(ARG2);
while (pf != NIL) {
FunctorEntry *pp = RepFunctorProp(pf);
if (IsFunctorProperty(pp->KindOfPE)) {
Prop p0;
FUNC_READ_LOCK(pp);
p0 = pp->PropsOfFE;
if (p0) {
PredEntry *p = RepPredProp(p0);
if (p->ModuleOfPred == mod ||
p->ModuleOfPred == 0) {
UInt ar = p->ArityOfPE;
/* we found the predicate */
EXTRA_CBACK_ARG(3,1) = MkIntegerTerm((Int)(pp->NextOfPE));
FUNC_READ_UNLOCK(pp);
return
Yap_unify(ARG3,MkIntegerTerm(ar));
} else if (p->NextOfPE) {
UInt hash = PRED_HASH(pp,mod,PredHashTableSize);
READ_LOCK(PredHashRWLock);
PredEntry *p = PredHash[hash];
while (p) {
if (p->FunctorOfPred == pp &&
p->ModuleOfPred == mod)
{
READ_UNLOCK(PredHashRWLock);
FUNC_READ_UNLOCK(pp);
/* we found the predicate */
EXTRA_CBACK_ARG(3,1) = MkIntegerTerm((Int)(p->NextOfPE));
return Yap_unify(ARG3,MkIntegerTerm(p->ArityOfPE));
}
p = RepPredProp(p->NextOfPE);
}
}
}
FUNC_READ_UNLOCK(pp);
} else if (pp->KindOfPE == PEProp) {
PredEntry *pe = RepPredProp(pf);
PELOCK(31,pe);
if (pe->PredFlags & HiddenPredFlag)
return FALSE;
if (pe->ModuleOfPred == mod ||
pe->ModuleOfPred == 0) {
/* we found the predicate */
EXTRA_CBACK_ARG(3,1) = MkIntegerTerm((Int)(pp->NextOfPE));
UNLOCKPE(31,pe);
return Yap_unify(ARG3,MkIntTerm(0));
}
UNLOCKPE(31,pe);
}
pf = pp->NextOfPE;
}
cut_fail();
}
static Int
init_current_predicate_for_atom( USES_REGS1 )
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1) || !IsAtomTerm(t1)) cut_fail();
EXTRA_CBACK_ARG(3,1) = MkIntegerTerm((Int)RepAtom(AtomOfTerm(t1))->PropsOfAE);
return (cont_current_predicate_for_atom( PASS_REGS1 ));
}
static OpEntry *
NextOp(OpEntry *pp USES_REGS)
{
while (!EndOfPAEntr(pp) && pp->KindOfPE != OpProperty &&
(pp->OpModule != PROLOG_MODULE || pp->OpModule != CurrentModule))
pp = RepOpProp(pp->NextOfPE);
return (pp);
}
int
Yap_IsOp(Atom at)
{
CACHE_REGS
OpEntry *op = NextOp(RepOpProp((Prop)(RepAtom(at)->PropsOfAE)) PASS_REGS);
return (!EndOfPAEntr(op));
}
int
Yap_IsOpMaxPrio(Atom at)
{
CACHE_REGS
OpEntry *op = NextOp(RepOpProp((Prop)(RepAtom(at)->PropsOfAE)) PASS_REGS);
int max;
if (EndOfPAEntr(op))
return 0;
max = (op->Prefix & 0xfff);
if ((op->Infix & 0xfff) > max)
max = op->Infix & 0xfff;
if ((op->Posfix & 0xfff) > max)
max = op->Posfix & 0xfff;
return max;
}
static Int
unify_op(OpEntry *op USES_REGS)
{
Term tmod = op->OpModule;
if (tmod == PROLOG_MODULE)
tmod = TermProlog;
return
Yap_unify_constant(ARG2,tmod) &&
Yap_unify_constant(ARG3,MkIntegerTerm(op->Prefix)) &&
Yap_unify_constant(ARG4,MkIntegerTerm(op->Infix)) &&
Yap_unify_constant(ARG5,MkIntegerTerm(op->Posfix));
}
static Int
cont_current_op( USES_REGS1 )
{
OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5,1)), *next;
READ_LOCK(op->OpRWLock);
next = op->OpNext;
if (Yap_unify_constant(ARG1,MkAtomTerm(op->OpName)) &&
unify_op(op PASS_REGS)) {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((CELL)next);
return TRUE;
} else {
cut_succeed();
}
} else {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((CELL)next);
return FALSE;
} else {
cut_fail();
}
}
}
static Int
init_current_op( USES_REGS1 )
{ /* current_op(-Precedence,-Type,-Atom) */
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((CELL)OpList);
return cont_current_op( PASS_REGS1 );
}
static Int
cont_current_atom_op( USES_REGS1 )
{
OpEntry *op = (OpEntry *)IntegerOfTerm(EXTRA_CBACK_ARG(5,1)), *next;
READ_LOCK(op->OpRWLock);
next = NextOp(RepOpProp(op->NextOfPE) PASS_REGS);
if (unify_op(op PASS_REGS)) {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((CELL)next);
return TRUE;
} else {
cut_succeed();
}
} else {
READ_UNLOCK(op->OpRWLock);
if (next) {
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((CELL)next);
return FALSE;
} else {
cut_fail();
}
}
}
static Int
init_current_atom_op( USES_REGS1 )
{ /* current_op(-Precedence,-Type,-Atom) */
Term t = Deref(ARG1);
AtomEntry *ae;
OpEntry *ope;
if (IsVarTerm(t) || !IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"current_op/3");
cut_fail();
}
ae = RepAtom(AtomOfTerm(t));
if (EndOfPAEntr((ope = NextOp(RepOpProp(ae->PropsOfAE) PASS_REGS)))) {
cut_fail();
}
EXTRA_CBACK_ARG(5,1) = (CELL) MkIntegerTerm((Int)ope);
return cont_current_atom_op( PASS_REGS1 );
}
static Int
p_flags( USES_REGS1 )
{ /* $flags(+Functor,+Mod,?OldFlags,?NewFlags) */
PredEntry *pe;
Int newFl;
Term t1 = Deref(ARG1);
Term mod = Deref(ARG2);
if (IsVarTerm(mod) || !IsAtomTerm(mod)) {
return(FALSE);
}
if (IsVarTerm(t1))
return (FALSE);
if (IsAtomTerm(t1)) {
while ((pe = RepPredProp(PredPropByAtom(AtomOfTerm(t1), mod)))== NULL) {
if (!Yap_growheap(FALSE, 0, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, ARG1, "while generating new predicate");
return FALSE;
}
t1 = Deref(ARG1);
mod = Deref(ARG2);
}
} else if (IsApplTerm(t1)) {
Functor funt = FunctorOfTerm(t1);
while ((pe = RepPredProp(PredPropByFunc(funt, mod)))== NULL) {
if (!Yap_growheap(FALSE, 0, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, ARG1, "while generating new predicate");
return FALSE;
}
t1 = Deref(ARG1);
mod = Deref(ARG2);
}
} else
return (FALSE);
if (EndOfPAEntr(pe))
return (FALSE);
PELOCK(92,pe);
if (!Yap_unify_constant(ARG3, MkIntegerTerm(pe->PredFlags))) {
UNLOCK(pe->PELock);
return(FALSE);
}
ARG4 = Deref(ARG4);
if (IsVarTerm(ARG4)) {
UNLOCK(pe->PELock);
return (TRUE);
} else if (!IsIntegerTerm(ARG4)) {
Term te = Yap_Eval(ARG4);
if (IsIntegerTerm(te)) {
newFl = IntegerOfTerm(te);
} else {
UNLOCK(pe->PELock);
Yap_Error(TYPE_ERROR_INTEGER, ARG4, "flags");
return(FALSE);
}
} else
newFl = IntegerOfTerm(ARG4);
pe->PredFlags = (CELL)newFl;
UNLOCK(pe->PELock);
return TRUE;
}
static Int
p_set_flag( USES_REGS1 )
{ /* $flags(+Functor,+Mod,?OldFlags,?NewFlags) */
PredEntry *pe;
Term t1 = Deref(ARG1);
Term mod = Deref(ARG2);
Term v = Deref(ARG4);
char *s;
if (IsVarTerm(mod) || !IsAtomTerm(mod)) {
return(FALSE);
}
if (IsVarTerm(t1))
return (FALSE);
if (IsAtomTerm(t1)) {
while ((pe = RepPredProp(PredPropByAtom(AtomOfTerm(t1), mod)))== NULL) {
if (!Yap_growheap(FALSE, 0, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, ARG1, "while generating new predicate");
return FALSE;
}
t1 = Deref(ARG1);
mod = Deref(ARG2);
}
} else if (IsApplTerm(t1)) {
Functor funt = FunctorOfTerm(t1);
while ((pe = RepPredProp(PredPropByFunc(funt, mod)))== NULL) {
if (!Yap_growheap(FALSE, 0, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, ARG1, "while generating new predicate");
return FALSE;
}
t1 = Deref(ARG1);
mod = Deref(ARG2);
}
} else
return (FALSE);
if (EndOfPAEntr(pe))
return (FALSE);
ARG3 = Deref(ARG3);
if (IsVarTerm(ARG3)) {
UNLOCK(pe->PELock);
return (FALSE);
} else if (!IsAtomTerm(ARG3)) {
Yap_Error(TYPE_ERROR_ATOM,ARG3,"set_property/1");
return(FALSE);
}
v = Deref(ARG4);
if (IsVarTerm(ARG4)) {
UNLOCK(pe->PELock);
return (FALSE);
} else if (!IsIntTerm(v)) {
Yap_Error(TYPE_ERROR_ATOM,v,"set_property/1");
return(FALSE);
}
s = RepAtom(AtomOfTerm(ARG3))->StrOfAE;
if (v == MkIntTerm(1)) {
if (!strcmp(s, "quasi_quotation_syntax")) {
pe->ExtraPredFlags |= QuasiQuotationPredFlag;
} else if (!strcmp(s, "trace")) {
// proc->ExtraPredFlags |= QuasiQuotationPredFlag;
} else {
fprintf( stderr, "not implemented");
UNLOCK(pe->PELock);
return FALSE;
}
} else if (v == MkIntTerm(0)) {
if (!strcmp(s, "quasi_quotation_syntax")) {
pe->ExtraPredFlags &= ~QuasiQuotationPredFlag;
} else if (!strcmp(s, "trace")) {
// proc->ExtraPredFlags |= QuasiQuotationPredFlag;
} else {
fprintf( stderr, "not implemented");
UNLOCK(pe->PELock);
return FALSE;
}
}
UNLOCK(pe->PELock);
return TRUE;
}
void
Yap_show_statistics(void)
{
CACHE_REGS
unsigned long int heap_space_taken;
double frag;
#if USE_SYSTEM_MALLOC && HAVE_MALLINFO
struct mallinfo mi = mallinfo();
heap_space_taken = (mi.arena+mi.hblkhd)-Yap_HoleSize;
#else
heap_space_taken =
(unsigned long int)(Unsigned(HeapTop)-Unsigned(Yap_HeapBase))-Yap_HoleSize;
#endif
frag = (100.0*(heap_space_taken-HeapUsed))/heap_space_taken;
Sfprintf(GLOBAL_stderr, "Code Space: %ld (%ld bytes needed, %ld bytes used, fragmentation %.3f%%).\n",
(unsigned long int)(Unsigned (H0) - Unsigned (Yap_HeapBase)),
(unsigned long int)(Unsigned(HeapTop)-Unsigned(Yap_HeapBase)),
(unsigned long int)(HeapUsed),
frag);
Sfprintf(GLOBAL_stderr, "Stack Space: %ld (%ld for Global, %ld for local).\n",
(unsigned long int)(sizeof(CELL)*(LCL0-H0)),
(unsigned long int)(sizeof(CELL)*(HR-H0)),
(unsigned long int)(sizeof(CELL)*(LCL0-ASP)));
Sfprintf(GLOBAL_stderr, "Trail Space: %ld (%ld used).\n",
(unsigned long int)(sizeof(tr_fr_ptr)*(Unsigned(LOCAL_TrailTop)-Unsigned(LOCAL_TrailBase))),
(unsigned long int)(sizeof(tr_fr_ptr)*(Unsigned(TR)-Unsigned(LOCAL_TrailBase))));
Sfprintf(GLOBAL_stderr, "Runtime: %lds.\n", (unsigned long int)(runtime ( PASS_REGS1 )));
Sfprintf(GLOBAL_stderr, "Cputime: %lds.\n", (unsigned long int)(Yap_cputime ()));
Sfprintf(GLOBAL_stderr, "Walltime: %lds.\n", (unsigned long int)(Yap_walltime ()));
}
static Int
p_statistics_heap_max( USES_REGS1 )
{
Term tmax = MkIntegerTerm(HeapMax);
return(Yap_unify(tmax, ARG1));
}
/* The results of the next routines are not to be trusted too */
/* much. Basically, any stack shifting will seriously confuse the */
/* results */
static Int TrailTide = -1, LocalTide = -1, GlobalTide = -1;
/* maximum Trail usage */
static Int
TrailMax(void)
{
CACHE_REGS
Int i;
Int TrWidth = Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase);
CELL *pt;
if (TrailTide != TrWidth) {
pt = (CELL *)TR;
while (pt+2 < (CELL *)LOCAL_TrailTop) {
if (pt[0] == 0 &&
pt[1] == 0 &&
pt[2] == 0)
break;
else
pt++;
}
if (pt+2 < (CELL *)LOCAL_TrailTop)
i = Unsigned(pt) - Unsigned(LOCAL_TrailBase);
else
i = TrWidth;
} else
return(TrWidth);
if (TrailTide > i)
i = TrailTide;
else
TrailTide = i;
return(i);
}
static Int
p_statistics_trail_max( USES_REGS1 )
{
Term tmax = MkIntegerTerm(TrailMax());
return(Yap_unify(tmax, ARG1));
}
/* maximum Global usage */
static Int
GlobalMax(void)
{
CACHE_REGS
Int i;
Int StkWidth = Unsigned(LCL0) - Unsigned(H0);
CELL *pt;
if (GlobalTide != StkWidth) {
pt = HR;
while (pt+2 < ASP) {
if (pt[0] == 0 &&
pt[1] == 0 &&
pt[2] == 0)
break;
else
pt++;
}
if (pt+2 < ASP)
i = Unsigned(pt) - Unsigned(H0);
else
/* so that both Local and Global have reached maximum width */
GlobalTide = LocalTide = i = StkWidth;
} else
return(StkWidth);
if (GlobalTide > i)
i = GlobalTide;
else
GlobalTide = i;
return(i);
}
static Int
p_statistics_global_max( USES_REGS1 )
{
Term tmax = MkIntegerTerm(GlobalMax());
return(Yap_unify(tmax, ARG1));
}
static Int
LocalMax(void)
{
CACHE_REGS
Int i;
Int StkWidth = Unsigned(LCL0) - Unsigned(H0);
CELL *pt;
if (LocalTide != StkWidth) {
pt = LCL0;
while (pt-3 > HR) {
if (pt[-1] == 0 &&
pt[-2] == 0 &&
pt[-3] == 0)
break;
else
--pt;
}
if (pt-3 > HR)
i = Unsigned(LCL0) - Unsigned(pt);
else
/* so that both Local and Global have reached maximum width */
GlobalTide = LocalTide = i = StkWidth;
} else
return(StkWidth);
if (LocalTide > i)
i = LocalTide;
else
LocalTide = i;
return(i);
}
static Int
p_statistics_local_max( USES_REGS1 )
{
Term tmax = MkIntegerTerm(LocalMax());
return(Yap_unify(tmax, ARG1));
}
static Int
p_statistics_heap_info( USES_REGS1 )
{
Term tusage = MkIntegerTerm(HeapUsed);
#if USE_SYSTEM_MALLOC && HAVE_MALLINFO
struct mallinfo mi = mallinfo();
UInt sstack = Yap_HoleSize+(LOCAL_TrailTop-LOCAL_GlobalBase);
UInt mmax = (mi.arena+mi.hblkhd);
Term tmax = MkIntegerTerm(mmax-sstack);
tusage = MkIntegerTerm(mmax-(mi.fordblks+sstack));
#else
Term tmax = MkIntegerTerm((LOCAL_GlobalBase - Yap_HeapBase)-Yap_HoleSize);
#endif
return(Yap_unify(tmax, ARG1) && Yap_unify(tusage,ARG2));
}
static Int
p_statistics_stacks_info( USES_REGS1 )
{
Term tmax = MkIntegerTerm(Unsigned(LCL0) - Unsigned(H0));
Term tgusage = MkIntegerTerm(Unsigned(HR) - Unsigned(H0));
Term tlusage = MkIntegerTerm(Unsigned(LCL0) - Unsigned(ASP));
return(Yap_unify(tmax, ARG1) && Yap_unify(tgusage,ARG2) && Yap_unify(tlusage,ARG3));
}
static Int
p_statistics_trail_info( USES_REGS1 )
{
Term tmax = MkIntegerTerm(Unsigned(LOCAL_TrailTop) - Unsigned(LOCAL_TrailBase));
Term tusage = MkIntegerTerm(Unsigned(TR) - Unsigned(LOCAL_TrailBase));
return(Yap_unify(tmax, ARG1) && Yap_unify(tusage,ARG2));
}
static Int
p_statistics_atom_info( USES_REGS1 )
{
UInt count = 0, spaceused = 0, i;
for (i =0; i < AtomHashTableSize; i++) {
Atom catom;
READ_LOCK(HashChain[i].AERWLock);
catom = HashChain[i].Entry;
if (catom != NIL) {
READ_LOCK(RepAtom(catom)->ARWLock);
}
READ_UNLOCK(HashChain[i].AERWLock);
while (catom != NIL) {
Atom ncatom;
count++;
spaceused += sizeof(AtomEntry)+strlen(RepAtom(catom)->StrOfAE)+1;
ncatom = RepAtom(catom)->NextOfAE;
if (ncatom != NIL) {
READ_LOCK(RepAtom(ncatom)->ARWLock);
}
READ_UNLOCK(RepAtom(catom)->ARWLock);
catom = ncatom;
}
}
for (i =0; i < WideAtomHashTableSize; i++) {
Atom catom;
READ_LOCK(WideHashChain[i].AERWLock);
catom = WideHashChain[i].Entry;
if (catom != NIL) {
READ_LOCK(RepAtom(catom)->ARWLock);
}
READ_UNLOCK(WideHashChain[i].AERWLock);
while (catom != NIL) {
Atom ncatom;
count++;
spaceused += sizeof(AtomEntry)+sizeof(wchar_t)*(wcslen((wchar_t *)( RepAtom(catom)->StrOfAE)+1));
ncatom = RepAtom(catom)->NextOfAE;
if (ncatom != NIL) {
READ_LOCK(RepAtom(ncatom)->ARWLock);
}
READ_UNLOCK(RepAtom(catom)->ARWLock);
catom = ncatom;
}
}
return Yap_unify(ARG1, MkIntegerTerm(count)) &&
Yap_unify(ARG2, MkIntegerTerm(spaceused));
}
static Int
p_statistics_db_size( USES_REGS1 )
{
Term t = MkIntegerTerm(Yap_ClauseSpace);
Term tit = MkIntegerTerm(Yap_IndexSpace_Tree);
Term tis = MkIntegerTerm(Yap_IndexSpace_SW);
Term tie = MkIntegerTerm(Yap_IndexSpace_EXT);
return
Yap_unify(t, ARG1) &&
Yap_unify(tit, ARG2) &&
Yap_unify(tis, ARG3) &&
Yap_unify(tie, ARG4);
}
static Int
p_statistics_lu_db_size( USES_REGS1 )
{
Term t = MkIntegerTerm(Yap_LUClauseSpace);
Term tit = MkIntegerTerm(Yap_LUIndexSpace_Tree);
Term tic = MkIntegerTerm(Yap_LUIndexSpace_CP);
Term tix = MkIntegerTerm(Yap_LUIndexSpace_EXT);
Term tis = MkIntegerTerm(Yap_LUIndexSpace_SW);
return
Yap_unify(t, ARG1) &&
Yap_unify(tit, ARG2) &&
Yap_unify(tic, ARG3) &&
Yap_unify(tis, ARG4) &&
Yap_unify(tix, ARG5);
}
static Term
mk_argc_list( USES_REGS1 )
{
int i =0;
Term t = TermNil;
while (i < GLOBAL_argc) {
char *arg = GLOBAL_argv[i];
/* check for -L -- */
if (arg[0] == '-' && arg[1] == 'L') {
arg += 2;
while (*arg != '\0' && (*arg == ' ' || *arg == '\t'))
arg++;
if (*arg == '-' && arg[1] == '-' && arg[2] == '\0') {
/* we found the separator */
int j;
for (j = GLOBAL_argc-1; j > i+1; --j) {
t = MkPairTerm(MkAtomTerm(Yap_LookupAtom(GLOBAL_argv[j])),t);
}
return t;
} else if (GLOBAL_argv[i+1] && GLOBAL_argv[i+1][0] == '-' && GLOBAL_argv[i+1][1] == '-' && GLOBAL_argv[i+1][2] == '\0') {
/* we found the separator */
int j;
for (j = GLOBAL_argc-1; j > i+2; --j) {
t = MkPairTerm(MkAtomTerm(Yap_LookupAtom(GLOBAL_argv[j])),t);
}
return t;
}
}
if (arg[0] == '-' && arg[1] == '-' && arg[2] == '\0') {
/* we found the separator */
int j;
for (j = GLOBAL_argc-1; j > i; --j) {
t = MkPairTerm(MkAtomTerm(Yap_LookupAtom(GLOBAL_argv[j])),t);
}
return(t);
}
i++;
}
return(t);
}
static Int
p_argv( USES_REGS1 )
{
Term t = mk_argc_list( PASS_REGS1 );
return Yap_unify(t, ARG1);
}
static Int
p_executable( USES_REGS1 )
{
if (GLOBAL_argv && GLOBAL_argv[0])
Yap_TrueFileName (GLOBAL_argv[0], LOCAL_FileNameBuf, FALSE);
else
strncpy(LOCAL_FileNameBuf, Yap_FindExecutable(), YAP_FILENAME_MAX-1) ;
return Yap_unify(MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)),ARG1);
}
static Int
p_access_yap_flags( USES_REGS1 )
{
Term tflag = Deref(ARG1);
Int flag;
Term tout = 0;
if (IsVarTerm(tflag)) {
Yap_Error(INSTANTIATION_ERROR, tflag, "access_yap_flags/2");
return(FALSE);
}
if (!IsIntTerm(tflag)) {
Yap_Error(TYPE_ERROR_INTEGER, tflag, "access_yap_flags/2");
return(FALSE);
}
flag = IntOfTerm(tflag);
if (flag < 0 || flag >= NUMBER_OF_YAP_FLAGS) {
return(FALSE);
}
if (flag == TABLING_MODE_FLAG) {
#ifdef TABLING
tout = TermNil;
if (IsMode_LocalTrie(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomLocalTrie), tout);
else if (IsMode_GlobalTrie(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomGlobalTrie), tout);
if (IsMode_LoadAnswers(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomLoadAnswers), tout);
else if (IsMode_ExecAnswers(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomExecAnswers), tout);
if (IsMode_Local(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomLocal), tout);
else if (IsMode_Batched(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomBatched), tout);
else if (IsMode_CoInductive(yap_flags[flag]))
tout = MkPairTerm(MkAtomTerm(AtomCoInductive), tout);
#else
tout = MkAtomTerm(AtomFalse);
#endif /* TABLING */
} else
tout = MkIntegerTerm(yap_flags[flag]);
return(Yap_unify(ARG2, tout));
}
static Int
p_has_yap_or( USES_REGS1 )
{
#ifdef YAPOR
return(TRUE);
#else
return(FALSE);
#endif
}
static Int
p_has_eam( USES_REGS1 )
{
#ifdef BEAM
return(TRUE);
#else
return(FALSE);
#endif
}
static Int
p_set_yap_flags( USES_REGS1 )
{
Term tflag = Deref(ARG1);
Term tvalue = Deref(ARG2);
Int flag, value;
if (IsVarTerm(tflag)) {
Yap_Error(INSTANTIATION_ERROR, tflag, "set_yap_flags/2");
return(FALSE);
}
if (!IsIntTerm(tflag)) {
Yap_Error(TYPE_ERROR_INTEGER, tflag, "set_yap_flags/2");
return(FALSE);
}
flag = IntOfTerm(tflag);
if (IsVarTerm(tvalue)) {
Yap_Error(INSTANTIATION_ERROR, tvalue, "set_yap_flags/2");
return(FALSE);
}
if (!IsIntTerm(tvalue)) {
Yap_Error(TYPE_ERROR_INTEGER, tvalue, "set_yap_flags/2");
return(FALSE);
}
value = IntOfTerm(tvalue);
/* checking should have been performed */
switch(flag) {
case LANGUAGE_MODE_FLAG:
if (value < 0 || value > 2)
return(FALSE);
if (value == 1) {
Yap_heap_regs->pred_meta_call = RepPredProp(PredPropByFunc(FunctorMetaCall,0));
} else {
Yap_heap_regs->pred_meta_call = RepPredProp(PredPropByFunc(FunctorMetaCall,0));
}
yap_flags[LANGUAGE_MODE_FLAG] = value;
break;
case SOURCE_MODE_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[SOURCE_MODE_FLAG] = value;
break;
case FLOATING_POINT_EXCEPTION_MODE_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[FLOATING_POINT_EXCEPTION_MODE_FLAG] = value;
break;
case WRITE_QUOTED_STRING_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[WRITE_QUOTED_STRING_FLAG] = value;
break;
case ALLOW_ASSERTING_STATIC_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[ALLOW_ASSERTING_STATIC_FLAG] = value;
break;
case STACK_DUMP_ON_ERROR_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[STACK_DUMP_ON_ERROR_FLAG] = value;
break;
case INDEXING_MODE_FLAG:
if (value < INDEX_MODE_OFF || value > INDEX_MODE_MAX)
return(FALSE);
yap_flags[INDEXING_MODE_FLAG] = value;
break;
#ifdef TABLING
case TABLING_MODE_FLAG:
if (value == 0) { /* default */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
TabEnt_mode(tab_ent) = TabEnt_flags(tab_ent);
tab_ent = TabEnt_next(tab_ent);
}
yap_flags[TABLING_MODE_FLAG] = 0;
} else if (value == 1) { /* batched */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_Batched(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_Batched(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 2) { /* local */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_Local(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_Local(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 3) { /* exec_answers */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_ExecAnswers(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_ExecAnswers(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 4) { /* load_answers */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_LoadAnswers(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_LoadAnswers(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 5) { /* local_trie */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_LocalTrie(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_LocalTrie(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 6) { /* global_trie */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_GlobalTrie(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_GlobalTrie(yap_flags[TABLING_MODE_FLAG]);
} else if (value == 7) { /* CoInductive */
tab_ent_ptr tab_ent = GLOBAL_root_tab_ent;
while(tab_ent) {
SetMode_CoInductive(TabEnt_mode(tab_ent));
tab_ent = TabEnt_next(tab_ent);
}
SetMode_CoInductive(yap_flags[TABLING_MODE_FLAG]);
}
break;
#endif /* TABLING */
case VARS_CAN_HAVE_QUOTE_FLAG:
if (value != 0 && value != 1)
return(FALSE);
yap_flags[VARS_CAN_HAVE_QUOTE_FLAG] = value;
break;
case QUIET_MODE_FLAG:
if (value != 0 && value != 1)
return FALSE;
yap_flags[QUIET_MODE_FLAG] = value;
break;
default:
return(FALSE);
}
return(TRUE);
}
static Int
p_system_mode( USES_REGS1 )
{
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
if (LOCAL_PrologMode & SystemMode)
return Yap_unify( t1, MkAtomTerm(AtomTrue));
else
return Yap_unify( t1, MkAtomTerm(AtomFalse));
} else {
Atom at = AtomOfTerm(t1);
if (at == AtomFalse)
LOCAL_PrologMode &= ~SystemMode;
else
LOCAL_PrologMode |= SystemMode;
}
return TRUE;
}
static Int
p_lock_system( USES_REGS1 )
{
LOCK(GLOBAL_BGL);
return TRUE;
}
static Int
p_unlock_system( USES_REGS1 )
{
UNLOCK(GLOBAL_BGL);
return TRUE;
}
static Int
p_enterundefp( USES_REGS1 )
{
if (LOCAL_DoingUndefp) {
return FALSE;
}
LOCAL_DoingUndefp = TRUE;
return TRUE;
}
static Int
p_exitundefp( USES_REGS1 )
{
if (LOCAL_DoingUndefp) {
LOCAL_DoingUndefp = FALSE;
return TRUE;
}
return FALSE;
}
#ifdef DEBUG
extern void DumpActiveGoals(void);
static Int
p_dump_active_goals( USES_REGS1 ) {
DumpActiveGoals();
return(TRUE);
}
#endif
#ifdef INES
static Int
p_euc_dist( USES_REGS1 ) {
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
double d1 = (double)(IntegerOfTerm(ArgOfTerm(1,t1))-IntegerOfTerm(ArgOfTerm(1,t2)));
double d2 = (double)(IntegerOfTerm(ArgOfTerm(2,t1))-IntegerOfTerm(ArgOfTerm(2,t2)));
double d3 = (double)(IntegerOfTerm(ArgOfTerm(3,t1))-IntegerOfTerm(ArgOfTerm(3,t2)));
Int result = (Int)sqrt(d1*d1+d2*d2+d3*d3);
return(Yap_unify(ARG3,MkIntegerTerm(result)));
}
volatile int loop_counter = 0;
static Int
p_loop( USES_REGS1 ) {
while (loop_counter == 0);
return(TRUE);
}
#endif
static Int
p_break( USES_REGS1 ) {
Atom at = AtomOfTerm(Deref( ARG1 ));
if (at == AtomTrue) {
LOCAL_PL_local_data_p->break_level++;
return TRUE;
}
if (at == AtomFalse) {
LOCAL_PL_local_data_p->break_level--;
return TRUE;
}
return FALSE;
}
void
Yap_InitBackCPreds(void)
{
Yap_InitCPredBack("$current_predicate", 3, 1, init_current_predicate, cont_current_predicate,
SafePredFlag|SyncPredFlag);
Yap_InitCPredBack("$current_predicate_for_atom", 3, 1, init_current_predicate_for_atom, cont_current_predicate_for_atom,
SafePredFlag|SyncPredFlag);
Yap_InitCPredBack("$current_op", 5, 1, init_current_op, cont_current_op,
SafePredFlag|SyncPredFlag);
Yap_InitCPredBack("$current_atom_op", 5, 1, init_current_atom_op, cont_current_atom_op,
SafePredFlag|SyncPredFlag);
#ifdef BEAM
Yap_InitCPredBack("eam", 1, 0, start_eam, cont_eam,
SafePredFlag);
#endif
Yap_InitBackAtoms();
Yap_InitBackIO();
Yap_InitBackDB();
Yap_InitUserBacks();
}
typedef void (*Proc)(void);
Proc E_Modules[]= {/* init_fc,*/ (Proc) 0 };
#ifndef YAPOR
static Int p_parallel_mode( USES_REGS1 ) {
return FALSE;
}
static Int p_yapor_workers( USES_REGS1 ) {
return FALSE;
}
#endif /* YAPOR */
void
Yap_InitCPreds(void)
{
/* numerical comparison */
Yap_InitCPred("set_value", 2, p_setval, SafePredFlag|SyncPredFlag);
/** @pred set_value(+ _A_,+ _C_)
Associate atom _A_ with constant _C_.
The `set_value` and `get_value` built-ins give a fast alternative to
the internal data-base. This is a simple form of implementing a global
counter.
~~~~~
read_and_increment_counter(Value) :-
get_value(counter, Value),
Value1 is Value+1,
set_value(counter, Value1).
~~~~~
This predicate is YAP specific.
*/
Yap_InitCPred("get_value", 2, p_value, TestPredFlag|SafePredFlag|SyncPredFlag);
/** @pred get_value(+ _A_,- _V_)
In YAP, atoms can be associated with constants. If one such
association exists for atom _A_, unify the second argument with the
constant. Otherwise, unify _V_ with `[]`.
This predicate is YAP specific.
*/
Yap_InitCPred("$values", 3, p_values, SafePredFlag|SyncPredFlag);
/* general purpose */
Yap_InitCPred("$opdec", 4, p_opdec, SafePredFlag|SyncPredFlag);
Yap_InitCPred("=..", 2, p_univ, 0);
/** @pred _T_ =.. _L_ is iso
The list _L_ is built with the functor and arguments of the term
_T_. If _T_ is instantiated to a variable, then _L_ must be
instantiated either to a list whose head is an atom, or to a list
consisting of just a number.
*/
Yap_InitCPred("$statistics_trail_max", 1, p_statistics_trail_max, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_heap_max", 1, p_statistics_heap_max, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_global_max", 1, p_statistics_global_max, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_local_max", 1, p_statistics_local_max, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_heap_info", 2, p_statistics_heap_info, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_stacks_info", 3, p_statistics_stacks_info, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_trail_info", 2, p_statistics_trail_info, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_atom_info", 2, p_statistics_atom_info, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_db_size", 4, p_statistics_db_size, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$statistics_lu_db_size", 5, p_statistics_lu_db_size, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$argv", 1, p_argv, SafePredFlag);
Yap_InitCPred("$executable", 1, p_executable, SafePredFlag);
Yap_InitCPred("$runtime", 2, p_runtime, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$cputime", 2, p_cputime, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$systime", 2, p_systime, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$walltime", 2, p_walltime, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$access_yap_flags", 2, p_access_yap_flags, SafePredFlag);
Yap_InitCPred("$set_yap_flags", 2, p_set_yap_flags, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$system_mode", 1, p_system_mode, SafePredFlag|SyncPredFlag);
Yap_InitCPred("abort", 0, p_abort, SyncPredFlag);
/** @pred abort
Abandons the execution of the current goal and returns to top level. All
break levels (see break/0 below) are terminated. It is mainly
used during debugging or after a serious execution error, to return to
the top-level.
*/
Yap_InitCPred("$break", 1, p_break, SafePredFlag);
#ifdef BEAM
Yap_InitCPred("@", 0, eager_split, SafePredFlag);
Yap_InitCPred(":", 0, force_wait, SafePredFlag);
Yap_InitCPred("/", 0, commit, SafePredFlag);
Yap_InitCPred("skip_while_var",1,skip_while_var,SafePredFlag);
Yap_InitCPred("wait_while_var",1,wait_while_var,SafePredFlag);
Yap_InitCPred("eamtime", 0, show_time, SafePredFlag);
Yap_InitCPred("eam", 0, use_eam, SafePredFlag);
#endif
Yap_InitCPred("$halt", 1, p_halt, SyncPredFlag);
Yap_InitCPred("$lock_system", 0, p_lock_system, SafePredFlag);
Yap_InitCPred("$unlock_system", 0, p_unlock_system, SafePredFlag);
Yap_InitCPred("$enter_undefp", 0, p_enterundefp, SafePredFlag);
Yap_InitCPred("$exit_undefp", 0, p_exitundefp, SafePredFlag);
/* Accessing and changing the flags for a predicate */
Yap_InitCPred("$flags", 4, p_flags, SyncPredFlag);
Yap_InitCPred("$set_flag", 4, p_set_flag, SyncPredFlag);
Yap_InitCPred("$has_yap_or", 0, p_has_yap_or, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$has_eam", 0, p_has_eam, SafePredFlag|SyncPredFlag);
#ifndef YAPOR
Yap_InitCPred("parallel_mode", 1, p_parallel_mode, SafePredFlag|SyncPredFlag);
Yap_InitCPred("$c_yapor_workers", 1, p_yapor_workers, SafePredFlag|SyncPredFlag);
#endif /* YAPOR */
#ifdef INES
Yap_InitCPred("euc_dist", 3, p_euc_dist, SafePredFlag);
Yap_InitCPred("loop", 0, p_loop, SafePredFlag);
#endif
#if QSAR
Yap_InitCPred("in_range", 8, p_in_range, TestPredFlag|SafePredFlag);
Yap_InitCPred("in_range", 4, p_in_range2, TestPredFlag|SafePredFlag);
#endif
#ifdef DEBUG
Yap_InitCPred("dump_active_goals", 0, p_dump_active_goals, SafePredFlag|SyncPredFlag);
#endif
Yap_InitArrayPreds();
Yap_InitAtomPreds();
Yap_InitBBPreds();
Yap_InitBigNums();
Yap_InitCdMgr();
Yap_InitCmpPreds();
Yap_InitCoroutPreds();
Yap_InitDBPreds();
Yap_InitExecFs();
Yap_InitGlobals();
Yap_InitInlines();
Yap_InitIOPreds();
Yap_InitExoPreds();
Yap_InitLoadForeign();
Yap_InitModulesC();
Yap_InitSavePreds();
Yap_InitRange();
Yap_InitSysPreds();
Yap_InitUnify();
Yap_InitQLY();
Yap_InitQLYR();
Yap_udi_init();
Yap_udi_Interval_init();
Yap_InitSignalCPreds();
Yap_InitUserCPreds();
Yap_InitUtilCPreds();
Yap_InitSortPreds();
Yap_InitMaVarCPreds();
#ifdef DEPTH_LIMIT
Yap_InitItDeepenPreds();
#endif
#ifdef ANALYST
Yap_InitAnalystPreds();
#endif
#ifdef LOW_LEVEL_TRACER
Yap_InitLowLevelTrace();
#endif
Yap_InitEval();
Yap_InitGrowPreds();
Yap_InitLowProf();
#if defined(YAPOR) || defined(TABLING)
Yap_init_optyap_preds();
#endif /* YAPOR || TABLING */
Yap_InitThreadPreds();
{
void (*(*(p))) (void) = E_Modules;
while (*p)
(*(*p++)) ();
}
#if CAMACHO
{
extern void InitForeignPreds(void);
Yap_InitForeignPreds();
}
#endif
#if APRIL
{
extern void init_ol(void), init_time(void);
init_ol();
init_time();
}
#endif
#if SUPPORT_CONDOR
init_sys();
init_random();
// init_tries();
init_regexp();
#endif
{
CACHE_REGS
Term cm = CurrentModule;
CurrentModule = SWI_MODULE;
Yap_swi_install();
CurrentModule = cm;
}
}