This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/matlab/bnt_example.yap
vsc 244d4128cf matlab interface.
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1887 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2007-05-24 15:11:46 +00:00

110 lines
2.4 KiB
Prolog

/*
add_BNT_to_path
N = 4;
dag = zeros(N,N);
C = 1; S = 2; R = 3; W = 4;
dag(C,[R S]) = 1;
dag(R,W) = 1;
dag(S,W)=1;
discrete_nodes = 1:N;
node_sizes = 2*ones(1,N);
bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes);
bnet.CPD{W} = tabular_CPD(bnet, W, 'CPT', [1 0.1 0.1 0.01 0 0.9 0.9 0.99]);
bnet.CPD{C} = tabular_CPD(bnet, C, [0.5 0.5]);
bnet.CPD{R} = tabular_CPD(bnet, R, [0.8 0.2 0.2 0.8]);
bnet.CPD{S} = tabular_CPD(bnet, S, [0.5 0.9 0.5 0.1]);
engine = jtree_inf_engine(bnet);
evidence = cell(1,N);
evidence{W} = 2;
[engine, loglik] = enter_evidence(engine, evidence);
marg = marginal_nodes(engine, S);
marg.T
*/
:- ensure_loaded(library(matlab)).
:- yap_flag(write_strings, on).
% syntactic sugar for matlab_call.
:- op(800,yfx,<--).
G <-- Y :-
matlab_call(Y,G).
do(Out,Out2) :-
init_bnt,
N = 4,
C = 1, S = 2, R = 3, W = 4,
mkdag(N,[C-R,C-S,R-W,S-W]),
matlab_sequence(1,N,discrete_nodes),
mk2s(N,L), % domain has size 2
matlab_matrix(1,N,L,node_sizes),
bnet <-- mk_bnet(dag, node_sizes, \discrete, discrete_nodes),
mkcpt(bnet,W,[1, 0.1, 0.1, 0.01, 0, 0.9, 0.9, 0.99]),
mkcpt(bnet,C,[0.5, 0.5]),
mkcpt(bnet,R,[0.8, 0.2, 0.2, 0.8]),
mkcpt(bnet,S,[0.5, 0.9, 0.5, 0.1]),
engine <-- jtree_inf_engine(bnet),
mkevidence(N,[W-2]),
marg <-- marginal_nodes(engine, S),
matlab_get_variable( marg.'T', Out),
add_evidence([R-2]),
marg <-- marginal_nodes(engine, S),
matlab_get_variable( marg.'T', Out2).
init_bnt :-
matlab_on, !.
init_bnt :-
getcwd(D),
cd('~/Yap/CLPBN/FullBNT/BNT'),
start_matlab('matlab -nojvm -nosplash'),
matlab_eval_string("add_BNT_to_path",_),
cd(D).
mk2s(0, []) :- !.
mk2s(I, [2|L]) :-
I0 is I-1,
mk2s(I0, L).
mkdag(N,Els) :-
Tot is N*N,
functor(Dag,dag,Tot),
add_els(Els,N,Dag),
Dag=..[_|L],
addzeros(L),
matlab_matrix(N,N,L,dag).
add_els([],_,_).
add_els([X-Y|Els],N,Dag) :-
Pos is (X-1)*N+Y,
arg(Pos,Dag,1),
add_els(Els,N,Dag).
addzeros([]).
addzeros([0|L]) :- !,
addzeros(L).
addzeros([1|L]) :-
addzeros(L).
mkcpt(BayesNet, V, Tab) :-
(BayesNet.'CPD'({V})) <-- tabular_CPD(BayesNet,V,Tab).
mkevidence(N,L) :-
mkeventries(L,LN),
matlab_initialized_cells( 1, N, LN, evidence),
[engine, loglik] <-- enter_evidence(engine, evidence).
mkeventries([],[]).
mkeventries([A-V|L],[ev(1,A,V)|LN]) :-
mkeventries(L,LN).
add_evidence(L) :-
add_to_evidence(L),
[engine, loglik] <-- enter_evidence(engine, evidence).
add_to_evidence([]).
add_to_evidence([Pos-Val|L]) :-
matlab_item1(evidence,Pos,Val),
add_to_evidence(L).