This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/clpqr/clpqr/ordering.pl
2015-10-13 08:17:51 +01:00

199 lines
4.7 KiB
Prolog

/* $Id$
Part of CLP(Q) (Constraint Logic Programming over Rationals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(ordering,
[
combine/3,
ordering/1,
arrangement/2
]).
:- use_module(class,
[
class_get_clp/2,
class_get_prio/2,
class_put_prio/2
]).
:- use_module(itf,
[
clp_type/2
]).
:- use_module(library(ugraphs),
[
add_edges/3,
add_vertices/3,
top_sort/2,
ugraph_union/3
]).
:- use_module(library(lists),
[
append/3
]).
ordering(X) :-
var(X),
!,
fail.
ordering(A>B) :-
!,
ordering(B<A).
ordering(A<B) :-
join_class([A,B],Class),
class_get_prio(Class,Ga),
!,
add_edges([],[A-B],Gb),
combine(Ga,Gb,Gc),
class_put_prio(Class,Gc).
ordering(Pb) :-
Pb = [_|Xs],
join_class(Pb,Class),
class_get_prio(Class,Ga),
!,
( Xs = [],
add_vertices([],Pb,Gb)
; Xs=[_|_],
gen_edges(Pb,Es,[]),
add_edges([],Es,Gb)
),
combine(Ga,Gb,Gc),
class_put_prio(Class,Gc).
ordering(_).
arrangement(Class,Arr) :-
class_get_prio(Class,G),
normalize(G,Gn),
top_sort(Gn,Arr),
!.
arrangement(_,_) :- throw(unsatisfiable_ordering).
join_class([],_).
join_class([X|Xs],Class) :-
( var(X)
-> clp_type(X,CLP),
( CLP = clpr
-> bv_r:var_intern(X,Class)
; bv_q:var_intern(X,Class)
)
; true
),
join_class(Xs,Class).
% combine(Ga,Gb,Gc)
%
% Combines the vertices of Ga and Gb into Gc.
combine(Ga,Gb,Gc) :-
normalize(Ga,Gan),
normalize(Gb,Gbn),
ugraph_union(Gan,Gbn,Gc).
%
% both Ga and Gb might have their internal ordering invalidated
% because of bindings and aliasings
%
normalize([],[]) :- !.
normalize(G,Gsgn) :-
G = [_|_],
keysort(G,Gs), % sort vertices on key
group(Gs,Gsg), % concatenate vertices with the same key
normalize_vertices(Gsg,Gsgn). % normalize
normalize_vertices([],[]).
normalize_vertices([X-Xnb|Xs],Res) :-
( normalize_vertex(X,Xnb,Xnorm)
-> Res = [Xnorm|Xsn],
normalize_vertices(Xs,Xsn)
; normalize_vertices(Xs,Res)
).
% normalize_vertex(X,Nbs,X-Nbss)
%
% Normalizes a vertex X-Nbs into X-Nbss by sorting Nbs, removing duplicates (also of X)
% and removing non-vars.
normalize_vertex(X,Nbs,X-Nbsss) :-
var(X),
sort(Nbs,Nbss),
strip_nonvar(Nbss,X,Nbsss).
% strip_nonvar(Nbs,X,Res)
%
% Turns vertext X-Nbs into X-Res by removing occurrences of X from Nbs and removing
% non-vars. This to normalize after bindings have occurred. See also normalize_vertex/3.
strip_nonvar([],_,[]).
strip_nonvar([X|Xs],Y,Res) :-
( X==Y % duplicate of Y
-> strip_nonvar(Xs,Y,Res)
; var(X) % var: keep
-> Res = [X|Stripped],
strip_nonvar(Xs,Y,Stripped)
; % nonvar: remove
nonvar(X),
Res = [] % because Vars<anything
).
gen_edges([]) --> [].
gen_edges([X|Xs]) -->
gen_edges(Xs,X),
gen_edges(Xs).
gen_edges([],_) --> [].
gen_edges([Y|Ys],X) -->
[X-Y],
gen_edges(Ys,X).
% group(Vert,Res)
%
% Concatenates vertices with the same key.
group([],[]).
group([K-Kl|Ks],Res) :-
group(Ks,K,Kl,Res).
group([],K,Kl,[K-Kl]).
group([L-Ll|Ls],K,Kl,Res) :-
( K==L
-> append(Kl,Ll,KLl),
group(Ls,K,KLl,Res)
; Res = [K-Kl|Tail],
group(Ls,L,Ll,Tail)
).