This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/grow.c
vsc e5f4633c39 This commit was generated by cvs2svn to compensate for changes in r4,
which included commits to RCS files with non-trunk default branches.


git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2001-04-09 19:54:03 +00:00

950 lines
23 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: grow.c *
* Last rev: Thu Feb 23 1989 vv *
* mods: *
* comments: Shifting the stacks *
* *
*************************************************************************/
#include "Yap.h"
#include "Yatom.h"
#include "Heap.h"
#include "yapio.h"
#include "alloc.h"
#include "sshift.h"
#include "compile.h"
#if HAVE_STRING_H
#include <string.h>
#endif
static int heap_overflows = 0;
static Int total_heap_overflow_time = 0;
int stack_overflows = 0;
static Int total_stack_overflow_time = 0;
int delay_overflows = 0;
static Int total_delay_overflow_time = 0;
static int trail_overflows = 0;
static Int total_trail_overflow_time = 0;
STATIC_PROTO(Int p_growheap, (void));
STATIC_PROTO(Int p_growstack, (void));
STATIC_PROTO(Int p_inform_trail_overflows, (void));
STATIC_PROTO(Int p_inform_heap_overflows, (void));
STATIC_PROTO(Int p_inform_stack_overflows, (void));
/* #define undf7 */
/* #define undf5 */
STATIC_PROTO(void MoveGlobal, (void));
STATIC_PROTO(void MoveLocalAndTrail, (void));
STATIC_PROTO(void SetHeapRegs, (void));
STATIC_PROTO(void SetStackRegs, (void));
STATIC_PROTO(void AdjustTrail, (int));
STATIC_PROTO(void AdjustLocal, (void));
STATIC_PROTO(void AdjustGlobal, (void));
STATIC_PROTO(void AdjustGrowStack, (void));
STATIC_PROTO(int local_growheap, (long,int));
STATIC_PROTO(void cpcellsd, (CELL *, CELL *, CELL));
STATIC_PROTO(CELL AdjustAppl, (CELL));
STATIC_PROTO(CELL AdjustPair, (CELL));
static void
cpcellsd(register CELL *Dest, register CELL *Org, CELL NOf)
{
#if HAVE_MEMMOVE
memmove((void *)Dest, (void *)Org, NOf*sizeof(CELL));
#else
register Int n_of = NOf;
for (; n_of >= 0; n_of--)
*--Dest = *--Org;
#endif
}
/* The old stack pointers */
CELL *OldASP, *OldLCL0;
tr_fr_ptr OldTR;
CELL *OldGlobalBase, *OldH, *OldH0;
ADDR OldTrailBase, OldTrailTop;
ADDR OldHeapBase, OldHeapTop;
Int
GDiff,
HDiff,
LDiff,
TrDiff,
XDiff,
DelayDiff;
static void
SetHeapRegs(void)
{
#ifdef undf7
YP_fprintf(YP_stderr,"HeapBase = %x\tHeapTop=%x\nGlobalBase=%x\tGlobalTop=%x\nLocalBase=%x\tLocatTop=%x\n", HeapBase, HeapTop, GlobalBase, H, LCL0, ASP);
#endif
/* The old stack pointers */
OldLCL0 = LCL0;
OldASP = ASP;
OldGlobalBase = (CELL *)GlobalBase;
OldH = H;
OldH0 = H0;
OldTrailBase = TrailBase;
OldTrailTop = TrailTop;
OldTR = TR;
OldHeapBase = HeapBase;
OldHeapTop = HeapTop;
/* Adjust stack addresses */
TrailBase = TrailAddrAdjust(TrailBase);
TrailTop = TrailAddrAdjust(TrailTop);
GlobalBase = DelayAddrAdjust(GlobalBase);
LocalBase = LocalAddrAdjust(LocalBase);
AuxSp = PtoDelayAdjust(AuxSp);
AuxTop = DelayAddrAdjust(AuxTop);
/* The registers pointing to one of the stacks */
ENV = PtoLocAdjust(ENV);
ASP = PtoLocAdjust(ASP);
H0 = PtoGloAdjust(H0);
LCL0 = PtoLocAdjust(LCL0);
H = PtoGloAdjust(H);
HB = PtoGloAdjust(HB);
B = ChoicePtrAdjust(B);
if (TopB != NULL)
TopB = ChoicePtrAdjust(TopB);
if (DelayedB != NULL)
DelayedB = ChoicePtrAdjust(DelayedB);
#ifdef TABLING
B_FZ = ChoicePtrAdjust(B_FZ);
BB = ChoicePtrAdjust(BB);
H_FZ = PtoGloAdjust(H_FZ);
TR_FZ = PtoTRAdjust(TR_FZ);
#endif
TR = PtoTRAdjust(TR);
YENV = PtoLocAdjust(YENV);
if (IsOldGlobalPtr(S))
S = PtoGloAdjust(S);
if (MyTR)
MyTR = PtoTRAdjust(MyTR);
#ifdef COROUTINING
DelayedVars = AbsAppl(PtoGloAdjust(RepAppl(DelayedVars)));
MutableList = AbsAppl(PtoGloAdjust(RepAppl(MutableList)));
AttsMutableList = AbsAppl(PtoGloAdjust(RepAppl(AttsMutableList)));
WokenGoals = AbsAppl(PtoGloAdjust(RepAppl(WokenGoals)));
#endif
}
static void
SetStackRegs(void)
{
/* The old local stack pointers */
OldLCL0 = LCL0;
OldASP = ASP;
OldH = H;
OldH0 = H0;
OldGlobalBase = (CELL *)GlobalBase;
OldTrailTop = TrailTop;
OldTrailBase = TrailBase;
OldTR = TR;
OldHeapBase = HeapBase;
OldHeapTop = HeapTop;
/* The local and aux stack addresses */
TrailBase = TrailAddrAdjust(TrailBase);
TrailTop = TrailAddrAdjust(TrailTop);
LocalBase = LocalAddrAdjust(LocalBase);
TR = PtoTRAdjust(TR);
/* The registers pointing to the local stack */
ENV = PtoLocAdjust(ENV);
ASP = PtoLocAdjust(ASP);
LCL0 = PtoLocAdjust(LCL0);
B = ChoicePtrAdjust(B);
if (TopB != NULL)
TopB = ChoicePtrAdjust(TopB);
if (DelayedB != NULL)
DelayedB = ChoicePtrAdjust(DelayedB);
#ifdef TABLING
B_FZ = ChoicePtrAdjust(B_FZ);
BB = ChoicePtrAdjust(BB);
TR_FZ = PtoTRAdjust(TR_FZ);
#endif
YENV = PtoLocAdjust(YENV);
if (MyTR)
MyTR = PtoTRAdjust(MyTR);
}
static void
MoveLocalAndTrail(void)
{
/* cpcellsd(To,From,NOfCells) - copy the cells downwards */
#if HAVE_MEMMOVE
cpcellsd(ASP, OldASP, (CELL *)OldTR - OldASP);
#else
cpcellsd((CELL *)TR, (CELL *)OldTR, (CELL *)OldTR - OldASP);
#endif
}
static void
MoveGlobal(void)
{
/*
* cpcellsd(To,From,NOfCells) - copy the cells downwards - in
* absmi.asm
*/
#if HAVE_MEMMOVE
cpcellsd((CELL *)GlobalBase, (CELL *)OldGlobalBase, OldH - (CELL *)OldGlobalBase);
#else
cpcellsd(H, OldH, OldH - (CELL *)OldGlobalBase);
#endif
}
static void
MoveGlobalOnly(void)
{
/*
* cpcellsd(To,From,NOfCells) - copy the cells downwards - in
* absmi.asm
*/
#if HAVE_MEMMOVE
cpcellsd(H0, OldH0, OldH - OldH0);
#else
cpcellsd(H, OldH, OldH - OldH0);
#endif
}
static inline CELL
AdjustAppl(register CELL t0)
{
register CELL *t = RepAppl(t0);
if (IsOldGlobalPtr(t))
return (AbsAppl(PtoGloAdjust(t)));
else if (IsOldDelayPtr(t))
return (AbsAppl(PtoDelayAdjust(t)));
else if (IsOldTrailPtr(t))
return (AbsAppl(CellPtoTRAdjust(t)));
else if (IsHeapP(t))
return (AbsAppl(CellPtoHeapAdjust(t)));
#ifdef DEBUG
else {
/* strange cell */
/* YP_fprintf(YP_stderr,"[ garbage appl %lx found in stacks by stack shifter ]\n", t0);*/
}
#endif
return(t0);
}
static inline CELL
AdjustPair(register CELL t0)
{
register CELL *t = RepPair(t0);
if (IsOldGlobalPtr(t))
return (AbsPair(PtoGloAdjust(t)));
if (IsOldDelayPtr(t))
return (AbsPair(PtoDelayAdjust(t)));
if (IsOldTrailPtr(t))
return (AbsPair(CellPtoTRAdjust(t)));
else if (IsHeapP(t))
return (AbsPair(CellPtoHeapAdjust(t)));
#ifdef DEBUG
/* YP_fprintf(YP_stderr,"[ garbage pair %lx found in stacks by stack shifter ]\n", t0);*/
#endif
return(t0);
}
static void
AdjustTrail(int adjusting_heap)
{
register tr_fr_ptr ptt;
ptt = TR;
/* moving the trail is simple */
while (ptt != (tr_fr_ptr)TrailBase) {
register CELL reg = TrailTerm(ptt-1);
ptt--;
if (IsVarTerm(reg)) {
if (IsOldLocalInTR(reg))
TrailTerm(ptt) = LocalAdjust(reg);
else if (IsOldGlobal(reg))
TrailTerm(ptt) = GlobalAdjust(reg);
else if (IsOldDelay(reg))
TrailTerm(ptt) = DelayAdjust(reg);
else if (IsOldTrail(reg))
TrailTerm(ptt) = TrailAdjust(reg);
else if (IsOldCode(reg)) {
CELL *ptr;
TrailTerm(ptt) = reg = CodeAdjust(reg);
ptr = (CELL *)reg;
if (IsApplTerm(*ptr)) {
*ptr = AdjustAppl(*ptr);
} else if (IsPairTerm(*ptr)) {
*ptr = AdjustAppl(*ptr);
}
#ifdef DEBUG
else
YP_fprintf(YP_stderr,"[ garbage heap ptr %p to %lx found in trail at %p by stack shifter ]\n", ptr, (unsigned long int)*ptr, ptt);
#endif
}
} else if (IsPairTerm(reg)) {
TrailTerm(ptt) = AdjustPair(reg);
#ifdef MULTI_ASSIGNMENT_VARIABLES /* does not work with new structures */
/* check it whether we are protecting a
multi-assignment */
} else if (IsApplTerm(reg)) {
TrailTerm(ptt) = AdjustAppl(reg);
#endif
}
}
}
static void
AdjustLocal(void)
{
register CELL reg, *pt;
/* Adjusting the local */
pt = LCL0;
while (pt > ASP) {
reg = *--pt;
if (IsVarTerm(reg)) {
if (IsOldLocal(reg))
*pt = LocalAdjust(reg);
else if (IsOldGlobal(reg))
*pt = GlobalAdjust(reg);
else if (IsOldDelay(reg))
*pt = DelayAdjust(reg);
else if (IsOldTrail(reg))
*pt = TrailAdjust(reg);
else if (IsOldCode(reg))
*pt = CodeAdjust(reg);
} else if (IsApplTerm(reg)) {
*pt = AdjustAppl(reg);
} else if (IsPairTerm(reg)) {
*pt = AdjustPair(reg);
}
}
}
static void
AdjustGlobal(void)
{
register CELL *pt;
/*
* to clean the global now that functors are just variables pointing to
* the code
*/
pt = CellPtr(GlobalBase);
while (pt < H) {
register CELL reg;
reg = *pt;
if (IsVarTerm(reg)) {
if (IsOldGlobal(reg))
*pt = GlobalAdjust(reg);
if (IsOldDelay(reg))
*pt = DelayAdjust(reg);
else if (IsOldLocal(reg))
*pt = LocalAdjust(reg);
else if (IsOldCode(reg)) {
Functor f;
f = (Functor)(*pt = CodeAdjust(reg));
if (f <= FunctorDouble && f >= FunctorLongInt) {
/* skip bitmaps */
switch((CELL)f) {
case (CELL)FunctorDouble:
#if SIZEOF_DOUBLE == 2*SIZEOF_LONG_INT
pt += 3;
#else
pt += 2;
#endif
break;
#if USE_GMP
case (CELL)FunctorBigInt:
{
Int sz = 1+
sizeof(MP_INT)+
(((MP_INT *)(pt+1))->_mp_alloc*sizeof(mp_limb_t));
pt += sz;
}
break;
#endif
case (CELL)FunctorLongInt:
default:
pt += 2;
break;
}
}
}
#ifdef MULTI_ASSIGNMENT_VARIABLES
else if (IsOldTrail(reg))
*pt = TrailAdjust(reg);
#endif
} else if (IsApplTerm(reg))
*pt = AdjustAppl(reg);
else if (IsPairTerm(reg))
*pt = AdjustPair(reg);
else if (IsAtomTerm(reg))
*pt = AtomTermAdjust(reg);
pt++;
}
}
/*
* When growing the stack we need to adjust: the local stack cells pointing
* to the local; the local stack cells and the X terms pointing to the global
* (just once) the trail cells pointing both to the global and to the local
*/
void
AdjustStacksAndTrail(void)
{
AdjustTrail(TRUE);
AdjustLocal();
AdjustGlobal();
}
/*
* When growing the stack we need to adjust: the local cells pointing to the
* local; the trail cells pointing to the local
*/
static void
AdjustGrowStack(void)
{
AdjustTrail(FALSE);
AdjustLocal();
}
void
AdjustRegs(int n)
{
int i;
CELL reg;
for (i = 1; i < n; ++i) {
reg = (CELL) XREGS[i];
if (IsVarTerm(reg)) {
if (IsOldLocal(reg))
reg = LocalAdjust(reg);
else if (IsOldGlobal(reg))
reg = GlobalAdjust(reg);
else if (IsOldDelay(reg))
reg = DelayAdjust(reg);
else if (IsOldTrail(reg))
reg = TrailAdjust(reg);
else if (IsOldCode(reg))
reg = CodeAdjust(reg);
} else if (IsApplTerm(reg))
reg = AdjustAppl(reg);
else if (IsPairTerm(reg))
reg = AdjustPair(reg);
XREGS[i] = (Term) reg;
}
}
/* Used by do_goal() when we're short of heap space */
static int
local_growheap(long size, int fix_code)
{
Int start_growth_time, growth_time;
int gc_verbose;
/* adjust to a multiple of 256) */
size = AdjustPageSize(size);
if (!ExtendWorkSpace(size)) {
return(FALSE);
}
start_growth_time = cputime();
gc_verbose = is_gc_verbose();
heap_overflows++;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[HO] Heap overflow %d\n", heap_overflows);
YP_fprintf(YP_stderr, "[HO] growing the heap %ld bytes\n", size);
}
ASP -= 256;
TrDiff = LDiff = GDiff = DelayDiff = size;
XDiff = HDiff = 0;
YAPEnterCriticalSection();
SetHeapRegs();
MoveLocalAndTrail();
if (fix_code) {
CELL *SaveOldH = OldH;
OldH = (CELL *)freep;
MoveGlobal();
OldH = SaveOldH;
} else {
MoveGlobal();
}
AdjustStacksAndTrail();
AdjustRegs(MaxTemps);
YAPLeaveCriticalSection();
ASP += 256;
growth_time = cputime()-start_growth_time;
total_heap_overflow_time += growth_time;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[HO] took %g sec\n", (double)growth_time/1000);
YP_fprintf(YP_stderr, "[HO] Total of %g sec expanding heap \n", (double)total_heap_overflow_time/1000);
}
return(TRUE);
}
/* Used by do_goal() when we're short of heap space */
static int
local_growglobal(long size)
{
Int start_growth_time, growth_time;
int gc_verbose;
/* adjust to a multiple of 256) */
size = AdjustPageSize(size);
if (!ExtendWorkSpace(size)) {
return(FALSE);
}
start_growth_time = cputime();
gc_verbose = is_gc_verbose();
delay_overflows++;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[DO] Delay overflow %d\n", delay_overflows);
YP_fprintf(YP_stderr, "[DO] growing the stacks %ld bytes\n", size);
}
ASP -= 256;
TrDiff = LDiff = GDiff = size;
XDiff = HDiff = DelayDiff = 0;
YAPEnterCriticalSection();
SetHeapRegs();
MoveLocalAndTrail();
MoveGlobalOnly();
AdjustStacksAndTrail();
AdjustRegs(MaxTemps);
YAPLeaveCriticalSection();
ASP += 256;
growth_time = cputime()-start_growth_time;
total_delay_overflow_time += growth_time;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[DO] took %g sec\n", (double)growth_time/1000);
YP_fprintf(YP_stderr, "[DO] Total of %g sec expanding stacks \n", (double)total_delay_overflow_time/1000);
}
return(TRUE);
}
static void
fix_compiler_instructions(PInstr *cpc)
{
while (cpc != NULL) {
PInstr *ncpc = cpc->nextInst;
switch(cpc->op) {
/* check c_var for functions that point at variables */
case get_var_op:
case get_val_op:
case unify_var_op:
case unify_last_var_op:
case unify_val_op:
case unify_last_val_op:
case put_var_op:
case put_val_op:
case write_var_op:
case write_val_op:
case f_var_op:
case f_val_op:
case fetch_args_for_bccall:
case bccall_op:
case save_pair_op:
case save_appl_op:
case save_b_op:
case comit_b_op:
cpc->rnd1 = GlobalAdjust(cpc->rnd1);
break;
default:
/* hopefully nothing to do */
break;
}
if (ncpc != NULL) {
ncpc = (PInstr *)GlobalAddrAdjust((ADDR)(cpc->nextInst));
cpc->nextInst = ncpc;
}
cpc = ncpc;
}
}
#ifdef TABLING
static void
fix_tabling_info(void)
{
/* we must fix the dependency frames and the subgoal frames, as they are
pointing back to the global stack. */
struct dependency_frame *df;
struct subgoal_frame *sg;
df = LOCAL_top_dep_fr;
while (df != NULL) {
if (DepFr_backchain_cp(df))
DepFr_backchain_cp(df) = ChoicePtrAdjust(DepFr_backchain_cp(df));
DepFr_leader_cp(df) = ChoicePtrAdjust(DepFr_leader_cp(df));
DepFr_cons_cp(df) = ConsumerChoicePtrAdjust(DepFr_cons_cp(df));
df = DepFr_next(df);
}
sg = LOCAL_top_sg_fr;
while (sg != NULL) {
SgFr_gen_cp(sg) = GeneratorChoicePtrAdjust(SgFr_gen_cp(sg));
sg = SgFr_next(sg);
}
}
#endif /* TABLING */
int
growheap(int fix_code)
{
unsigned long size = sizeof(CELL) * 16 * 1024L;
int shift_factor = (heap_overflows > 8 ? 8 : heap_overflows);
unsigned long sz = size << shift_factor;
#ifdef FIXED_STACKS
abort_optyap("noheapleft in function absmi");
#endif
if (SizeOfOverflow > sz)
sz = AdjustPageSize(SizeOfOverflow);
while(sz >= sizeof(CELL) * 16 * 1024L && !local_growheap(sz, fix_code)) {
size = size/2;
sz = size << shift_factor;
}
/* we must fix an instruction chain */
if (fix_code) {
PInstr *cpc = CodeStart;
if (cpc != NULL) {
CodeStart = cpc = (PInstr *)GlobalAddrAdjust((ADDR)cpc);
}
fix_compiler_instructions(cpc);
cpc = BlobsStart;
if (cpc != NULL) {
BlobsStart = cpc = (PInstr *)GlobalAddrAdjust((ADDR)cpc);
}
fix_compiler_instructions(cpc);
}
#ifdef TABLING
fix_tabling_info();
#endif
return(sz >= sizeof(CELL) * 16 * 1024L);
}
int
growglobal(void)
{
unsigned long sz = sizeof(CELL) * 16 * 1024L;
#ifdef FIXED_STACKS
abort_optyap("noheapleft in function absmi");
#endif
if (!local_growglobal(sz))
return(FALSE);
#ifdef TABLING
fix_tabling_info();
#endif
return(TRUE);
}
/* Used by do_goal() when we're short of stack space */
int
growstack(long size)
{
Int start_growth_time, growth_time;
int gc_verbose;
#ifdef FIXED_STACKS
abort_optyap("nostackleft in function absmi");
#endif
/* adjust to a multiple of 256) */
size = AdjustPageSize(size);
if (!ExtendWorkSpace(size)) {
return(FALSE);
}
start_growth_time = cputime();
gc_verbose = is_gc_verbose();
stack_overflows++;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[SO] Stack overflow %d\n", stack_overflows);
YP_fprintf(YP_stderr, "[SO] Heap: %8ld cells (%p-%p)\n", (unsigned long int)(H-(CELL *)GlobalBase),GlobalBase,H);
YP_fprintf(YP_stderr, "[SO] Local:%8ld cells (%p-%p)\n", (unsigned long int)(LCL0-ASP),LCL0,ASP);
YP_fprintf(YP_stderr, "[SO] Trail:%8ld cells (%p-%p)\n",
(unsigned long int)(TR-(tr_fr_ptr)TrailBase),TrailBase,TR);
YP_fprintf(YP_stderr, "[SO] growing the stacks %ld bytes\n", size);
}
TrDiff = LDiff = size;
XDiff = HDiff = GDiff = DelayDiff = 0;
ASP -= 256;
YAPEnterCriticalSection();
SetStackRegs();
MoveLocalAndTrail();
AdjustGrowStack();
AdjustRegs(MaxTemps);
#ifdef TABLING
fix_tabling_info();
#endif
YAPLeaveCriticalSection();
CreepFlag = MinStackGap*(stack_overflows+1);
ASP += 256;
growth_time = cputime()-start_growth_time;
total_stack_overflow_time += growth_time;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[SO] took %g sec\n", (double)growth_time/1000);
YP_fprintf(YP_stderr, "[SO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000);
}
return(TRUE);
}
static void
AdjustVarTable(VarEntry *ves)
{
ves->VarAdr = TermNil;
if (ves->VarRight != NULL) {
ves->VarRight = (VarEntry *)TrailAddrAdjust((ADDR)(ves->VarRight));
AdjustVarTable(ves->VarRight);
}
if (ves->VarLeft != NULL) {
ves->VarLeft = (VarEntry *)TrailAddrAdjust((ADDR)(ves->VarLeft));
AdjustVarTable(ves->VarLeft);
}
}
/*
If we have to shift while we are scanning we need to adjust all
pointers created by the scanner (Tokens and Variables)
*/
static void
AdjustScannerStacks(TokEntry **tksp, VarEntry **vep)
{
TokEntry *tks = *tksp;
VarEntry *ves = *vep;
if (tks != NULL) {
tks = *tksp = (TokEntry *)TrailAddrAdjust((ADDR)tks);
}
while (tks != NULL) {
TokEntry *tktmp;
switch (tks->Tok) {
case Var_tok:
case String_tok:
tks->TokInfo = TrailAdjust(tks->TokInfo);
break;
case Name_tok:
tks->TokInfo = (Term)AtomAdjust((Atom)(tks->TokInfo));
break;
default:
break;
}
tktmp = tks->TokNext;
if (tktmp != NULL) {
tktmp = (TokEntry *)TrailAddrAdjust((ADDR)tktmp);
tks->TokNext = tktmp;
}
tks = tktmp;
}
if (ves != NULL) {
ves = *vep = (VarEntry *)TrailAddrAdjust((ADDR)ves);
AdjustVarTable(ves);
}
ves = AnonVarTable;
if (ves != NULL) {
ves = AnonVarTable = (VarEntry *)TrailAddrAdjust((ADDR)ves);
}
while (ves != NULL) {
VarEntry *vetmp = ves->VarLeft;
if (vetmp != NULL) {
vetmp = (VarEntry *)TrailAddrAdjust((ADDR)vetmp);
ves->VarLeft = vetmp;
}
ves->VarAdr = TermNil;
ves = vetmp;
}
}
/* Used by parser when we're short of stack space */
int
growstack_in_parser(tr_fr_ptr *old_trp, TokEntry **tksp, VarEntry **vep)
{
Int start_growth_time, growth_time;
int gc_verbose;
long size = sizeof(CELL)*(LCL0-(CELL *)GlobalBase);
#ifdef FIXED_STACKS
abort_optyap("nostackleft in parser");
#endif
/* adjust to a multiple of 256) */
size = AdjustPageSize(size);
if (!ExtendWorkSpace(size)) {
return(FALSE);
}
start_growth_time = cputime();
gc_verbose = is_gc_verbose();
stack_overflows++;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[SO] Stack overflow %d\n", stack_overflows);
YP_fprintf(YP_stderr, "[SO] Heap: %8ld cells (%p-%p)\n", (unsigned long int)(H-(CELL *)GlobalBase),(CELL *)GlobalBase,H);
YP_fprintf(YP_stderr, "[SO] Local:%8ld cells (%p-%p)\n", (unsigned long int)(LCL0-ASP),LCL0,ASP);
YP_fprintf(YP_stderr, "[SO] Trail:%8ld cells (%p-%p)\n",
(unsigned long int)(TR-(tr_fr_ptr)TrailBase),TrailBase,TR);
YP_fprintf(YP_stderr, "[SO] growing the stacks %ld bytes\n", size);
}
TrDiff = LDiff = size;
XDiff = HDiff = GDiff = DelayDiff = 0;
ASP -= 256;
YAPEnterCriticalSection();
SetStackRegs();
MoveLocalAndTrail();
AdjustScannerStacks(tksp, vep);
{
tr_fr_ptr nTR = TR;
*old_trp = TR = PtoTRAdjust(*old_trp);
AdjustGrowStack();
TR = nTR;
}
AdjustRegs(MaxTemps);
YAPLeaveCriticalSection();
CreepFlag = MinStackGap*(stack_overflows+1);
ASP += 256;
growth_time = cputime()-start_growth_time;
total_stack_overflow_time += growth_time;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[SO] took %g sec\n", (double)growth_time/1000);
YP_fprintf(YP_stderr, "[SO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000);
}
return(TRUE);
}
/* Used by do_goal() when we're short of stack space */
int
growtrail(long size)
{
Int start_growth_time = cputime(), growth_time;
int gc_verbose = is_gc_verbose();
#ifdef FIXED_STACKS
abort_optyap("notrailleft in function absmi");
#endif
/* adjust to a multiple of 256) */
size = AdjustPageSize(size);
trail_overflows++;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[TO] Trail overflow %d\n", trail_overflows);
YP_fprintf(YP_stderr, "[TO] growing the trail %ld bytes\n", size);
}
if (!ExtendWorkSpace(size)) {
return(FALSE);
}
YAPEnterCriticalSection();
TrailTop += size;
YAPLeaveCriticalSection();
growth_time = cputime()-start_growth_time;
total_trail_overflow_time += growth_time;
if (gc_verbose) {
YP_fprintf(YP_stderr, "[TO] took %g sec\n", (double)growth_time/1000);
YP_fprintf(YP_stderr, "[TO] Total of %g sec expanding stacks \n", (double)total_stack_overflow_time/1000);
}
return(TRUE);
}
static Int
p_inform_trail_overflows(void)
{
Term tn = MkIntTerm(trail_overflows);
Term tt = MkIntegerTerm(total_trail_overflow_time);
return(unify(tn, ARG1) && unify(tt, ARG2));
}
/* :- grow_heap(Size) */
static Int
p_growheap(void)
{
Int diff;
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Error(INSTANTIATION_ERROR, t1, "grow_heap/1");
return(FALSE);
} else if (!IsIntTerm(t1)) {
Error(TYPE_ERROR_INTEGER, t1, "grow_heap/1");
return(FALSE);
}
diff = IntOfTerm(t1);
if (diff < 0) {
Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t1, "grow_heap/1");
}
return(local_growheap(diff, FALSE));
}
static Int
p_inform_heap_overflows(void)
{
Term tn = MkIntTerm(heap_overflows);
Term tt = MkIntegerTerm(total_heap_overflow_time);
return(unify(tn, ARG1) && unify(tt, ARG2));
}
/* :- grow_stack(Size) */
static Int
p_growstack(void)
{
Int diff;
Term t1 = Deref(ARG1);
if (IsVarTerm(t1)) {
Error(INSTANTIATION_ERROR, t1, "grow_stack/1");
return(FALSE);
} else if (!IsIntTerm(t1)) {
Error(TYPE_ERROR_INTEGER, t1, "grow_stack/1");
return(FALSE);
}
diff = IntOfTerm(t1);
if (diff < 0) {
Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t1, "grow_stack/1");
}
return(growstack(diff));
}
static Int
p_inform_stack_overflows(void)
{
Term tn = MkIntTerm(stack_overflows);
Term tt = MkIntegerTerm(total_stack_overflow_time);
return(unify(tn, ARG1) && unify(tt, ARG2));
}
Int total_stack_shift_time(void)
{
return(total_heap_overflow_time+
total_stack_overflow_time+
total_trail_overflow_time);
}
void
InitGrowPreds(void)
{
InitCPred("$grow_heap", 1, p_growheap, SafePredFlag);
InitCPred("$grow_stack", 1, p_growstack, SafePredFlag);
InitCPred("$inform_trail_overflows", 2, p_inform_trail_overflows, SafePredFlag);
InitCPred("$inform_heap_overflows", 2, p_inform_heap_overflows, SafePredFlag);
InitCPred("$inform_stack_overflows", 2, p_inform_stack_overflows, SafePredFlag);
init_gc();
}