This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/yap-lbfgs/yap_lbfgs.c
Vitor Santos Costa 724681dde8 fix
2018-09-29 12:51:06 +01:00

507 lines
14 KiB
C

#include <string.h>
#include "YapInterface.h"
#include <lbfgs.h>
#include <stdio.h>
/*
This file is part of YAP-LBFGS.
Copyright (C) 2009 Bernd Gutmann
YAP-LBFGS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
YAP-LBFGS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with YAP-LBFGS. If not, see <http://www.gnu.org/licenses/>.
*/
// These constants describe the internal state
#define OPTIMIZER_STATUS_NONE 0
#define OPTIMIZER_STATUS_INITIALIZED 1
#define OPTIMIZER_STATUS_RUNNING 2
#define OPTIMIZER_STATUS_CB_EVAL 3
#define OPTIMIZER_STATUS_CB_PROGRESS 4
X_API void init_lbfgs_predicates( void ) ;
YAP_Functor fevaluate, fprogress, fmodule, ffloats;
YAP_Term tuser;
static lbfgsfloatval_t evaluate(
void *instance,
const lbfgsfloatval_t *x,
lbfgsfloatval_t *g_tmp,
const int n,
const lbfgsfloatval_t step
)
{
YAP_Term call;
YAP_Term v, a1;
YAP_Bool result;
YAP_Int s1;
YAP_Term t[5], t2[2];
t[0] = v = YAP_MkVarTerm();
t[1] = YAP_MkIntTerm((YAP_Int)x);
t[1] = YAP_MkApplTerm(ffloats, 1, t+1);
t[2] = YAP_MkIntTerm((YAP_Int)g_tmp);
t[2] = YAP_MkApplTerm(ffloats, 1, t+2);
t[3] = YAP_MkIntTerm(n);
t[4] = YAP_MkFloatTerm(step);
t2[0] = tuser;
t2[1] = YAP_MkApplTerm(fevaluate, 5, t);
call = YAP_MkApplTerm( fmodule, 2, t2 );
s1 = YAP_InitSlot(v);
//optimizer_status=OPTIMIZER_STATUS_CB_EVAL;
result=YAP_RunGoal(call);
//optimizer_status=OPTIMIZER_STATUS_RUNNING;
if (result==FALSE) {
printf("ERROR: the evaluate call failed in YAP.\n");
// Goal did not succeed
YAP_ShutdownGoal( false );
return FALSE;
}
a1 = YAP_GetFromSlot( s1 );
lbfgsfloatval_t rc;
if (YAP_IsFloatTerm(a1)) {
rc = (lbfgsfloatval_t) YAP_FloatOfTerm(a1);
} else if (YAP_IsIntTerm(a1)) {
rc = (lbfgsfloatval_t) YAP_IntOfTerm(a1);
} else {
fprintf(stderr, "ERROR: The evaluate call back function did not return a number as first argument.\n");
rc = false;
}
YAP_ShutdownGoal( false );
return rc;
}
static int progress(
void *instance,
const lbfgsfloatval_t *local_x,
const lbfgsfloatval_t *local_g,
const lbfgsfloatval_t fx,
const lbfgsfloatval_t xnorm,
const lbfgsfloatval_t gnorm,
const lbfgsfloatval_t step,
int n,
int k,
int ls
)
{
YAP_Term call;
YAP_Bool result;
YAP_Int s1;
YAP_Term t[10],t2[2], v;
t[0] = YAP_MkFloatTerm(fx);
t[1] = YAP_MkIntTerm((YAP_Int)local_x);
t[1] = YAP_MkApplTerm(ffloats, 1, t+1);
t[2] = YAP_MkIntTerm((YAP_Int)local_g);
t[2] = YAP_MkApplTerm(ffloats, 1, t+2);
t[3] = YAP_MkFloatTerm(xnorm);
t[4] = YAP_MkFloatTerm(gnorm);
t[5] = YAP_MkFloatTerm(step);
t[6] = YAP_MkIntTerm(n);
t[7] = YAP_MkIntTerm(k);
t[8] = YAP_MkIntTerm(ls);
t[9] = v = YAP_MkVarTerm();
t2[0] = tuser;
t2[1] = YAP_MkApplTerm( fprogress, 10, t);
call = YAP_MkApplTerm( fmodule, 2, t2 );
s1 = YAP_InitSlot(v);
//optimizer_status=OPTIMIZER_STATUS_CB_PROGRESS;
result=YAP_RunGoal(call);
//optimizer_status=OPTIMIZER_STATUS_RUNNING;
YAP_Term o = YAP_GetFromSlot( s1 );
YAP_ShutdownGoal( false );
if (result==FALSE) {
printf("ERROR: the progress call failed in YAP.\n");
// Goal did not succeed
return -1;
}
if (YAP_IsIntTerm(o)) {
int v = YAP_IntOfTerm(o);
return (int)v;
}
fprintf(stderr, "ERROR: The progress call back function did not return an integer as last argument\n");
return 1;
}
/** @pred optimizer_initialize(+N,+Module,+Evaluate,+Progress)
Create space to optimize a function with _N_ variables (_N_ has to be
integer).
+ _Module</span>_ is the name of the module where the call back
predicates can be found,
+ _Evaluate_ is the call back predicate (arity 3)
to evaluate the function math <span class="math">_F</span>_,
+ _Progress_ is the call back predicate invoked
(arity 8) after every iteration
Example
~~~~
optimizer_initialize(1,user,evaluate,progress,e,g)</span>
~~~~
The evaluate call back predicate has to be of the type
`evaluate(-F,+N,+Step)`. It has to calculate the current function
value _F_. _N_ is the
size of the parameter vector (the value which was used to initialize
LBFGS) and _Step_ is the current state of the
line search. The call back predicate can access the current values of
`x[i]` by calling `optimizer_get_x(+I,-Xi)`. Finally, the call back
predicate has to calculate the gradient of _F</span>_
and set its value by calling `optimizer_set_g(+I,+Gi)` for every `1<=I<=N`.
The progress call back predicate has to be of the type
`progress(+F,+X_Norm,+G_Norm,+Step,+N,+Iteration,+LS,-Continue)`. It
is called after every iteration. The call back predicate can access
the current values of _X_ and of the gradient by calling
`optimizer_get_x(+I,-Xi)` and `optimizer_get_g`(+I,-Gi)`
respectively. However, it must not call the setter predicates for <span
class="code"_X_ or _G_. If it tries to do so, the optimizer will
terminate with an error. If _Continue_ is set to 0 (int) the
optimization process will continue for one more iteration, any other
value will terminate the optimization process.
*/
static YAP_Bool optimizer_initialize(void) {
YAP_Term t1 = YAP_ARG1;
int temp_n=0;
lbfgsfloatval_t *temp_x, *temp_ox;
lbfgs_parameter_t *temp_p;
if (! YAP_IsIntTerm(t1)) {
return false;
}
temp_n=YAP_IntOfTerm(t1);
if (temp_n<1) {
return FALSE;
}
temp_n = 16*(temp_n/16+15);
lbfgs_parameter_init((temp_p=(lbfgs_parameter_t *)malloc(sizeof(lbfgs_parameter_t))));
temp_ox = lbfgs_malloc(temp_n);
YAP_Term tox = YAP_MkIntTerm((YAP_Int)temp_ox);
temp_x = lbfgs_malloc(temp_n);
YAP_Term tx = YAP_MkIntTerm((YAP_Int)temp_x);
tx = YAP_MkApplTerm(ffloats, 1, &tx);
tox = YAP_MkApplTerm(ffloats, 1, &tox);
YAP_Term tp = YAP_MkIntTerm((YAP_Int)temp_p);
return YAP_Unify(YAP_ARG2,tx) && YAP_Unify(YAP_ARG3,tox) && YAP_Unify(YAP_ARG4,tp) ;
}
/** @pred optimizer_run(-F,-Status)
Runs the optimization, _F is the best (minimal) function value and
Status (int) is the status code returned by libLBFGS. Anything except
0 indicates an error, see the documentation of libLBFGS for the
meaning.
*/
static YAP_Bool optimizer_run(void) {
int ret = 0;
int n = YAP_IntOfTerm(YAP_ARG1);
YAP_Int s1, s2;
lbfgsfloatval_t fx;
lbfgsfloatval_t *temp_x = ( lbfgsfloatval_t *)YAP_IntOfTerm( YAP_ArgOfTerm(1, YAP_ARG2)),
*temp_ox = ( lbfgsfloatval_t *) YAP_IntOfTerm(YAP_ArgOfTerm(1,YAP_ARG4));
lbfgs_parameter_t *temp_p = (lbfgs_parameter_t * ) YAP_IntOfTerm(YAP_ARG6);
ret = lbfgs(n, temp_x, &fx, evaluate, progress, temp_ox, temp_p);
return YAP_Unify(YAP_MkIntTerm(ret), YAP_ARG5) &&
YAP_Unify(YAP_MkFloatTerm(fx), YAP_ARG3);
}
static YAP_Bool optimizer_finalize( void ) {
/* if (optimizer_status == OPTIMIZER_STATUS_NONE) { */
/* printf("Error: Optimizer is not initialized.\n"); */
/* return FALSE; */
/* } */
/* if (optimizer_status == OPTIMIZER_STATUS_INITIALIZED) { */
lbfgs_free((void *)YAP_IntOfTerm(YAP_ArgOfTerm(1,YAP_ARG1)));
lbfgs_free((void *)YAP_IntOfTerm(YAP_ArgOfTerm(1,YAP_ARG2)));
lbfgs_free((void *)YAP_IntOfTerm(YAP_ARG3));
return TRUE;
/* } */
/* printf("ERROR: Optimizer is running right now. Please wait till it is finished.\n"); */
/* return FALSE; */
}
/** @pred optimizer_set_parameter(+Name,+Value,+Parameters)
Set the parameter Name to Value. Only possible while the optimizer
is not running.
*/
static YAP_Bool optimizer_set_parameter( void ) {
YAP_Term t1 = YAP_ARG1;
YAP_Term t2 = YAP_ARG2;
lbfgs_parameter_t *param = (lbfgs_parameter_t *) YAP_IntOfTerm(YAP_ARG3);
/* if (optimizer_status != OPTIMIZER_STATUS_NONE && optimizer_status != OPTIMIZER_STATUS_INITIALIZED){ */
/* printf("ERROR: Optimizer is running right now. Please wait till it is finished.\n"); */
/* return FALSE; */
/* } */
if (! YAP_IsAtomTerm(t1)) {
return FALSE;
}
const char* name=YAP_AtomName(YAP_AtomOfTerm(t1));
if ((strcmp(name, "m") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->m = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "epsilon") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->epsilon=v;
} else if ((strcmp(name, "past") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->past = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "delta") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->delta=v;
} else if ((strcmp(name, "max_iterations") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->max_iterations = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "linesearch") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->linesearch = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "max_linesearch") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->max_linesearch = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "min_step") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->min_step=v;
} else if ((strcmp(name, "max_step") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->max_step=v;
} else if ((strcmp(name, "ftol") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->ftol=v;
} else if ((strcmp(name, "gtol") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->gtol=v;
} else if ((strcmp(name, "xtol") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->xtol=v;
} else if ((strcmp(name, "orthantwise_c") == 0)) {
lbfgsfloatval_t v;
if (YAP_IsFloatTerm(t2)) {
v=YAP_FloatOfTerm(t2);
} else if (YAP_IsIntTerm(t2)) {
v=(lbfgsfloatval_t) YAP_IntOfTerm(t2);
} else {
return FALSE;
}
param->orthantwise_c=v;
} else if ((strcmp(name, "orthantwise_start") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->orthantwise_start = YAP_IntOfTerm(t2);
} else if ((strcmp(name, "orthantwise_end") == 0)) {
if (! YAP_IsIntTerm(t2)) {
return FALSE;
}
param->orthantwise_end = YAP_IntOfTerm(t2);
} else {
printf("ERROR: The parameter %s is unknown.\n",name);
return FALSE;
}
return TRUE;
}
/** @pred optimizer_get_parameter(+Name,-Value)</h3>
Get the current Value for Name
*/
static YAP_Bool optimizer_get_parameter( void ) {
YAP_Term t1 = YAP_ARG1;
YAP_Term t2 = YAP_ARG2;
lbfgs_parameter_t *param = (lbfgs_parameter_t *) YAP_IntOfTerm(YAP_ARG3);
if (! YAP_IsAtomTerm(t1)) {
return FALSE;
}
const char* name=YAP_AtomName(YAP_AtomOfTerm(t1));
if ((strcmp(name, "m") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->m));
} else if ((strcmp(name, "epsilon") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->epsilon));
} else if ((strcmp(name, "past") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->past));
} else if ((strcmp(name, "delta") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->delta));
} else if ((strcmp(name, "max_iterations") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->max_iterations));
} else if ((strcmp(name, "linesearch") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->linesearch));
} else if ((strcmp(name, "max_linesearch") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->max_linesearch));
} else if ((strcmp(name, "min_step") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->min_step));
} else if ((strcmp(name, "max_step") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->max_step));
} else if ((strcmp(name, "ftol") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->ftol));
} else if ((strcmp(name, "gtol") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->gtol));
} else if ((strcmp(name, "xtol") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->xtol));
} else if ((strcmp(name, "orthantwise_c") == 0)) {
return YAP_Unify(t2,YAP_MkFloatTerm(param->orthantwise_c));
} else if ((strcmp(name, "orthantwise_start") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->orthantwise_start));
} else if ((strcmp(name, "orthantwise_end") == 0)) {
return YAP_Unify(t2,YAP_MkIntTerm(param->orthantwise_end));
}
printf("ERROR: The parameter %s is unknown.\n",name);
return false;
}
X_API void init_lbfgs_predicates( void )
{
fevaluate = YAP_MkFunctor(YAP_LookupAtom("evaluate"), 5);
fprogress = YAP_MkFunctor(YAP_LookupAtom("progress"), 10);
fmodule = YAP_MkFunctor(YAP_LookupAtom(":"), 2);
ffloats = YAP_MkFunctor(YAP_LookupAtom("floats"), 1);
tuser = YAP_MkAtomTerm(YAP_LookupAtom("user"));
//Initialize the parameters for the L-BFGS optimization.
// lbfgs_parameter_init(&param);
YAP_UserCPredicate("optimizer_reserve_memory",optimizer_initialize,4);
YAP_UserCPredicate("optimizer_run",optimizer_run,6);
YAP_UserCPredicate("optimizer_free_memory",optimizer_finalize,3);
YAP_UserCPredicate("optimizer_set_parameter",optimizer_set_parameter,3);
YAP_UserCPredicate("optimizer_get_parameter",optimizer_get_parameter,3);
}