This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/utilpreds.c

5490 lines
135 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
*
**************************************************************************
* *
* File: utilpreds.c * Last rev: 4/03/88
** mods: * comments: new utility predicates for YAP *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "@(#)utilpreds.c 1.3";
#endif
/**
* @addtogroup Terms
*/
#include "absmi.h"
#include "YapHeap.h"
#include "attvar.h"
#include "yapio.h"
#ifdef HAVE_STRING_H
#include "string.h"
#endif
typedef struct {
Term old_var;
Term new_var;
} * vcell;
static int copy_complex_term(CELL *, CELL *, int, int, CELL *,
CELL *CACHE_TYPE);
static CELL vars_in_complex_term(CELL *, CELL *, Term CACHE_TYPE);
static Int p_non_singletons_in_term(USES_REGS1);
static CELL non_singletons_in_complex_term(CELL *, CELL *CACHE_TYPE);
static Int p_variables_in_term(USES_REGS1);
static Int ground_complex_term(CELL *, CELL *CACHE_TYPE);
static Int p_ground(USES_REGS1);
static Int p_copy_term(USES_REGS1);
static Int var_in_complex_term(CELL *, CELL *, Term CACHE_TYPE);
#ifdef DEBUG
static Int p_force_trail_expansion(USES_REGS1);
#endif /* DEBUG */
static inline void clean_tr(tr_fr_ptr TR0 USES_REGS) {
if (TR != TR0) {
do {
Term p = TrailTerm(--TR);
RESET_VARIABLE(p);
} while (TR != TR0);
}
}
static inline void clean_dirty_tr(tr_fr_ptr TR0 USES_REGS) {
if (TR != TR0) {
tr_fr_ptr pt = TR0;
do {
Term p = TrailTerm(pt++);
RESET_VARIABLE(p);
} while (pt != TR);
TR = TR0;
}
}
static int copy_complex_term(CELL *pt0, CELL *pt0_end, int share, int newattvs,
CELL *ptf, CELL *HLow USES_REGS) {
struct cp_frame *to_visit0,
*to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
int ground = TRUE;
HB = HR;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, copy_term_unk);
copy_term_nvar : {
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
if (ap2 >= HB && ap2 < HR) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
*ptf = AbsPair(HR);
ptf++;
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsPair(HR);
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
ground = TRUE;
pt0 = ap2 - 1;
pt0_end = ap2 + 1;
ptf = HR;
HR += 2;
if (HR > ASP - 2048) {
goto overflow;
}
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
if (ap2 >= HB && ap2 <= HR) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
#if MULTIPLE_STACKS
if (f == FunctorDBRef) {
DBRef entryref = DBRefOfTerm(d0);
if (entryref->Flags & LogUpdMask) {
LogUpdClause *luclause = (LogUpdClause *)entryref;
PELOCK(100, luclause->ClPred);
UNLOCK(luclause->ClPred->PELock);
} else {
LOCK(entryref->lock);
TRAIL_REF(entryref); /* So that fail will erase it */
INC_DBREF_COUNT(entryref);
UNLOCK(entryref->lock);
}
*ptf++ = d0; /* you can just copy other extensions. */
} else
#endif
if (!share) {
UInt sz;
*ptf++ = AbsAppl(HR); /* you can just copy other extensions. */
/* make sure to copy floats */
if (f == FunctorDouble) {
sz = sizeof(Float) / sizeof(CELL) + 2;
} else if (f == FunctorLongInt) {
sz = 3;
} else if (f == FunctorString) {
sz = 3 + ap2[1];
} else {
CELL *pt = ap2 + 1;
sz = 2 + sizeof(MP_INT) +
(((MP_INT *)(pt + 1))->_mp_alloc * sizeof(mp_limb_t));
}
if (HR + sz > ASP - 2048) {
goto overflow;
}
memmove((void *)HR, (void *)ap2, sz * sizeof(CELL));
HR += sz;
} else {
*ptf++ = d0; /* you can just copy other extensions. */
}
continue;
}
*ptf = AbsAppl(HR);
ptf++;
/* store the terms to visit */
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsAppl(HR);
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
ground = (f != FunctorMutable);
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
/* store the functor for the new term */
HR[0] = (CELL)f;
ptf = HR + 1;
HR += 1 + d0;
if (HR > ASP - 2048) {
goto overflow;
}
} else {
/* just copy atoms or integers */
*ptf++ = d0;
}
continue;
}
derefa_body(d0, ptd0, copy_term_unk, copy_term_nvar);
ground = FALSE;
if (ptd0 >= HLow && ptd0 < HR) {
/* we have already found this cell */
*ptf++ = (CELL)ptd0;
} else
#if COROUTINING
if (newattvs && IsAttachedTerm((CELL)ptd0)) {
/* if unbound, call the standard copy term routine */
struct cp_frame *bp;
CELL new;
bp = to_visit;
if (!GLOBAL_attas[ExtFromCell(ptd0)].copy_term_op(ptd0, &bp,
ptf PASS_REGS)) {
goto overflow;
}
to_visit = bp;
new = *ptf;
Bind_NonAtt(ptd0, new);
ptf++;
} else {
#endif
/* first time we met this term */
RESET_VARIABLE(ptf);
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
Bind_NonAtt(ptd0, (CELL)ptf);
ptf++;
#ifdef COROUTINING
}
#endif
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
if (ground && share) {
CELL old = to_visit->oldv;
CELL *newp = to_visit->to - 1;
CELL new = *newp;
*newp = old;
if (IsApplTerm(new))
HR = RepAppl(new);
else
HR = RepPair(new);
}
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
#ifdef RATIONAL_TREES
*pt0 = to_visit->oldv;
#endif
ground = (ground && to_visit->ground);
goto loop;
}
/* restore our nice, friendly, term to its original state */
clean_dirty_tr(TR0 PASS_REGS);
HB = HB0;
return ground;
overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
/* follow chain of multi-assigned variables */
return -1;
trail_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
{
tr_fr_ptr oTR = TR;
reset_trail(TR0);
if (!Yap_growtrail((oTR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
return -4;
}
return -2;
}
heap_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
LOCAL_Error_Size = (ADDR)AuxSp - (ADDR)to_visit0;
return -3;
}
static Term handle_cp_overflow(int res, tr_fr_ptr TR0, UInt arity, Term t) {
CACHE_REGS
XREGS[arity + 1] = t;
switch (res) {
case -1:
if (!Yap_gcl((ASP - HR) * sizeof(CELL), arity + 1, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage);
return 0L;
}
return Deref(XREGS[arity + 1]);
case -2:
return Deref(XREGS[arity + 1]);
case -3: {
UInt size = LOCAL_Error_Size;
LOCAL_Error_Size = 0L;
if (size > 4 * 1024 * 1024)
size = 4 * 1024 * 1024;
if (!Yap_ExpandPreAllocCodeSpace(size, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, TermNil, LOCAL_ErrorMessage);
return 0L;
}
}
return Deref(XREGS[arity + 1]);
case -4:
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), FALSE)) {
Yap_Error(RESOURCE_ERROR_TRAIL, TermNil, LOCAL_ErrorMessage);
return 0L;
}
return Deref(XREGS[arity + 1]);
default:
return 0L;
}
}
static Term CopyTerm(Term inp, UInt arity, int share, int newattvs USES_REGS) {
Term t = Deref(inp);
tr_fr_ptr TR0 = TR;
if (IsVarTerm(t)) {
#if COROUTINING
if (newattvs && IsAttachedTerm(t)) {
CELL *Hi;
int res;
restart_attached:
*HR = t;
Hi = HR + 1;
HR += 2;
if ((res = copy_complex_term(Hi - 2, Hi - 1, share, newattvs, Hi,
Hi PASS_REGS)) < 0) {
HR = Hi - 1;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_attached;
}
return Hi[0];
}
#endif
return MkVarTerm();
} else if (IsPrimitiveTerm(t)) {
return t;
} else if (IsPairTerm(t)) {
Term tf;
CELL *ap;
CELL *Hi;
restart_list:
ap = RepPair(t);
Hi = HR;
tf = AbsPair(HR);
HR += 2;
{
int res;
if ((res = copy_complex_term(ap - 1, ap + 1, share, newattvs, Hi,
Hi PASS_REGS)) < 0) {
HR = Hi;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_list;
} else if (res && share) {
HR = Hi;
return t;
}
}
return tf;
} else {
Functor f = FunctorOfTerm(t);
Term tf;
CELL *HB0;
CELL *ap;
restart_appl:
f = FunctorOfTerm(t);
HB0 = HR;
ap = RepAppl(t);
tf = AbsAppl(HR);
HR[0] = (CELL)f;
HR += 1 + ArityOfFunctor(f);
if (HR > ASP - 128) {
HR = HB0;
if ((t = handle_cp_overflow(-1, TR0, arity, t)) == 0L)
return FALSE;
goto restart_appl;
} else {
int res;
if ((res = copy_complex_term(ap, ap + ArityOfFunctor(f), share, newattvs,
HB0 + 1, HB0 PASS_REGS)) < 0) {
HR = HB0;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_appl;
} else if (res && share && FunctorOfTerm(t) != FunctorMutable) {
HR = HB0;
return t;
}
}
return tf;
}
}
Term Yap_CopyTerm(Term inp) {
CACHE_REGS
return CopyTerm(inp, 0, TRUE, TRUE PASS_REGS);
}
Term Yap_CopyTermNoShare(Term inp) {
CACHE_REGS
return CopyTerm(inp, 0, FALSE, FALSE PASS_REGS);
}
static Int p_copy_term(USES_REGS1) /* copy term t to a new instance */
{
Term t = CopyTerm(ARG1, 2, TRUE, TRUE PASS_REGS);
if (t == 0L)
return FALSE;
/* be careful, there may be a stack shift here */
return Yap_unify(ARG2, t);
}
static Int p_duplicate_term(USES_REGS1) /* copy term t to a new instance */
{
Term t = CopyTerm(ARG1, 2, FALSE, TRUE PASS_REGS);
if (t == 0L)
return FALSE;
/* be careful, there may be a stack shift here */
return Yap_unify(ARG2, t);
}
static Int
p_copy_term_no_delays(USES_REGS1) /* copy term t to a new instance */
{
Term t = CopyTerm(ARG1, 2, TRUE, FALSE PASS_REGS);
if (t == 0L) {
return FALSE;
}
/* be careful, there may be a stack shift here */
return (Yap_unify(ARG2, t));
}
typedef struct bp_frame {
CELL *start_cp;
CELL *end_cp;
CELL *to;
CELL *oldp;
CELL oldv;
} bp_frame_t;
typedef struct copy_frame {
CELL *start_cp;
CELL *end_cp;
CELL *to;
} copy_frame_t;
static Term add_to_list(Term inp, Term v, Term t PASS_REGS) {
Term ta[2];
ta[0] = v;
ta[1] = t;
return MkPairTerm(Yap_MkApplTerm(FunctorEq, 2, ta), inp);
}
static int break_rationals_complex_term(CELL *pt0, CELL *pt0_end, CELL *ptf,
Term *vout, Term vin,
CELL *HLow USES_REGS) {
struct bp_frame *to_visit0,
*to_visit = (struct bp_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
HB = HR;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, copy_term_unk);
copy_term_nvar : {
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
fprintf(stderr, "%ld \n", RepPair(ap2[0]) - ptf);
if (IsVarTerm(ap2[0]) && IN_BETWEEN(HB, (ap2[0]), HR)) {
Term v = MkVarTerm();
*ptf = v;
vin = add_to_list(vin, (CELL)(ptf), AbsPair(ptf));
ptf++;
continue;
}
if (to_visit + 1 >= (struct bp_frame *)AuxSp) {
goto heap_overflow;
}
*ptf++ = (CELL)(HR);
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldp = ap2;
d0 = to_visit->oldv = ap2[0];
/* fool the system into thinking we had a variable there */
to_visit++;
pt0 = ap2;
pt0_end = ap2 + 1;
ptf = HR;
*ap2 = AbsPair(HR);
HR += 2;
if (HR > ASP - 2048) {
goto overflow;
}
if (IsVarTerm(d0) && d0 == (CELL)ap2) {
RESET_VARIABLE(ptf);
ptf++;
continue;
}
d0 = Deref(d0);
if (!IsVarTerm(d0)) {
goto copy_term_nvar;
} else {
*ptf++ = d0;
}
continue;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0) + 1;
f = (Functor)(ap2[-1]);
if (IsExtensionFunctor(f)) {
*ptf++ = d0; /* you can just copy other extensions. */
continue;
}
if (IsApplTerm(ap2[0]) && IN_BETWEEN(HB, RepAppl(ap2[0]), HR)) {
RESET_VARIABLE(ptf);
vin = add_to_list(vin, (CELL)ptf, ap2[0]);
ptf++;
continue;
}
arity_t arity = ArityOfFunctor(f);
if (to_visit + 1 >= (struct bp_frame *)AuxSp) {
goto heap_overflow;
}
*ptf++ = AbsAppl(HR);
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldp = ap2;
d0 = to_visit->oldv = ap2[0];
/* fool the system into thinking we had a variable there */
to_visit++;
pt0 = ap2;
pt0_end = ap2 + (arity - 1);
ptf = HR;
if (HR > ASP - 2048) {
goto overflow;
}
*ptf++ = (CELL)f;
*ap2 = AbsAppl(HR);
HR += (arity + 1);
if (IsVarTerm(d0) && d0 == (CELL)(ap2)) {
RESET_VARIABLE(ptf);
ptf++;
continue;
}
d0 = Deref(d0);
if (!IsVarTerm(d0)) {
goto copy_term_nvar;
} else {
*ptf++ = d0;
}
continue;
} else {
/* just copy atoms or integers */
*ptf++ = d0;
}
continue;
}
derefa_body(d0, ptd0, copy_term_unk, copy_term_nvar);
*ptf++ = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
*to_visit->oldp = to_visit->oldv;
ptf = to_visit->to;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
goto loop;
}
/* restore our nice, friendly, term to its original state */
HB = HB0;
*vout = vin;
return true;
overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*to_visit->oldp = to_visit->oldv;
}
#endif
reset_trail(TR0);
/* follow chain of multi-assigned variables */
return -1;
heap_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*to_visit->oldp = to_visit->oldv;
}
#endif
reset_trail(TR0);
LOCAL_Error_Size = (ADDR)AuxSp - (ADDR)to_visit0;
return -3;
}
Term Yap_BreakRational(Term inp, UInt arity, Term *to, Term ti USES_REGS) {
Term t = Deref(inp);
Term tii = ti;
tr_fr_ptr TR0 = TR;
if (IsVarTerm(t)) {
*to = ti;
return t;
} else if (IsPrimitiveTerm(t)) {
*to = ti;
return t;
} else if (IsPairTerm(t)) {
CELL *ap;
CELL *Hi;
restart_list:
ap = RepPair(t);
Hi = HR;
HR += 2;
{
Int res;
if ((res = break_rationals_complex_term(ap - 1, ap + 1, Hi, to, ti,
Hi PASS_REGS)) < 0) {
HR = Hi;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_list;
} else if (*to == tii) {
HR = Hi;
return t;
} else {
return AbsPair(Hi);
}
}
} else {
Functor f;
CELL *HB0;
CELL *ap;
restart_appl:
f = FunctorOfTerm(t);
if (IsExtensionFunctor(f)) {
*to = ti;
return t;
}
HB0 = HR;
ap = RepAppl(t);
HR[0] = (CELL)f;
arity = ArityOfFunctor(f);
HR += 1 + arity;
{
Int res;
if ((res = break_rationals_complex_term(ap, ap + (arity), HB0 + 1, to, ti,
HB0 PASS_REGS)) < 0) {
HR = HB0;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_appl;
} else if (*to == ti) {
HR = HB0;
return t;
} else {
return AbsAppl(HB0);
}
}
}
}
static int break_complex_term(CELL *pt0, CELL *pt0_end, CELL *ptf, Term *of,
Term oi, CELL *HLow USES_REGS) {
struct copy_frame *to_visit0,
*to_visit = (struct copy_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
CELL new = 0L;
HB = HLow;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
if (new) {
/* mark cell as pointing to new copy */
/* we can only mark after reading the value of the first argument */
MaBind(pt0, new);
new = 0L;
}
deref_head(d0, break_rationals_unk);
break_rationals_nvar : {
CELL first;
CELL *newp;
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
if (IsVarTerm(first = *ap2) && (newp = (CELL *)first) && newp >= HB &&
newp < HR) {
// found a marked term:
found_term:
if (!IsVarTerm(*newp)) {
Term v = (CELL)newp, t = *newp;
RESET_VARIABLE(newp);
oi = add_to_list(oi, v, t PASS_REGS);
}
*ptf++ = (CELL)newp;
continue;
}
new = (CELL)ptf;
*ptf++ = AbsPair(HR);
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct copy_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit++;
}
pt0 = ap2 - 1;
pt0_end = ap2 + 1;
ptf = HR;
HR += 2;
if (HR > ASP - 2048) {
goto overflow;
}
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
*ptf++ = d0; /* you can just share extensions, what about DB? */
continue;
}
if (IsVarTerm(first = ap2[1]) && (newp = (CELL *)first) && newp >= HB &&
newp < HR) {
goto found_term;
}
// new
/* store the terms to visit */
new = (CELL)ptf;
*ptf++ = AbsAppl(HR);
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct copy_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit++;
}
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
/* store the functor for the new term */
HR[0] = (CELL)f;
ptf = HR + 1;
HR += 1 + d0;
if (HR > ASP - 2048) {
goto overflow;
}
} else {
/* just copy atoms or integers */
*ptf++ = d0;
}
continue;
}
derefa_body(d0, ptd0, break_rationals_unk, break_rationals_nvar);
*ptf++ = d0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
goto loop;
}
/* restore our nice, friendly, term to its original state */
HB = HB0;
reset_trail(TR0);
*of = oi;
return TRUE;
overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
}
reset_trail(TR0);
/* follow chain of multi-assigned variables */
return -1;
heap_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
}
reset_trail(TR0);
LOCAL_Error_Size = (ADDR)AuxSp - (ADDR)to_visit0;
return -3;
}
Term Yap_BreakTerm(Term inp, UInt arity, Term *to, Term ti USES_REGS) {
Term t = Deref(inp);
tr_fr_ptr TR0 = TR;
if (IsVarTerm(t)) {
*to = ti;
return t;
} else if (IsPrimitiveTerm(t)) {
*to = ti;
return t;
} else {
CELL *ap;
CELL *Hi = HR;
restart_term:
ap = &t;
Hi = HR++;
{
int res;
if ((res = break_complex_term(ap - 1, ap, Hi, to, ti, Hi PASS_REGS)) <
0) {
HR = Hi;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_term;
}
}
return Hi[0];
}
}
static Int p_break_rational(USES_REGS1) {
Term tf;
return Yap_unify(ARG2, Yap_BreakTerm(ARG1, 4, &tf, ARG4 PASS_REGS)) &&
Yap_unify(tf, ARG3);
}
static Int p_break_rational3(USES_REGS1) {
Term tf;
return Yap_unify(ARG2, Yap_BreakTerm(ARG1, 4, &tf, TermNil PASS_REGS)) &&
Yap_unify(tf, ARG3);
}
/*
FAST EXPORT ROUTINE. Export a Prolog term to something like:
CELL 0: offset for start of term
CELL 1: size of actual term (to be copied to stack)
CELL 2: the original term (just for reference)
Atoms and functors:
- atoms are either:
0 and a char *string
-1 and a wchar_t *string
- functors are a CELL with arity and a string.
Compiled Term.
*/
static inline CELL *CellDifH(CELL *hptr, CELL *hlow) {
return (CELL *)((char *)hptr - (char *)hlow);
}
#define AdjustSizeAtom(X) (((CELL)(X) + (8 - 1)) & ~(8 - 1))
static inline CELL *AdjustSize(CELL *x, char *buf) {
UInt offset = (char *)x - buf;
return (CELL *)(buf + AdjustSizeAtom(offset));
}
/* export an atom from the symbol table to a buffer */
static inline Atom export_atom(Atom at, char **hpp, char *buf, size_t len) {
char *ptr, *p0;
size_t sz;
ptr = *hpp;
ptr = (char *)AdjustSize((CELL *)ptr, buf);
p0 = ptr;
*ptr++ = 0;
sz = strlen(RepAtom(at)->StrOfAE);
if (sz + 1 >= len)
return (Atom)NULL;
strcpy(ptr, RepAtom(at)->StrOfAE);
*hpp = ptr + (sz + 1);
return (Atom)(p0 - buf);
}
/* place a buffer: first arity then the atom */
static inline Functor export_functor(Functor f, char **hpp, char *buf,
size_t len) {
CELL *hptr = AdjustSize((CELL *)*hpp, buf);
UInt arity = ArityOfFunctor(f);
if (2 * sizeof(CELL) >= len)
return NULL;
hptr[0] = arity;
*hpp = (char *)(hptr + 1);
if (!export_atom(NameOfFunctor(f), hpp, buf, len))
return NULL;
/* increment so that it cannot be mistaken with a functor on the stack,
(increment is used as a tag ........01
*/
return (Functor)(((char *)hptr - buf) + 1);
}
#define export_derefa_body(D, A, LabelUnk, LabelNonVar) \
do { \
if ((CELL *)(D) < CellDifH(HR, HLow)) { \
(A) = (CELL *)(D); \
break; \
} \
(A) = (CELL *)(D); \
(D) = *(CELL *)(D); \
if (!IsVarTerm(D)) \
goto LabelNonVar; \
LabelUnk:; \
} while (Unsigned(A) != (D))
static int export_term_to_buffer(Term inpt, char *buf, char *bptr, CELL *t0,
CELL *tf, size_t len) {
char *td = bptr;
CELL *bf = (CELL *)buf;
if (buf + len < (char *)((CELL *)td + (tf - t0))) {
return FALSE;
}
memmove((void *)td, (void *)t0, (tf - t0) * sizeof(CELL));
bf[0] = (td - buf);
bf[1] = (tf - t0);
bf[2] = inpt;
return bf[0] + sizeof(CELL) * bf[1];
}
static size_t export_complex_term(Term tf, CELL *pt0, CELL *pt0_end, char *buf,
size_t len0, int newattvs, CELL *ptf,
CELL *HLow USES_REGS) {
struct cp_frame *to_visit0,
*to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
int ground = TRUE;
char *bptr = buf + 3 * sizeof(CELL);
size_t len = len0;
HB = HLow;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, export_term_unk);
export_term_nvar : {
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
if (ap2 < CellDifH(HR, HLow)) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
*ptf = AbsPair(CellDifH(HR, HLow));
ptf++;
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsPair(CellDifH(HR, HLow));
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
pt0 = ap2 - 1;
pt0_end = ap2 + 1;
ptf = HR;
HR += 2;
if (HR > ASP - 2048) {
goto overflow;
}
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
if (ap2 < CellDifH(HR, HLow)) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
f = (Functor)(*ap2);
*ptf++ = AbsAppl(CellDifH(HR, HLow));
if (IsExtensionFunctor(f)) {
UInt sz;
/* make sure to export floats */
if (f == FunctorDouble) {
sz = sizeof(Float) / sizeof(CELL) + 2;
} else if (f == FunctorLongInt) {
sz = 3;
} else if (f == FunctorString) {
sz = 3 + ap2[1];
} else {
CELL *pt = ap2 + 1;
sz = 2 + sizeof(MP_INT) +
(((MP_INT *)(pt + 1))->_mp_alloc * sizeof(mp_limb_t));
}
if (HR + sz > ASP - 2048) {
goto overflow;
}
memmove((void *)HR, (void *)ap2, sz * sizeof(CELL));
HR += sz;
continue;
}
/* store the terms to visit */
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsAppl(HR);
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
ground = (f != FunctorMutable);
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
/* store the functor for the new term */
ptf = HR + 1;
HR += 1 + d0;
if (HR > ASP - 2048) {
goto overflow;
}
ptf[-1] = (CELL)export_functor(f, &bptr, buf, len);
len = len0 - (bptr - buf);
if (HR > ASP - 2048) {
goto overflow;
}
} else {
if (IsAtomTerm(d0)) {
*ptf = MkAtomTerm(export_atom(AtomOfTerm(d0), &bptr, buf, len));
ptf++;
len = len0 - (bptr - buf);
} else {
*ptf++ = d0;
}
}
continue;
}
export_derefa_body(d0, ptd0, export_term_unk, export_term_nvar);
ground = FALSE;
if (ptd0 < CellDifH(HR, HLow)) {
/* we have already found this cell */
*ptf++ = (CELL)ptd0;
} else {
#if COROUTINING
if (newattvs && IsAttachedTerm((CELL)ptd0) && FALSE) {
/* if unbound, call the standard export term routine */
struct cp_frame *bp;
CELL new;
bp = to_visit;
if (!GLOBAL_attas[ExtFromCell(ptd0)].copy_term_op(ptd0, &bp,
ptf PASS_REGS)) {
goto overflow;
}
to_visit = bp;
new = *ptf;
Bind_NonAtt(ptd0, new);
ptf++;
} else {
#endif
/* first time we met this term */
*ptf = (CELL)CellDifH(ptf, HLow);
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
Bind_NonAtt(ptd0, (CELL)ptf);
ptf++;
#ifdef COROUTINING
}
#endif
}
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
#ifdef RATIONAL_TREES
*pt0 = to_visit->oldv;
#endif
ground = (ground && to_visit->ground);
goto loop;
}
/* restore our nice, friendly, term to its original state */
clean_dirty_tr(TR0 PASS_REGS);
HB = HB0;
return export_term_to_buffer(tf, buf, bptr, HLow, HR, len0);
overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
/* follow chain of multi-assigned variables */
return -1;
trail_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
{
tr_fr_ptr oTR = TR;
reset_trail(TR0);
if (!Yap_growtrail((oTR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
return -4;
}
return -2;
}
heap_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
LOCAL_Error_Size = (ADDR)AuxSp - (ADDR)to_visit0;
return -3;
}
static size_t ExportTerm(Term inp, char *buf, size_t len, UInt arity,
int newattvs USES_REGS) {
Term t = Deref(inp);
tr_fr_ptr TR0 = TR;
size_t res = 0;
CELL *Hi = HR;
do {
if (IsVarTerm(t) || IsIntTerm(t)) {
return export_term_to_buffer(t, buf, buf + 3 * sizeof(CELL), &inp, &inp,
len);
}
if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
char *b = buf + 3 * sizeof(CELL);
export_atom(at, &b, b, len - 3 * sizeof(CELL));
return export_term_to_buffer(t, buf, b, &inp, &inp, len);
}
if ((Int)res < 0) {
HR = Hi;
TR = TR0;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return res;
}
Hi = HR;
TR0 = TR;
res = export_complex_term(inp, &t - 1, &t, buf, len, newattvs, Hi,
Hi PASS_REGS);
} while ((Int)res < 0);
return res;
}
size_t Yap_ExportTerm(Term inp, char *buf, size_t len, UInt arity) {
CACHE_REGS
return ExportTerm(inp, buf, len, arity, TRUE PASS_REGS);
}
static CELL *ShiftPtr(CELL t, char *base) { return (CELL *)(base + t); }
static Atom addAtom(Atom t, char *buf) {
char *s = buf + (UInt)t;
if (!*s) {
return Yap_LookupAtom(s + 1);
}
return NULL;
}
static UInt FetchFunctor(CELL *pt, char *buf) {
CELL *ptr = (CELL *)(buf + (*pt - 1));
// do arity first
UInt arity = *ptr++;
Atom name, at;
// and then an atom
ptr = AdjustSize(ptr, buf);
name = (Atom)((char *)ptr - buf);
at = addAtom(name, buf);
*pt = (CELL)Yap_MkFunctor(at, arity);
return arity;
}
static CELL *import_compound(CELL *hp, char *abase, char *buf, CELL *amax);
static CELL *import_pair(CELL *hp, char *abase, char *buf, CELL *amax);
static CELL *import_arg(CELL *hp, char *abase, char *buf, CELL *amax) {
Term t = *hp;
if (IsVarTerm(t)) {
hp[0] = (CELL)ShiftPtr(t, abase);
} else if (IsAtomTerm(t)) {
hp[0] = MkAtomTerm(addAtom(AtomOfTerm(t), buf));
} else if (IsPairTerm(t)) {
CELL *newp = ShiftPtr((CELL)RepPair(t), abase);
hp[0] = AbsPair(newp);
if (newp > amax) {
amax = import_pair(newp, abase, buf, newp);
}
} else if (IsApplTerm(t)) {
CELL *newp = ShiftPtr((CELL)RepAppl(t), abase);
hp[0] = AbsAppl(newp);
if (newp > amax) {
amax = import_compound(newp, abase, buf, newp);
}
}
return amax;
}
static CELL *import_compound(CELL *hp, char *abase, char *buf, CELL *amax) {
Functor f = (Functor)*hp;
UInt ar, i;
if (!((CELL)f & 1) && IsExtensionFunctor(f))
return amax;
ar = FetchFunctor(hp, buf);
for (i = 1; i <= ar; i++) {
amax = import_arg(hp + i, abase, buf, amax);
}
return amax;
}
static CELL *import_pair(CELL *hp, char *abase, char *buf, CELL *amax) {
amax = import_arg(hp, abase, buf, amax);
amax = import_arg(hp + 1, abase, buf, amax);
return amax;
}
Term Yap_ImportTerm(char *buf) {
CACHE_REGS
CELL *bc = (CELL *)buf;
size_t sz = bc[1];
Term tinp, tret;
tinp = bc[2];
if (IsVarTerm(tinp))
return MkVarTerm();
else if (IsIntTerm(tinp))
return tinp;
else if (IsAtomTerm(tinp)) {
tret = MkAtomTerm(addAtom(NULL, (char *)(bc + 3)));
return tret;
}
// call the gc/stack shifter mechanism
// if not enough stack available
while (HR + sz > ASP - 4096) {
if (!Yap_gcl((sz + 4096) * sizeof(CELL), PP->ArityOfPE, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, LOCAL_ErrorMessage);
return 0L;
}
}
memmove(HR, buf + bc[0], sizeof(CELL) * sz);
if (IsApplTerm(tinp)) {
tret = AbsAppl(HR);
import_compound(HR, (char *)HR, buf, HR);
} else {
tret = AbsPair(HR);
import_pair(HR, (char *)HR, buf, HR);
}
HR += sz;
return tret;
}
size_t Yap_SizeOfExportedTerm(char *buf) {
CELL *bc = (CELL *)buf;
return bc[0] + bc[1] * sizeof(CELL);
}
static Int p_export_term(USES_REGS1) {
size_t sz = 4096, osz;
char *export_buf;
do {
export_buf = malloc(sz);
if (!export_buf)
return FALSE;
if (!(osz = Yap_ExportTerm(ARG1, export_buf, sz, 1))) {
sz += 4096;
free(export_buf);
}
} while (!osz);
return Yap_unify(ARG3, MkIntegerTerm(osz)) &&
Yap_unify(ARG2, MkIntegerTerm((Int)export_buf));
}
static Int p_import_term(USES_REGS1) {
char *export_buf = (char *)IntegerOfTerm(Deref(ARG1));
if (!export_buf)
return FALSE;
Int out = Yap_unify(ARG2, Yap_ImportTerm(export_buf));
return out;
}
static Int p_kill_exported_term(USES_REGS1) {
char *export_buf = (char *)IntegerOfTerm(Deref(ARG1));
if (!export_buf)
return FALSE;
free(export_buf);
return TRUE;
}
static Term vars_in_complex_term(register CELL *pt0, register CELL *pt0_end,
Term inp USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
CELL output = AbsPair(HR);
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_in_term_unk);
vars_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
/* do or pt2 are unbound */
*ptd0 = TermNil;
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
HR[1] = AbsPair(HR + 2);
HR += 2;
HR[-2] = (CELL)ptd0;
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
if (HR != InitialH) {
/* close the list */
Term t2 = Deref(inp);
if (IsVarTerm(t2)) {
RESET_VARIABLE(HR - 1);
Yap_unify((CELL)(HR - 1), inp);
} else {
HR[-1] = t2; /* don't need to trail */
}
return (output);
} else {
return (inp);
}
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
aux_overflow:
LOCAL_Error_Size = (to_visit - to_visit0) * sizeof(CELL **);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_AUXILIARY_STACK;
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
return 0L;
}
static int expand_vts(int args USES_REGS) {
UInt expand = LOCAL_Error_Size;
yap_error_number yap_errno = LOCAL_Error_TYPE;
LOCAL_Error_Size = 0;
LOCAL_Error_TYPE = YAP_NO_ERROR;
if (yap_errno == RESOURCE_ERROR_TRAIL) {
/* Trail overflow */
if (!Yap_growtrail(expand, FALSE)) {
return FALSE;
}
} else if (yap_errno == RESOURCE_ERROR_AUXILIARY_STACK) {
/* Aux space overflow */
if (expand > 4 * 1024 * 1024)
expand = 4 * 1024 * 1024;
if (!Yap_ExpandPreAllocCodeSpace(expand, NULL, TRUE)) {
return FALSE;
}
} else {
if (!Yap_gcl(expand, 3, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in term_variables");
return FALSE;
}
}
return TRUE;
}
static Int
p_variables_in_term(USES_REGS1) /* variables in term t */
{
Term out, inp;
int count;
restart:
count = 0;
inp = Deref(ARG2);
while (!IsVarTerm(inp) && IsPairTerm(inp)) {
Term t = HeadOfTerm(inp);
if (IsVarTerm(t)) {
CELL *ptr = VarOfTerm(t);
*ptr = TermFoundVar;
TrailTerm(TR++) = t;
count++;
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
clean_tr(TR - count PASS_REGS);
if (!Yap_growtrail(count * sizeof(tr_fr_ptr *), FALSE)) {
return FALSE;
}
goto restart;
}
}
inp = TailOfTerm(inp);
}
do {
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
out = AbsPair(HR);
HR += 2;
RESET_VARIABLE(HR - 2);
RESET_VARIABLE(HR - 1);
Yap_unify((CELL)(HR - 2), ARG1);
Yap_unify((CELL)(HR - 1), ARG2);
} else if (IsPrimitiveTerm(t))
out = ARG2;
else if (IsPairTerm(t)) {
out =
vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1, ARG2 PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = vars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
ARG2 PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
clean_tr(TR - count PASS_REGS);
return Yap_unify(ARG3, out);
}
static Int p_term_variables(USES_REGS1) /* variables in term t */
{
Term out;
if (!Yap_IsListOrPartialListTerm(ARG2)) {
Yap_Error(TYPE_ERROR_LIST, ARG2, "term_variables/2");
return FALSE;
}
do {
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Term out = Yap_MkNewPairTerm();
return Yap_unify(t, HeadOfTerm(out)) &&
Yap_unify(TermNil, TailOfTerm(out)) && Yap_unify(out, ARG2);
} else if (IsPrimitiveTerm(t)) {
return Yap_unify(TermNil, ARG2);
} else if (IsPairTerm(t)) {
out = vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1,
TermNil PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = vars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
TermNil PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
return Yap_unify(ARG2, out);
}
/**
* Exports a nil-terminated list with all the variables in a term.
* @param[t] the term
* @param[arity] the arity of the calling predicate (required for exact garbage
* collection).
* @param[USES_REGS] threading
*/
Term Yap_TermVariables(
Term t, UInt arity USES_REGS) /* variables in term t */
{
Term out;
do {
t = Deref(t);
if (IsVarTerm(t)) {
return MkPairTerm(t, TermNil);
} else if (IsPrimitiveTerm(t)) {
return TermNil;
} else if (IsPairTerm(t)) {
out = vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1,
TermNil PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = vars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
TermNil PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(arity PASS_REGS))
return FALSE;
}
} while (out == 0L);
return out;
}
typedef struct att_rec {
CELL *beg, *end;
CELL oval;
} att_rec_t;
static Term attvars_in_complex_term(register CELL *pt0, register CELL *pt0_end,
Term inp USES_REGS) {
int lvl = push_text_stack();
att_rec_t *to_visit0, *to_visit = Malloc(1024 * sizeof(att_rec_t));
att_rec_t *to_visit_max;
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
CELL output = AbsPair(HR);
to_visit0 = to_visit;
to_visit_max = to_visit0 + 1024;
restart:
do {
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, attvars_in_term_unk);
attvars_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 32 >= to_visit_max) {
goto aux_overflow;
}
{
CELL *npt0 = RepPair(d0);
if (IsAtomicTerm(Deref(npt0[0]))) {
pt0 = npt0;
pt0_end = pt0 + 1;
continue;
}
}
#ifdef RATIONAL_TREES
to_visit->beg = pt0;
to_visit->end = pt0_end;
to_visit->oval = *pt0;
to_visit++;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = pt0 + 2;
} else if (IsApplTerm(d0)) {
Functor f;
CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 32 >= to_visit_max) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit->beg = pt0;
to_visit->end = pt0_end;
to_visit->oval = *pt0;
to_visit++;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
arity_t a = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + a;
}
continue;
}
derefa_body(d0, ptd0, attvars_in_term_unk, attvars_in_term_nvar);
if (IsAttVar(ptd0)) {
/* do or pt2 are unbound */
*ptd0 = TermNil;
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
TrailTerm(TR++) = (CELL)ptd0;
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
HR[1] = AbsPair(HR + 2);
HR += 2;
HR[-2] = (CELL)ptd0;
/* store the terms to visit */
if (to_visit + 32 >= to_visit_max) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit->beg = pt0;
to_visit->end = pt0_end;
to_visit->oval = *pt0;
to_visit++;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = &RepAttVar(ptd0)->Value;
pt0_end = &RepAttVar(ptd0)->Atts;
}
continue;
}
/* Do we still have compound terms to visit */
if (to_visit == to_visit0)
break;
#ifdef RATIONAL_TREES
to_visit--;
pt0 = to_visit->beg;
pt0_end = to_visit->end;
*pt0 = to_visit->oval;
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
} while (true);
clean_tr(TR0 PASS_REGS);
pop_text_stack(lvl);
if (HR != InitialH) {
/* close the list */
Term t2 = Deref(inp);
if (IsVarTerm(t2)) {
RESET_VARIABLE(HR - 1);
Yap_unify((CELL)(HR - 1), t2);
} else {
HR[-1] = t2; /* don't need to trail */
}
return (output);
} else {
return (inp);
}
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->beg;
*pt0 = to_visit->oval;
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
pop_text_stack(lvl);
HR = InitialH;
return 0L;
aux_overflow : {
size_t d1 = to_visit - to_visit0;
size_t d2 = to_visit_max - to_visit0;
to_visit0 = Realloc(to_visit0, d2 * sizeof(CELL *) + 64 * 1024);
to_visit = to_visit0 + d1;
to_visit_max = to_visit0 + (d2 + (64 * 1024)) / sizeof(CELL **);
}
pt0--;
goto restart;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->beg;
*pt0 = to_visit->oval;
}
#endif
clean_tr(TR0 PASS_REGS);
pop_text_stack(lvl);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
return 0L;
}
static Int p_term_attvars(USES_REGS1) /* variables in term t */
{
Term out;
do {
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
out = attvars_in_complex_term(VarOfTerm(t) - 1, VarOfTerm(t) + 1,
TermNil PASS_REGS);
} else if (IsPrimitiveTerm(t)) {
return Yap_unify(TermNil, ARG2);
} else if (IsPairTerm(t)) {
out = attvars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1,
TermNil PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f))
return Yap_unify(TermNil, ARG2);
out = attvars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
TermNil PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
return Yap_unify(ARG2, out);
}
static Int p_term_variables3(USES_REGS1) /* variables in term t */
{
Term out;
do {
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Term out = Yap_MkNewPairTerm();
return Yap_unify(t, HeadOfTerm(out)) &&
Yap_unify(ARG3, TailOfTerm(out)) && Yap_unify(out, ARG2);
} else if (IsPrimitiveTerm(t)) {
return Yap_unify(ARG2, ARG3);
} else if (IsPairTerm(t)) {
out =
vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1, ARG3 PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = vars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
ARG3 PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
return Yap_unify(ARG2, out);
}
static Term vars_within_complex_term(register CELL *pt0, register CELL *pt0_end,
Term inp USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
CELL output = AbsPair(HR);
to_visit0 = to_visit;
while (!IsVarTerm(inp) && IsPairTerm(inp)) {
Term t = HeadOfTerm(inp);
if (IsVarTerm(t)) {
CELL *ptr = VarOfTerm(t);
*ptr = TermFoundVar;
TrailTerm(TR++) = t;
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
}
inp = TailOfTerm(inp);
}
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_within_term_unk);
vars_within_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
} else if (d0 == TermFoundVar) {
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
HR[1] = AbsPair(HR + 2);
HR += 2;
HR[-2] = (CELL)ptd0;
*ptd0 = TermNil;
}
continue;
}
derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar);
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
if (HR != InitialH) {
HR[-1] = TermNil;
return output;
} else {
return TermNil;
}
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
aux_overflow:
LOCAL_Error_Size = (to_visit - to_visit0) * sizeof(CELL **);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_AUXILIARY_STACK;
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
return 0L;
}
static Int
p_variables_within_term(USES_REGS1) /* variables within term t */
{
Term out;
do {
Term t = Deref(ARG2);
if (IsVarTerm(t)) {
out = vars_within_complex_term(VarOfTerm(t) - 1, VarOfTerm(t),
Deref(ARG1) PASS_REGS);
} else if (IsPrimitiveTerm(t))
out = TermNil;
else if (IsPairTerm(t)) {
out = vars_within_complex_term(RepPair(t) - 1, RepPair(t) + 1,
Deref(ARG1) PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = vars_within_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
Deref(ARG1) PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
return Yap_unify(ARG3, out);
}
static Term new_vars_in_complex_term(register CELL *pt0, register CELL *pt0_end,
Term inp USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
CELL output = AbsPair(HR);
to_visit0 = to_visit;
while (!IsVarTerm(inp) && IsPairTerm(inp)) {
Term t = HeadOfTerm(inp);
if (IsVarTerm(t)) {
CELL *ptr = VarOfTerm(t);
*ptr = TermFoundVar;
TrailTerm(TR++) = t;
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
}
inp = TailOfTerm(inp);
}
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_within_term_unk);
vars_within_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar);
/* do or pt2 are unbound */
*ptd0 = TermNil;
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
HR[1] = AbsPair(HR + 2);
HR += 2;
HR[-2] = (CELL)ptd0;
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
if (HR != InitialH) {
HR[-1] = TermNil;
return output;
} else {
return TermNil;
}
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
aux_overflow:
LOCAL_Error_Size = (to_visit - to_visit0) * sizeof(CELL **);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_AUXILIARY_STACK;
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
return 0L;
}
static Int
p_new_variables_in_term(USES_REGS1) /* variables within term t */
{
Term out;
do {
Term t = Deref(ARG2);
if (IsVarTerm(t)) {
out = new_vars_in_complex_term(VarOfTerm(t) - 1, VarOfTerm(t),
Deref(ARG1) PASS_REGS);
} else if (IsPrimitiveTerm(t))
out = TermNil;
else if (IsPairTerm(t)) {
out = new_vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1,
Deref(ARG1) PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = new_vars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
Deref(ARG1) PASS_REGS);
}
if (out == 0L) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
return Yap_unify(ARG3, out);
}
static Term free_vars_in_complex_term(register CELL *pt0,
register CELL *pt0_end,
tr_fr_ptr TR0 USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
CELL *InitialH = HR;
*HR++ = MkAtomTerm(AtomDollar);
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_within_term_unk);
vars_within_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar);
/* do or pt2 are unbound */
*ptd0 = TermNil;
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
HR[0] = (CELL)ptd0;
HR++;
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
if (HR != InitialH + 1) {
InitialH[0] = (CELL)Yap_MkFunctor(AtomDollar, (HR - InitialH) - 1);
return AbsAppl(InitialH);
} else {
return MkAtomTerm(AtomDollar);
}
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
aux_overflow:
LOCAL_Error_Size = (to_visit - to_visit0) * sizeof(CELL **);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_AUXILIARY_STACK;
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
return 0L;
}
static Term bind_vars_in_complex_term(register CELL *pt0,
register CELL *pt0_end,
tr_fr_ptr TR0 USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
CELL *InitialH = HR;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_within_term_unk);
vars_within_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
/* store the terms to visit */
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_within_term_unk, vars_within_term_nvar);
/* do or pt2 are unbound */
*ptd0 = TermFoundVar;
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
return TermNil;
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
aux_overflow:
LOCAL_Error_Size = (to_visit - to_visit0) * sizeof(CELL **);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_AUXILIARY_STACK;
clean_tr(TR0 PASS_REGS);
Yap_ReleasePreAllocCodeSpace((ADDR)to_visit0);
HR = InitialH;
return 0L;
}
static Int
p_free_variables_in_term(USES_REGS1) /* variables within term t */
{
Term out;
Term t, t0;
Term found_module = 0L;
do {
tr_fr_ptr TR0 = TR;
t = t0 = Deref(ARG1);
while (!IsVarTerm(t) && IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (f == FunctorHat) {
out = bind_vars_in_complex_term(RepAppl(t), RepAppl(t) + 1,
TR0 PASS_REGS);
if (out == 0L) {
goto trail_overflow;
}
} else if (f == FunctorModule) {
found_module = ArgOfTerm(1, t);
} else if (f == FunctorCall) {
t = ArgOfTerm(1, t);
continue;
} else if (f == FunctorExecuteInMod) {
found_module = ArgOfTerm(2, t);
t = ArgOfTerm(1, t);
continue;
} else {
break;
}
t = ArgOfTerm(2, t);
}
if (IsVarTerm(t)) {
out = free_vars_in_complex_term(VarOfTerm(t) - 1, VarOfTerm(t),
TR0 PASS_REGS);
} else if (IsPrimitiveTerm(t))
out = TermNil;
else if (IsPairTerm(t)) {
out = free_vars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1,
TR0 PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = free_vars_in_complex_term(
RepAppl(t), RepAppl(t) + ArityOfFunctor(f), TR0 PASS_REGS);
}
if (out == 0L) {
trail_overflow:
if (!expand_vts(3 PASS_REGS))
return FALSE;
}
} while (out == 0L);
if (found_module && t != t0) {
Term ts[2];
ts[0] = found_module;
ts[1] = t;
t = Yap_MkApplTerm(FunctorModule, 2, ts);
}
return Yap_unify(ARG2, t) && Yap_unify(ARG3, out);
}
static Term non_singletons_in_complex_term(register CELL *pt0,
register CELL *pt0_end USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
CELL output = AbsPair(HR);
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_in_term_unk);
vars_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
} else if (d0 == TermFoundVar) {
CELL *pt2 = pt0;
while (IsVarTerm(*pt2))
pt2 = (CELL *)(*pt2);
HR[0] = (CELL)pt2;
HR[1] = AbsPair(HR + 2);
HR += 2;
*pt2 = TermRefoundVar;
}
continue;
}
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
/* do or pt2 are unbound */
*ptd0 = TermFoundVar;
/* next make sure we can recover the variable again */
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
clean_tr(TR0 PASS_REGS);
if (HR != InitialH) {
/* close the list */
RESET_VARIABLE(HR - 1);
Yap_unify((CELL)(HR - 1), ARG2);
return output;
} else {
return ARG2;
}
aux_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
if (HR != InitialH) {
/* close the list */
RESET_VARIABLE(HR - 1);
}
return 0L;
}
static Int p_non_singletons_in_term(
USES_REGS1) /* non_singletons in term t */
{
Term t;
Term out;
while (TRUE) {
t = Deref(ARG1);
if (IsVarTerm(t)) {
out = ARG2;
} else if (IsPrimitiveTerm(t)) {
out = ARG2;
} else if (IsPairTerm(t)) {
out = non_singletons_in_complex_term(RepPair(t) - 1,
RepPair(t) + 1 PASS_REGS);
} else {
out = non_singletons_in_complex_term(
RepAppl(t), RepAppl(t) + ArityOfFunctor(FunctorOfTerm(t)) PASS_REGS);
}
if (out != 0L) {
return Yap_unify(ARG3, out);
} else {
if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, ARG1,
"overflow in singletons");
return FALSE;
}
}
}
}
static Int ground_complex_term(register CELL *pt0,
register CELL *pt0_end USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_in_term_unk);
vars_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
}
#endif
return FALSE;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
return TRUE;
aux_overflow:
/* unwind stack */
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
return -1;
}
bool Yap_IsGroundTerm(Term t) {
CACHE_REGS
while (TRUE) {
Int out;
if (IsVarTerm(t)) {
return FALSE;
} else if (IsPrimitiveTerm(t)) {
return TRUE;
} else if (IsPairTerm(t)) {
if ((out = ground_complex_term(RepPair(t) - 1,
RepPair(t) + 1 PASS_REGS)) >= 0) {
return out != 0;
}
} else {
Functor fun = FunctorOfTerm(t);
if (IsExtensionFunctor(fun))
return TRUE;
else if ((out = ground_complex_term(
RepAppl(t), RepAppl(t) + ArityOfFunctor(fun) PASS_REGS)) >=
0) {
return out != 0;
}
}
if (out < 0) {
*HR++ = t;
if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, ARG1, "overflow in ground");
return false;
}
t = *--HR;
}
}
}
static Int p_ground(USES_REGS1) /* ground(+T) */
{
return Yap_IsGroundTerm(Deref(ARG1));
}
static int SizeOfExtension(Term t) {
Functor f = FunctorOfTerm(t);
if (f == FunctorDouble) {
return 2 + sizeof(Float) / sizeof(CELL);
}
if (f == FunctorString) {
return 3 + RepAppl(t)[1];
}
if (f == FunctorLongInt) {
return 2 + sizeof(Float) / sizeof(CELL);
}
if (f == FunctorDBRef) {
return 0;
}
if (f == FunctorBigInt) {
CELL *pt = RepAppl(t) + 2;
return 3 + sizeof(MP_INT) +
(((MP_INT *)(pt))->_mp_alloc * sizeof(mp_limb_t));
}
return 0;
}
static Int sz_ground_complex_term(register CELL *pt0, register CELL *pt0_end,
int ground USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
Int sz = 0;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_in_term_unk);
vars_in_term_nvar : {
if (IsPairTerm(d0)) {
sz += 2;
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
sz += SizeOfExtension(d0);
continue;
}
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
sz += (1 + d0);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
if (!ground)
continue;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
}
#endif
return 0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
return sz;
aux_overflow:
/* unwind stack */
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
return -1;
}
int Yap_SizeGroundTerm(Term t, int ground) {
CACHE_REGS
if (IsVarTerm(t)) {
if (!ground)
return 1;
return 0;
} else if (IsPrimitiveTerm(t)) {
return 1;
} else if (IsPairTerm(t)) {
int sz = sz_ground_complex_term(RepPair(t) - 1, RepPair(t) + 1,
ground PASS_REGS);
if (sz <= 0)
return sz;
return sz + 2;
} else {
int sz = 0;
Functor fun = FunctorOfTerm(t);
if (IsExtensionFunctor(fun))
return 1 + SizeOfExtension(t);
sz = sz_ground_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(fun),
ground PASS_REGS);
if (sz <= 0)
return sz;
return 1 + ArityOfFunctor(fun) + sz;
}
}
static Int var_in_complex_term(register CELL *pt0, register CELL *pt0_end,
Term v USES_REGS) {
register CELL **to_visit0, **to_visit = (CELL **)Yap_PreAllocCodeSpace();
register tr_fr_ptr TR0 = TR;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, var_in_term_unk);
var_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
continue;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
if (to_visit + 1024 >= (CELL **)AuxSp) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = (CELL *)*pt0;
to_visit += 3;
*pt0 = TermNil;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
deref_body(d0, ptd0, var_in_term_unk, var_in_term_nvar);
if ((CELL)ptd0 == v) { /* we found it */
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
return (TRUE);
}
/* do or pt2 are unbound */
*ptd0 = TermNil;
/* next make sure noone will see this as a variable again */
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit -= 3;
pt0 = to_visit[0];
pt0_end = to_visit[1];
*pt0 = (CELL)to_visit[2];
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
clean_tr(TR0 PASS_REGS);
return FALSE;
aux_overflow:
/* unwind stack */
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit -= 3;
pt0 = to_visit[0];
*pt0 = (CELL)to_visit[2];
}
#endif
return -1;
}
static Int var_in_term(Term v,
Term t USES_REGS) /* variables in term t */
{
if (IsVarTerm(t)) {
return (v == t);
} else if (IsPrimitiveTerm(t)) {
return (FALSE);
} else if (IsPairTerm(t)) {
return (var_in_complex_term(RepPair(t) - 1, RepPair(t) + 1, v PASS_REGS));
} else
return (var_in_complex_term(RepAppl(t),
RepAppl(t) + ArityOfFunctor(FunctorOfTerm(t)),
v PASS_REGS));
}
static Int p_var_in_term(USES_REGS1) {
return (var_in_term(Deref(ARG2), Deref(ARG1) PASS_REGS));
}
/* The code for TermHash was originally contributed by Gertjen Van Noor */
/* This code with max_depth == -1 will loop for infinite trees */
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
static unsigned int MurmurHashNeutral2(const void *key, int len,
unsigned int seed) {
const unsigned int m = 0x5bd1e995;
const int r = 24;
unsigned int h = seed ^ len;
const unsigned char *data = (const unsigned char *)key;
while (len >= 4) {
unsigned int k;
k = data[0];
k |= data[1] << 8;
k |= data[2] << 16;
k |= data[3] << 24;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
switch (len) {
case 3:
h ^= data[2] << 16;
case 2:
h ^= data[1] << 8;
case 1:
h ^= data[0];
h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
static CELL *addAtomToHash(CELL *st, Atom at) {
unsigned int len;
char *c = RepAtom(at)->StrOfAE;
int ulen = strlen(c);
/* fix hashing over empty atom */
if (!ulen) {
return st;
}
if (ulen % CellSize == 0) {
len = ulen / CellSize;
} else {
len = ulen / CellSize;
len++;
}
st[len - 1] = 0L;
strncpy((char *)st, c, ulen);
return st + len;
}
typedef struct visited {
CELL *start;
CELL *end;
CELL old;
UInt vdepth;
} visited_t;
static CELL *hash_complex_term(register CELL *pt0, register CELL *pt0_end,
Int depth, CELL *st, int variant USES_REGS) {
register visited_t *to_visit0,
*to_visit = (visited_t *)Yap_PreAllocCodeSpace();
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, hash_complex_unk);
hash_complex_nvar : {
if (st + 1024 >= ASP) {
goto global_overflow;
}
if (IsAtomOrIntTerm(d0)) {
if (d0 != TermFoundVar) {
if (IsAtomTerm(d0)) {
st = addAtomToHash(st, AtomOfTerm(d0));
} else {
*st++ = IntOfTerm(d0);
}
}
continue;
} else if (IsPairTerm(d0)) {
st = addAtomToHash(st, AtomDot);
if (depth == 1)
continue;
if (to_visit + 256 >= (visited_t *)AuxSp) {
goto aux_overflow;
}
to_visit->start = pt0;
to_visit->end = pt0_end;
to_visit->old = *pt0;
to_visit->vdepth = depth;
to_visit++;
depth--;
*pt0 = TermFoundVar;
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
continue;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
CELL fc = (CELL)f;
switch (fc) {
case (CELL)FunctorDBRef:
*st++ = fc;
break;
case (CELL)FunctorLongInt:
*st++ = LongIntOfTerm(d0);
break;
case (CELL)FunctorString:
memmove(st, RepAppl(d0), (3 + RepAppl(d0)[1]) * sizeof(CELL));
st += 3 + RepAppl(d0)[1];
break;
#ifdef USE_GMP
case (CELL)FunctorBigInt: {
CELL *pt = RepAppl(d0);
Int sz = sizeof(MP_INT) + 1 +
(((MP_INT *)(pt + 2))->_mp_alloc * sizeof(mp_limb_t));
if (st + (1024 + sz / CellSize) >= ASP) {
goto global_overflow;
}
/* then the actual number */
memmove((void *)(st + 1), (void *)(pt + 1), sz);
st = st + sz / CellSize;
} break;
#endif
case (CELL)FunctorDouble: {
CELL *pt = RepAppl(d0);
*st++ = pt[1];
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
*st++ = pt[2];
#endif
break;
}
}
continue;
}
st = addAtomToHash(st, NameOfFunctor(f));
if (depth == 1)
continue;
if (to_visit + 1024 >= (visited_t *)AuxSp) {
goto aux_overflow;
}
to_visit->start = pt0;
to_visit->end = pt0_end;
to_visit->old = *pt0;
to_visit->vdepth = depth;
to_visit++;
depth--;
*pt0 = TermFoundVar;
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
deref_body(d0, ptd0, hash_complex_unk, hash_complex_nvar);
if (!variant)
return NULL;
else
continue;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start;
pt0_end = to_visit->end;
*pt0 = to_visit->old;
depth = to_visit->vdepth;
goto loop;
}
return st;
aux_overflow:
/* unwind stack */
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start;
*pt0 = to_visit->old;
}
return (CELL *)-1;
global_overflow:
/* unwind stack */
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start;
*pt0 = to_visit->old;
}
return (CELL *)-2;
}
Int Yap_TermHash(Term t, Int size, Int depth, int variant) {
CACHE_REGS
unsigned int i1;
Term t1 = Deref(t);
while (TRUE) {
CELL *ar = hash_complex_term(&t1 - 1, &t1, depth, HR, FALSE PASS_REGS);
if (ar == (CELL *)-1) {
if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, ARG1,
"overflow in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == (CELL *)-2) {
if (!Yap_gcl((ASP - HR) * sizeof(CELL), 0, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == NULL) {
return FALSE;
} else {
i1 = MurmurHashNeutral2((const void *)HR, CellSize * (ar - HR),
0x1a3be34a);
break;
}
}
/* got the seed and hash from SWI-Prolog */
return i1 % size;
}
static Int p_term_hash(USES_REGS1) {
unsigned int i1;
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
Term t3 = Deref(ARG3);
Term result;
Int size, depth;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "term_hash/4");
return (FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "term_hash/4");
return (FALSE);
}
depth = IntegerOfTerm(t2);
if (depth == 0) {
if (IsVarTerm(t1))
return (TRUE);
return (Yap_unify(ARG4, MkIntTerm(0)));
}
if (IsVarTerm(t3)) {
Yap_Error(INSTANTIATION_ERROR, t3, "term_hash/4");
return (FALSE);
}
if (!IsIntegerTerm(t3)) {
Yap_Error(TYPE_ERROR_INTEGER, t3, "term_hash/4");
return (FALSE);
}
size = IntegerOfTerm(t3);
while (TRUE) {
CELL *ar = hash_complex_term(&t1 - 1, &t1, depth, HR, FALSE PASS_REGS);
if (ar == (CELL *)-1) {
if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, ARG1,
"overflow in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == (CELL *)-2) {
if (!Yap_gcl((ASP - HR) * sizeof(CELL), 4, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == NULL) {
return FALSE;
} else {
i1 = MurmurHashNeutral2((const void *)HR, CellSize * (ar - HR),
0x1a3be34a);
break;
}
}
/* got the seed and hash from SWI-Prolog */
result = MkIntegerTerm(i1 % size);
return Yap_unify(ARG4, result);
}
static Int p_instantiated_term_hash(USES_REGS1) {
unsigned int i1;
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
Term t3 = Deref(ARG3);
Term result;
Int size, depth;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "term_hash/4");
return (FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "term_hash/4");
return (FALSE);
}
depth = IntegerOfTerm(t2);
if (depth == 0) {
if (IsVarTerm(t1))
return (TRUE);
return (Yap_unify(ARG4, MkIntTerm(0)));
}
if (IsVarTerm(t3)) {
Yap_Error(INSTANTIATION_ERROR, t3, "term_hash/4");
return (FALSE);
}
if (!IsIntegerTerm(t3)) {
Yap_Error(TYPE_ERROR_INTEGER, t3, "term_hash/4");
return (FALSE);
}
size = IntegerOfTerm(t3);
while (TRUE) {
CELL *ar = hash_complex_term(&t1 - 1, &t1, depth, HR, TRUE PASS_REGS);
if (ar == (CELL *)-1) {
if (!Yap_ExpandPreAllocCodeSpace(0, NULL, TRUE)) {
Yap_Error(RESOURCE_ERROR_AUXILIARY_STACK, ARG1,
"overflow in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == (CELL *)-2) {
if (!Yap_gcl((ASP - HR) * sizeof(CELL), 4, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in term_hash");
return FALSE;
}
t1 = Deref(ARG1);
} else if (ar == NULL) {
return FALSE;
} else {
i1 = MurmurHashNeutral2((const void *)HR, CellSize * (ar - HR),
0x1a3be34a);
break;
}
}
/* got the seed and hash from SWI-Prolog */
result = MkIntegerTerm(i1 % size);
return Yap_unify(ARG4, result);
}
static int variant_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1 USES_REGS) {
tr_fr_ptr OLDTR = TR;
register CELL **to_visit = (CELL **)ASP;
/* make sure that unification always forces trailing */
HBREG = HR;
loop:
while (pt0 < pt0_end) {
register CELL d0, d1;
++pt0;
++pt1;
d0 = Derefa(pt0);
d1 = Derefa(pt1);
if (IsVarTerm(d0)) {
if (IsVarTerm(d1)) {
CELL *pt0 = VarOfTerm(d0);
CELL *pt1 = VarOfTerm(d1);
if (pt0 >= HBREG || pt1 >= HBREG) {
/* one of the variables has been found before */
if (VarOfTerm(d0) + 1 == VarOfTerm(d1))
continue;
goto fail;
} else {
/* two new occurrences of the same variable */
Term n0 = MkVarTerm(), n1 = MkVarTerm();
Bind_Global(VarOfTerm(d0), n0);
Bind_Global(VarOfTerm(d1), n1);
}
continue;
} else {
goto fail;
}
} else if (IsVarTerm(d1)) {
goto fail;
} else {
if (d0 == d1)
continue;
else if (IsAtomOrIntTerm(d0)) {
goto fail;
} else if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto fail;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 4;
if ((CELL *)to_visit < HR + 1024)
goto out_of_stack;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)*pt0;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 3;
if ((CELL *)to_visit < HR + 1024)
goto out_of_stack;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
pt1 = RepPair(d1) - 1;
continue;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
if (!IsApplTerm(d1)) {
goto fail;
} else {
/* store the terms to visit */
Functor f2;
ap2 = RepAppl(d0);
ap3 = RepAppl(d1);
f = (Functor)(*ap2);
f2 = (Functor)(*ap3);
if (f != f2)
goto fail;
if (IsExtensionFunctor(f)) {
if (!unify_extension(f, d0, ap2, d1))
goto fail;
continue;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 4;
if ((CELL *)to_visit < HR + 1024)
goto out_of_stack;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)*pt0;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 3;
if ((CELL *)to_visit < HR + 1024)
goto out_of_stack;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
}
}
}
}
/* Do we still have compound terms to visit */
if (to_visit < (CELL **)ASP) {
#ifdef RATIONAL_TREES
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
to_visit += 4;
#else
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
to_visit += 3;
#endif
goto loop;
}
HR = HBREG;
/* untrail all bindings made by variant */
while (TR != (tr_fr_ptr)OLDTR) {
CELL *pt1 = (CELL *)TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
return TRUE;
out_of_stack:
HR = HBREG;
/* untrail all bindings made by variant */
#ifdef RATIONAL_TREES
while (to_visit < (CELL **)ASP) {
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
to_visit += 4;
}
#endif
while (TR != (tr_fr_ptr)OLDTR) {
CELL *pt1 = (CELL *)TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
return -1;
fail:
/* failure */
HR = HBREG;
#ifdef RATIONAL_TREES
while (to_visit < (CELL **)ASP) {
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
to_visit += 4;
}
#endif
/* untrail all bindings made by variant */
while (TR != (tr_fr_ptr)OLDTR) {
CELL *pt1 = (CELL *)TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
return FALSE;
}
static bool is_variant(Term t1, Term t2, int parity USES_REGS) {
int out;
if (t1 == t2)
return true;
if (IsVarTerm(t1)) {
if (IsVarTerm(t2))
return true;
return false;
} else if (IsVarTerm(t2))
return false;
if (IsAtomOrIntTerm(t1)) {
return (t1 == t2);
}
if (IsPairTerm(t1)) {
if (IsPairTerm(t2)) {
out = variant_complex(RepPair(t1) - 1, RepPair(t1) + 1,
RepPair(t2) - 1 PASS_REGS);
if (out < 0)
goto error;
return out != 0;
} else
return false;
}
if (!IsApplTerm(t2)) {
return false;
} else {
Functor f1 = FunctorOfTerm(t1);
if (f1 != FunctorOfTerm(t2))
return (FALSE);
if (IsExtensionFunctor(f1)) {
return (unify_extension(f1, t1, RepAppl(t1), t2));
}
out = variant_complex(RepAppl(t1), RepAppl(t1) + ArityOfFunctor(f1),
RepAppl(t2) PASS_REGS);
if (out < 0)
goto error;
return out != 0;
}
error:
if (out == -1) {
if (!Yap_gcl((ASP - HR) * sizeof(CELL), parity, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in variant");
return FALSE;
}
return is_variant(t1, t2, parity PASS_REGS);
}
return false;
}
bool Yap_Variant(Term t1, Term t2) {
CACHE_REGS
return is_variant(t1, t2, 0 PASS_REGS);
}
static Int p_variant(USES_REGS1) /* variant terms t1 and t2 */
{
return is_variant(Deref(ARG1), Deref(ARG2), 2 PASS_REGS);
}
static int subsumes_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1 USES_REGS) {
register CELL **to_visit = (CELL **)ASP;
tr_fr_ptr OLDTR = TR, new_tr;
UInt write_mode = TRUE;
HBREG = HR;
loop:
while (pt0 < pt0_end) {
register CELL d0, d1;
Int our_write_mode = write_mode;
++pt0;
++pt1;
/* this is a version of Derefa that checks whether we are trying to
do something evil */
{
CELL *npt0 = pt0;
restart_d0:
if (npt0 >= HBREG) {
our_write_mode = FALSE;
}
d0 = *npt0;
if (IsVarTerm(d0) && d0 != (CELL)npt0) {
npt0 = (CELL *)d0;
goto restart_d0;
}
}
{
CELL *npt1 = pt1;
restart_d1:
d1 = *npt1;
if (IsVarTerm(d1) && d1 != (CELL)npt1) {
/* never dereference through a variable from the left-side */
if (npt1 >= HBREG) {
goto fail;
} else {
npt1 = (CELL *)d1;
goto restart_d1;
}
}
}
if (IsVarTerm(d0)) {
if (our_write_mode) {
/* generate a new binding */
CELL *pt0 = VarOfTerm(d0);
Term new = MkVarTerm();
Bind_Global(pt0, new);
if (d0 != d1) { /* avoid loops */
Bind_Global(VarOfTerm(new), d1);
if (Yap_rational_tree_loop(VarOfTerm(new) - 1, VarOfTerm(new),
(CELL **)AuxSp, (CELL **)AuxBase))
goto fail;
}
} else {
if (d0 == d1)
continue;
goto fail;
}
continue;
} else if (IsVarTerm(d1)) {
goto fail;
} else {
if (d0 == d1)
continue;
else if (IsAtomOrIntTerm(d0)) {
goto fail;
} else if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
goto fail;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 5;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)*pt0;
to_visit[4] = (CELL *)write_mode;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)write_mode;
}
#endif
write_mode = our_write_mode;
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
pt1 = RepPair(d1) - 1;
continue;
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2, *ap3;
if (!IsApplTerm(d1)) {
goto fail;
} else {
/* store the terms to visit */
Functor f2;
ap2 = RepAppl(d0);
ap3 = RepAppl(d1);
f = (Functor)(*ap2);
f2 = (Functor)(*ap3);
if (f != f2)
goto fail;
if (IsExtensionFunctor(f)) {
if (!unify_extension(f, d0, ap2, d1))
goto fail;
continue;
}
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 5;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)*pt0;
to_visit[4] = (CELL *)write_mode;
*pt0 = d1;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = (CELL *)write_mode;
}
#endif
write_mode = our_write_mode;
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
continue;
}
}
}
}
/* Do we still have compound terms to visit */
if (to_visit < (CELL **)ASP) {
#ifdef RATIONAL_TREES
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
write_mode = (Int)to_visit[4];
to_visit += 5;
#else
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
write_mode = (UInt)to_visit[3];
to_visit += 4;
#endif
goto loop;
}
HR = HBREG;
/* get rid of intermediate variables */
new_tr = TR;
while (TR != OLDTR) {
/* cell we bound */
CELL *pt1 = (CELL *)TrailTerm(--TR);
/* cell we created */
CELL *npt1 = (CELL *)*pt1;
/* shorten the chain */
if (IsVarTerm(*pt1) && IsUnboundVar(pt1)) {
RESET_VARIABLE(pt1);
} else {
*pt1 = *npt1;
}
}
TR = new_tr;
HBREG = B->cp_h;
return TRUE;
fail:
HR = HBREG;
#ifdef RATIONAL_TREES
while (to_visit < (CELL **)ASP) {
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
*pt0 = (CELL)to_visit[3];
to_visit += 5;
}
#endif
/* untrail all bindings made by variant */
while (TR != (tr_fr_ptr)OLDTR) {
CELL *pt1 = (CELL *)TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
return FALSE;
}
static Int p_subsumes(USES_REGS1) /* subsumes terms t1 and t2 */
{
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
if (t1 == t2)
return (TRUE);
if (IsVarTerm(t1)) {
YapBind(VarOfTerm(t1), t2);
if (Yap_rational_tree_loop(VarOfTerm(t1) - 1, VarOfTerm(t1), (CELL **)AuxSp,
(CELL **)AuxBase))
return FALSE;
return TRUE;
} else if (IsVarTerm(t2))
return (FALSE);
if (IsAtomOrIntTerm(t1)) {
return (t1 == t2);
}
if (IsPairTerm(t1)) {
if (IsPairTerm(t2)) {
return (subsumes_complex(RepPair(t1) - 1, RepPair(t1) + 1,
RepPair(t2) - 1 PASS_REGS));
} else
return (FALSE);
} else {
Functor f1;
if (!IsApplTerm(t2))
return (FALSE);
f1 = FunctorOfTerm(t1);
if (f1 != FunctorOfTerm(t2))
return (FALSE);
if (IsExtensionFunctor(f1)) {
return (unify_extension(f1, t1, RepAppl(t1), t2));
}
return (subsumes_complex(RepAppl(t1), RepAppl(t1) + ArityOfFunctor(f1),
RepAppl(t2) PASS_REGS));
}
}
static int term_subsumer_complex(register CELL *pt0, register CELL *pt0_end,
register CELL *pt1, CELL *npt USES_REGS) {
register CELL **to_visit = (CELL **)ASP;
tr_fr_ptr OLDTR = TR;
int out;
CELL *bindings = NULL, *tbindings = NULL;
HB = HR;
loop:
while (pt0 < pt0_end) {
register CELL d0, d1;
++pt0;
++pt1;
d0 = Derefa(pt0);
d1 = Derefa(pt1);
if (d0 == d1) {
*npt++ = d0;
continue;
} else if (IsVarTerm(d0)) {
CELL *match, *omatch = NULL;
match = VarOfTerm(d0);
if (match >= HB) {
while (match >= HB) {
/* chained to a sequence */
if (Yap_eq(d1, match[1])) {
*npt++ = match[2];
break;
}
omatch = match;
match = (CELL *)match[3];
}
/* found a match */
if (match >= HB)
continue;
/* could not find a match, add to end of chain */
RESET_VARIABLE(HR); /* key */
HR[1] = d1; /* comparison value */
HR[2] = (CELL)npt; /* new value */
HR[3] = (CELL)match; /* end of chain points back to first cell */
omatch[3] = (CELL)HR;
HR += 4;
RESET_VARIABLE(npt);
npt++;
continue;
}
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
goto trail_overflow;
}
RESET_VARIABLE(HR);
HR[1] = d1;
HR[2] = (CELL)npt;
HR[3] = d0;
YapBind(VarOfTerm(d0), (CELL)HR);
HR += 4;
RESET_VARIABLE(npt);
npt++;
continue;
} else if (IsPairTerm(d0) && IsPairTerm(d1)) {
CELL *match = bindings;
while (match) {
if (match[0] == d0 && match[1] == d1) {
*npt++ = match[2];
break;
}
match = (CELL *)match[3];
}
if (match) {
continue;
}
if (bindings) {
*tbindings = (CELL)HR;
} else {
bindings = HR;
}
HR[0] = d0;
HR[1] = d1;
HR[2] = AbsPair(HR + 4);
HR[3] = (CELL)NULL;
tbindings = HR + 3;
HR += 4;
*npt++ = AbsPair(HR);
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 5;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = tbindings;
to_visit[4] = npt;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = npt;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
pt1 = RepPair(d1) - 1;
npt = HR;
HR += 2;
if (HR > (CELL *)to_visit - 1024)
goto stack_overflow;
continue;
} else if (IsApplTerm(d0) && IsApplTerm(d1)) {
CELL *ap2 = RepAppl(d0);
CELL *ap3 = RepAppl(d1);
Functor f = (Functor)(*ap2);
Functor f2 = (Functor)(*ap3);
if (f == f2) {
CELL *match = bindings;
if (IsExtensionFunctor(f)) {
if (unify_extension(f, d0, ap2, d1)) {
*npt++ = d0;
continue;
}
}
while (match) {
if (match[0] == d0 && match[1] == d1) {
*npt++ = match[2];
break;
}
match = (CELL *)match[3];
}
if (match) {
continue;
}
if (bindings) {
*tbindings = (CELL)HR;
} else {
bindings = HR;
}
HR[0] = d0;
HR[1] = d1;
HR[2] = AbsAppl(HR + 4);
HR[3] = (CELL)NULL;
tbindings = HR + 3;
HR += 4;
*npt++ = AbsAppl(HR);
#ifdef RATIONAL_TREES
/* now link the two structures so that no one else will */
/* come here */
to_visit -= 5;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = tbindings;
to_visit[4] = npt;
#else
/* store the terms to visit */
if (pt0 < pt0_end) {
to_visit -= 4;
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit[2] = pt1;
to_visit[3] = npt;
}
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
pt1 = ap3;
npt = HR;
*npt++ = (CELL)f;
HR += d0;
if (HR > (CELL *)to_visit - 1024)
goto stack_overflow;
continue;
}
}
RESET_VARIABLE(npt);
npt++;
}
/* Do we still have compound terms to visit */
if (to_visit < (CELL **)ASP) {
#ifdef RATIONAL_TREES
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
tbindings = to_visit[3];
npt = to_visit[4];
if (!tbindings) {
bindings = NULL;
}
to_visit += 5;
#else
pt0 = to_visit[0];
pt0_end = to_visit[1];
pt1 = to_visit[2];
npt = to_visit[3];
to_visit += 4;
#endif
goto loop;
}
out = 1;
complete:
/* get rid of intermediate variables */
while (TR != OLDTR) {
CELL *pt1 = (CELL *)TrailTerm(--TR);
RESET_VARIABLE(pt1);
}
HBREG = B->cp_h;
return out;
stack_overflow:
out = -1;
goto complete;
trail_overflow:
out = -2;
goto complete;
}
static Int p_term_subsumer(USES_REGS1) /* term_subsumer terms t1 and t2 */
{
int out = 0;
while (out != 1) {
Term t1 = Deref(ARG1);
Term t2 = Deref(ARG2);
CELL *oldH = HR;
if (t1 == t2)
return Yap_unify(ARG3, t1);
if (IsPairTerm(t1) && IsPairTerm(t2)) {
Term tf = AbsAppl(HR);
HR += 2;
HB = HR;
if ((out = term_subsumer_complex(RepPair(t1) - 1, RepPair(t1) + 1,
RepPair(t2) - 1, HR - 2 PASS_REGS)) >
0) {
HB = B->cp_h;
return Yap_unify(ARG3, tf);
}
} else if (IsApplTerm(t1) && IsApplTerm(t2)) {
Functor f1;
if ((f1 = FunctorOfTerm(t1)) == FunctorOfTerm(t2)) {
if (IsExtensionFunctor(f1)) {
if (unify_extension(f1, t1, RepAppl(t1), t2)) {
return Yap_unify(ARG3, t1);
}
} else {
Term tf = AbsAppl(HR);
UInt ar = ArityOfFunctor(f1);
HR[0] = (CELL)f1;
HR += 1 + ar;
HB = HR;
if ((out = term_subsumer_complex(
RepAppl(t1), RepAppl(t1) + ArityOfFunctor(f1), RepAppl(t2),
HR - ar PASS_REGS)) > 0) {
HB = B->cp_h;
return Yap_unify(ARG3, tf);
}
}
}
}
HB = B->cp_h;
if (out == 0) {
return Yap_unify(ARG3, MkVarTerm());
} else {
HR = oldH;
if (out == -1) {
if (!Yap_gcl((ASP - HR) * sizeof(CELL), 0, ENV, gc_P(P, CP))) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil, "in term_subsumer");
return FALSE;
}
} else {
/* Trail overflow */
if (!Yap_growtrail(0, FALSE)) {
Yap_Error(RESOURCE_ERROR_TRAIL, TermNil, "in term_subsumer");
return FALSE;
}
}
}
}
return FALSE;
}
#ifdef DEBUG
static Int p_force_trail_expansion(USES_REGS1) {
Int i = IntOfTerm(Deref(ARG1)) * 1024, j = 0;
tr_fr_ptr OTR = TR;
for (j = 0; j < i; j++) {
TrailTerm(TR) = 0;
TR++;
}
TR = OTR;
return (TRUE);
}
static Int camacho_dum(USES_REGS1) {
Term t1, t2;
int max = 3;
/* build output list */
t1 = TermNil;
t2 = MkPairTerm(MkIntegerTerm(max), t1);
return (Yap_unify(t2, ARG1));
}
#endif /* DEBUG */
bool Yap_IsListTerm(Term t) {
Term *tailp;
Yap_SkipList(&t, &tailp);
return *tailp == TermNil;
}
static Int p_is_list(USES_REGS1) { return Yap_IsListTerm(Deref(ARG1)); }
bool Yap_IsListOrPartialListTerm(Term t) {
Term *tailp, tail;
Yap_SkipList(&t, &tailp);
tail = *tailp;
return tail == TermNil || IsVarTerm(tail);
}
static Int p_is_list_or_partial_list(USES_REGS1) {
return Yap_IsListOrPartialListTerm(Deref(ARG1));
}
static Term numbervar(Int id USES_REGS) {
Term ts[1];
ts[0] = MkIntegerTerm(id);
return Yap_MkApplTerm(FunctorDollarVar, 1, ts);
}
static Term numbervar_singleton(USES_REGS1) {
Term ts[1];
ts[0] = MkIntegerTerm(-1);
return Yap_MkApplTerm(FunctorDollarVar, 1, ts);
}
static void renumbervar(Term t, Int id USES_REGS) {
Term *ts = RepAppl(t);
ts[1] = MkIntegerTerm(id);
}
extern int vsc;
int vsc;
static Int numbervars_in_complex_term(register CELL *pt0,
register CELL *pt0_end, Int numbv,
int singles USES_REGS) {
int lvl = push_text_stack();
att_rec_t *to_visit0, *to_visit = Malloc(1024 * sizeof(att_rec_t));
att_rec_t *to_visit_max;
register tr_fr_ptr TR0 = TR;
CELL *InitialH = HR;
to_visit0 = to_visit;
to_visit_max = to_visit0 + 1024;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, vars_in_term_unk);
vars_in_term_nvar : {
if (IsPairTerm(d0)) {
if (to_visit + 32 >= to_visit_max) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
to_visit->beg = pt0;
to_visit->end = pt0_end;
to_visit->oval = *pt0;
to_visit++;
*pt0 = TermNil;
#else
if (pt0 < pt0_end) {
to_visit[0] = pt0;
to_visit[1] = pt0_end;
to_visit += 2;
}
#endif
pt0 = RepPair(d0) - 1;
pt0_end = RepPair(d0) + 1;
} else if (IsApplTerm(d0)) {
Functor f;
CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
continue;
}
if (singles && ap2 >= InitialH && ap2 < HR) {
renumbervar(d0, numbv++ PASS_REGS);
continue;
}
/* store the terms to visit */
if (to_visit + 32 >= to_visit_max) {
goto aux_overflow;
}
#ifdef RATIONAL_TREES
#else
to_visit->beg = pt0;
to_visit->end = pt0_end;
to_visit->oval = *pt0;
to_visit++;
*pt0 = TermNil;
#endif
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
}
continue;
}
derefa_body(d0, ptd0, vars_in_term_unk, vars_in_term_nvar);
/* do or pt2 are unbound */
if (singles)
*ptd0 = numbervar_singleton(PASS_REGS1);
else
*ptd0 = numbervar(numbv++ PASS_REGS);
/* leave an empty slot to fill in later */
if (HR + 1024 > ASP) {
goto global_overflow;
}
/* next make sure noone will see this as a variable again */
if (TR > (tr_fr_ptr)LOCAL_TrailTop - 256) {
/* Trail overflow */
if (!Yap_growtrail((TR - TR0) * sizeof(tr_fr_ptr *), TRUE)) {
goto trail_overflow;
}
}
#if defined(TABLING) || defined(YAPOR_SBA)
TrailVal(TR) = (CELL)ptd0;
#endif
TrailTerm(TR++) = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
#ifdef RATIONAL_TREES
to_visit--;
pt0 = to_visit->beg;
pt0_end = to_visit->end;
*pt0 = to_visit->oval;
#else
to_visit -= 2;
pt0 = to_visit[0];
pt0_end = to_visit[1];
#endif
goto loop;
}
prune(B PASS_REGS);
pop_text_stack(lvl);
return numbv;
trail_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->beg;
pt0_end = to_visit->end;
*pt0 = to_visit->oval;
}
#endif
LOCAL_Error_TYPE = RESOURCE_ERROR_TRAIL;
LOCAL_Error_Size = (TR - TR0) * sizeof(tr_fr_ptr *);
clean_tr(TR0 PASS_REGS);
HR = InitialH;
pop_text_stack(lvl);
return numbv - 1;
aux_overflow : {
size_t d1 = to_visit - to_visit0;
size_t d2 = to_visit_max - to_visit0;
to_visit0 = Realloc(to_visit0, d2 * sizeof(CELL *) + 64 * 1024);
to_visit = to_visit0 + d1;
to_visit_max = to_visit0 + (d2 + (64 * 1024)) / sizeof(CELL **);
}
pt0--;
goto loop;
global_overflow:
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->beg;
pt0_end = to_visit->end;
*pt0 = to_visit->oval;
}
#endif
clean_tr(TR0 PASS_REGS);
HR = InitialH;
LOCAL_Error_TYPE = RESOURCE_ERROR_STACK;
LOCAL_Error_Size = (ASP - HR) * sizeof(CELL);
pop_text_stack(lvl);
return numbv - 1;
}
Int Yap_NumberVars(Term inp, Int numbv,
bool handle_singles) /*
* numbervariables in term t */
{
CACHE_REGS
Int out;
Term t;
restart:
t = Deref(inp);
if (IsVarTerm(t)) {
CELL *ptd0 = VarOfTerm(t);
TrailTerm(TR++) = (CELL)ptd0;
if (handle_singles) {
*ptd0 = numbervar_singleton(PASS_REGS1);
return numbv;
} else {
*ptd0 = numbervar(numbv PASS_REGS);
return numbv + 1;
}
} else if (IsPrimitiveTerm(t)) {
return numbv;
} else if (IsPairTerm(t)) {
out = numbervars_in_complex_term(RepPair(t) - 1, RepPair(t) + 1, numbv,
handle_singles PASS_REGS);
} else {
Functor f = FunctorOfTerm(t);
out = numbervars_in_complex_term(RepAppl(t), RepAppl(t) + ArityOfFunctor(f),
numbv, handle_singles PASS_REGS);
}
if (out < numbv) {
if (!expand_vts(3 PASS_REGS))
return FALSE;
goto restart;
}
return out;
}
static Int p_numbervars(USES_REGS1) {
Term t2 = Deref(ARG2);
Int out;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "numbervars/3");
return FALSE;
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "term_hash/4");
return (FALSE);
}
if ((out = Yap_NumberVars(ARG1, IntegerOfTerm(t2), FALSE)) < 0)
return FALSE;
return Yap_unify(ARG3, MkIntegerTerm(out));
}
static int unnumber_complex_term(CELL *pt0, CELL *pt0_end, CELL *ptf,
CELL *HLow, int share USES_REGS) {
struct cp_frame *to_visit0,
*to_visit = (struct cp_frame *)Yap_PreAllocCodeSpace();
CELL *HB0 = HB;
tr_fr_ptr TR0 = TR;
int ground = share;
Int max = -1;
HB = HLow;
to_visit0 = to_visit;
loop:
while (pt0 < pt0_end) {
register CELL d0;
register CELL *ptd0;
++pt0;
ptd0 = pt0;
d0 = *ptd0;
deref_head(d0, unnumber_term_unk);
unnumber_term_nvar : {
if (IsPairTerm(d0)) {
CELL *ap2 = RepPair(d0);
if (ap2 >= HB && ap2 < HR) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
*ptf = AbsPair(HR);
ptf++;
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsPair(HR);
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
ground = share;
pt0 = ap2 - 1;
pt0_end = ap2 + 1;
ptf = HR;
HR += 2;
if (HR > ASP - 2048) {
goto overflow;
}
} else if (IsApplTerm(d0)) {
register Functor f;
register CELL *ap2;
/* store the terms to visit */
ap2 = RepAppl(d0);
if (ap2 >= HB && ap2 <= HR) {
/* If this is newer than the current term, just reuse */
*ptf++ = d0;
continue;
}
f = (Functor)(*ap2);
if (IsExtensionFunctor(f)) {
*ptf++ = d0; /* you can just unnumber other extensions. */
continue;
}
if (f == FunctorDollarVar) {
Int id = IntegerOfTerm(ap2[1]);
ground = FALSE;
if (id < -1) {
Yap_Error(RESOURCE_ERROR_STACK, TermNil,
"unnumber vars cannot cope with VAR(-%d)", id);
return 0L;
}
if (id <= max) {
if (ASP - (max + 1) <= HR) {
goto overflow;
}
/* we found this before? */
if (ASP[-id - 1])
*ptf++ = ASP[-id - 1];
else {
RESET_VARIABLE(ptf);
ASP[-id - 1] = (CELL)ptf;
ptf++;
}
continue;
}
/* alloc more space */
if (ASP - (id + 1) <= HR) {
goto overflow;
}
while (id > max) {
ASP[-(id + 1)] = 0L;
max++;
}
/* new variable */
RESET_VARIABLE(ptf);
ASP[-(id + 1)] = (CELL)ptf;
ptf++;
continue;
}
*ptf = AbsAppl(HR);
ptf++;
/* store the terms to visit */
#ifdef RATIONAL_TREES
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->oldv = *pt0;
to_visit->ground = ground;
/* fool the system into thinking we had a variable there */
*pt0 = AbsAppl(HR);
to_visit++;
#else
if (pt0 < pt0_end) {
if (to_visit + 1 >= (struct cp_frame *)AuxSp) {
goto heap_overflow;
}
to_visit->start_cp = pt0;
to_visit->end_cp = pt0_end;
to_visit->to = ptf;
to_visit->ground = ground;
to_visit++;
}
#endif
ground = (f != FunctorMutable) && share;
d0 = ArityOfFunctor(f);
pt0 = ap2;
pt0_end = ap2 + d0;
/* store the functor for the new term */
HR[0] = (CELL)f;
ptf = HR + 1;
HR += 1 + d0;
if (HR > ASP - 2048) {
goto overflow;
}
} else {
/* just unnumber atoms or integers */
*ptf++ = d0;
}
continue;
}
derefa_body(d0, ptd0, unnumber_term_unk, unnumber_term_nvar);
/* this should never happen ? */
ground = FALSE;
*ptf++ = (CELL)ptd0;
}
/* Do we still have compound terms to visit */
if (to_visit > to_visit0) {
to_visit--;
if (ground) {
CELL old = to_visit->oldv;
CELL *newp = to_visit->to - 1;
CELL new = *newp;
*newp = old;
if (IsApplTerm(new))
HR = RepAppl(new);
else
HR = RepPair(new);
}
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
#ifdef RATIONAL_TREES
*pt0 = to_visit->oldv;
#endif
ground = (ground && to_visit->ground);
goto loop;
}
/* restore our nice, friendly, term to its original state */
clean_dirty_tr(TR0 PASS_REGS);
HB = HB0;
return ground;
overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
/* follow chain of multi-assigned variables */
return -1;
heap_overflow:
/* oops, we're in trouble */
HR = HLow;
/* we've done it */
/* restore our nice, friendly, term to its original state */
HB = HB0;
#ifdef RATIONAL_TREES
while (to_visit > to_visit0) {
to_visit--;
pt0 = to_visit->start_cp;
pt0_end = to_visit->end_cp;
ptf = to_visit->to;
*pt0 = to_visit->oldv;
}
#endif
reset_trail(TR0);
LOCAL_Error_Size = (ADDR)AuxSp - (ADDR)to_visit0;
return -3;
}
static Term UnnumberTerm(Term inp, UInt arity, int share USES_REGS) {
Term t = Deref(inp);
tr_fr_ptr TR0 = TR;
if (IsVarTerm(t)) {
return inp;
} else if (IsPrimitiveTerm(t)) {
return t;
} else if (IsPairTerm(t)) {
Term tf;
CELL *ap;
CELL *Hi;
restart_list:
ap = RepPair(t);
Hi = HR;
tf = AbsPair(HR);
HR += 2;
{
int res;
if ((res = unnumber_complex_term(ap - 1, ap + 1, Hi, Hi,
share PASS_REGS)) < 0) {
HR = Hi;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_list;
} else if (res) {
HR = Hi;
return t;
}
}
return tf;
} else {
Functor f = FunctorOfTerm(t);
Term tf;
CELL *HB0;
CELL *ap;
restart_appl:
f = FunctorOfTerm(t);
HB0 = HR;
ap = RepAppl(t);
tf = AbsAppl(HR);
HR[0] = (CELL)f;
HR += 1 + ArityOfFunctor(f);
if (HR > ASP - 128) {
HR = HB0;
if ((t = handle_cp_overflow(-1, TR0, arity, t)) == 0L)
return FALSE;
goto restart_appl;
} else {
int res;
if ((res = unnumber_complex_term(ap, ap + ArityOfFunctor(f), HB0 + 1, HB0,
share PASS_REGS)) < 0) {
HR = HB0;
if ((t = handle_cp_overflow(res, TR0, arity, t)) == 0L)
return FALSE;
goto restart_appl;
} else if (res && FunctorOfTerm(t) != FunctorMutable) {
HR = HB0;
return t;
}
}
return tf;
}
}
Term Yap_UnNumberTerm(Term inp, int share) {
CACHE_REGS
return UnnumberTerm(inp, 0, share PASS_REGS);
}
static Int p_unnumbervars(USES_REGS1) {
/* this should be a standard Prolog term, so we allow sharing? */
return Yap_unify(UnnumberTerm(ARG1, 2, FALSE PASS_REGS), ARG2);
}
Int Yap_SkipList(Term *l, Term **tailp) {
Int length = 0;
Term *s; /* slow */
Term v; /* temporary */
do_derefa(v, l, derefa_unk, derefa_nonvar);
s = l;
if (IsPairTerm(*l)) {
intptr_t power = 1, lam = 0;
do {
if (power == lam) {
s = l;
power *= 2;
lam = 0;
}
lam++;
length++;
l = RepPair(*l) + 1;
do_derefa(v, l, derefa2_unk, derefa2_nonvar);
} while (*l != *s && IsPairTerm(*l));
}
*tailp = l;
return length;
}
static Int p_skip_list(USES_REGS1) {
Term *tail;
Int len = Yap_SkipList(XREGS + 2, &tail);
return Yap_unify(MkIntegerTerm(len), ARG1) && Yap_unify(*tail, ARG3);
}
static Int p_skip_list4(USES_REGS1) {
Term *tail;
Int len, len1 = -1;
Term t2 = Deref(ARG2), t;
if (!IsVarTerm(t2)) {
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "length/2");
return FALSE;
}
if ((len1 = IntegerOfTerm(t2)) < 0) {
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t2, "length/2");
return FALSE;
}
}
/* we need len here */
len = Yap_SkipList(XREGS + 1, &tail);
t = *tail;
/* don't set M0 if full list, just check M */
if (t == TermNil) {
if (len1 >= 0) { /* ARG2 was bound */
return len1 == len && Yap_unify(t, ARG4);
} else {
return Yap_unify_constant(ARG4, TermNil) &&
Yap_unify_constant(ARG2, MkIntegerTerm(len));
}
}
return Yap_unify(MkIntegerTerm(len), ARG3) && Yap_unify(t, ARG4);
}
static Int p_free_arguments(USES_REGS1) {
Term t = Deref(ARG1);
if (IsVarTerm(t))
return FALSE;
if (IsAtomTerm(t) || IsIntTerm(t))
return TRUE;
if (IsPairTerm(t)) {
Term th = HeadOfTerm(t);
Term tl = TailOfTerm(t);
return IsVarTerm(th) && IsVarTerm(tl) && th != tl;
} else {
Functor f = FunctorOfTerm(t);
UInt i, ar;
Int ret = TRUE;
if (IsExtensionFunctor(f))
return TRUE;
ar = ArityOfFunctor(f);
for (i = 1; i <= ar; i++) {
Term ta = ArgOfTerm(i, t);
Int j;
ret = IsVarTerm(ta);
if (!ret)
break;
/* stupid quadractic algorithm, but needs no testing for overflows */
for (j = 1; j < i; j++) {
ret = ArgOfTerm(j, t) != ta;
if (!ret)
break;
}
if (!ret)
break;
}
return ret;
}
}
static Int p_freshen_variables(USES_REGS1) {
Term t = Deref(ARG1);
Functor f = FunctorOfTerm(t);
UInt arity = ArityOfFunctor(f), i;
Term tn = Yap_MkNewApplTerm(f, arity);
CELL *src = RepAppl(t) + 1;
CELL *targ = RepAppl(tn) + 1;
for (i = 0; i < arity; i++) {
RESET_VARIABLE(targ);
*VarOfTerm(*src) = (CELL)targ;
targ++;
src++;
}
return TRUE;
}
static Int p_reset_variables(USES_REGS1) {
Term t = Deref(ARG1);
Functor f = FunctorOfTerm(t);
UInt arity = ArityOfFunctor(f), i;
CELL *src = RepAppl(t) + 1;
for (i = 0; i < arity; i++) {
RESET_VARIABLE(VarOfTerm(*src));
src++;
}
return TRUE;
}
void Yap_InitUtilCPreds(void) {
CACHE_REGS
Term cm = CurrentModule;
Yap_InitCPred("copy_term", 2, p_copy_term, 0);
/** @pred copy_term(? _TI_,- _TF_) is iso
Term _TF_ is a variant of the original term _TI_, such that for
each variable _V_ in the term _TI_ there is a new variable _V'_
in term _TF_. Notice that:
+ suspended goals and attributes for attributed variables in _TI_ are also
duplicated;
+ ground terms are shared between the new and the old term.
If you do not want any sharing to occur please use
duplicate_term/2.
*/
Yap_InitCPred("duplicate_term", 2, p_duplicate_term, 0);
/** @pred duplicate_term(? _TI_,- _TF_)
Term _TF_ is a variant of the original term _TI_, such that
for each variable _V_ in the term _TI_ there is a new variable
_V'_ in term _TF_, and the two terms do not share any
structure. All suspended goals and attributes for attributed variables
in _TI_ are also duplicated.
Also refer to copy_term/2.
*/
Yap_InitCPred("copy_term_nat", 2, p_copy_term_no_delays, 0);
/** @pred copy_term_nat(? _TI_,- _TF_)
As copy_term/2. Attributes however, are <em>not</em> copied but replaced
by fresh variables.
*/
Yap_InitCPred("ground", 1, p_ground, SafePredFlag);
/** @pred ground( _T_) is iso
Succeeds if there are no free variables in the term _T_.
*/
Yap_InitCPred("$variables_in_term", 3, p_variables_in_term, 0);
Yap_InitCPred("$free_variables_in_term", 3, p_free_variables_in_term, 0);
Yap_InitCPred("$non_singletons_in_term", 3, p_non_singletons_in_term, 0);
Yap_InitCPred("term_variables", 2, p_term_variables, 0);
/** @pred term_variables(? _Term_, - _Variables_) is iso
Unify _Variables_ with the list of all variables of term
_Term_. The variables occur in the order of their first
appearance when traversing the term depth-first, left-to-right.
*/
Yap_InitCPred("term_variables", 3, p_term_variables3, 0);
Yap_InitCPred("term_attvars", 2, p_term_attvars, 0);
/** @pred term_attvars(+ _Term_,- _AttVars_)
_AttVars_ is a list of all attributed variables in _Term_ and
its attributes. I.e., term_attvars/2 works recursively through
attributes. This predicate is Cycle-safe.
*/
Yap_InitCPred("is_list", 1, p_is_list, SafePredFlag | TestPredFlag);
Yap_InitCPred("$is_list_or_partial_list", 1, p_is_list_or_partial_list,
SafePredFlag | TestPredFlag);
Yap_InitCPred("rational_term_to_tree", 4, p_break_rational, 0);
/** @pred rational_term_to_tree(? _TI_,- _TF_, ?SubTerms, ?MoreSubterms)
The term _TF_ is a forest representation (without cycles and repeated
terms) for the Prolog term _TI_. The term _TF_ is the main term. The
difference list _SubTerms_-_MoreSubterms_ stores terms of the form
_V=T_, where _V_ is a new variable occuring in _TF_, and _T_ is a copy
of a sub-term from _TI_.
*/
Yap_InitCPred("term_factorized", 3, p_break_rational3, 0);
/** @pred term_factorized(? _TI_,- _TF_, ?SubTerms)
Similar to rational_term_to_tree/4, but _SubTerms_ is a proper list.
*/
Yap_InitCPred("=@=", 2, p_variant, 0);
Yap_InitCPred("numbervars", 3, p_numbervars, 0);
/** @pred numbervars( _T_,+ _N1_,- _Nn_)
Instantiates each variable in term _T_ to a term of the form:
`$VAR( _I_)`, with _I_ increasing from _N1_ to _Nn_.
*/
Yap_InitCPred("unnumbervars", 2, p_unnumbervars, 0);
/** @pred unnumbervars( _T_,+ _NT_)
Replace every `$VAR( _I_)` by a free variable.
*/
/* use this carefully */
Yap_InitCPred("$skip_list", 3, p_skip_list, SafePredFlag | TestPredFlag);
Yap_InitCPred("$skip_list", 4, p_skip_list4, SafePredFlag | TestPredFlag);
Yap_InitCPred("$free_arguments", 1, p_free_arguments, TestPredFlag);
CurrentModule = TERMS_MODULE;
Yap_InitCPred("variable_in_term", 2, p_var_in_term, 0);
Yap_InitCPred("term_hash", 4, p_term_hash, 0);
Yap_InitCPred("instantiated_term_hash", 4, p_instantiated_term_hash, 0);
Yap_InitCPred("variant", 2, p_variant, 0);
Yap_InitCPred("subsumes", 2, p_subsumes, 0);
Yap_InitCPred("term_subsumer", 3, p_term_subsumer, 0);
Yap_InitCPred("variables_within_term", 3, p_variables_within_term, 0);
Yap_InitCPred("new_variables_in_term", 3, p_new_variables_in_term, 0);
Yap_InitCPred("export_term", 3, p_export_term, 0);
Yap_InitCPred("kill_exported_term", 1, p_kill_exported_term, SafePredFlag);
Yap_InitCPred("import_term", 2, p_import_term, 0);
Yap_InitCPred("freshen_variables", 1, p_freshen_variables, 0);
Yap_InitCPred("reset_variables", 1, p_reset_variables, 0);
CurrentModule = cm;
#ifdef DEBUG
Yap_InitCPred("$force_trail_expansion", 1, p_force_trail_expansion,
SafePredFlag);
Yap_InitCPred("dum", 1, camacho_dum, SafePredFlag);
#endif
}