38247e38fc
simplification of module handling; new timestamp implementation git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@52 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
994 lines
25 KiB
Prolog
994 lines
25 KiB
Prolog
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% clp(q,r) version 1.3.2 %
|
|
% %
|
|
% (c) Copyright 1992,1993,1994,1995 %
|
|
% Austrian Research Institute for Artificial Intelligence (OFAI) %
|
|
% Schottengasse 3 %
|
|
% A-1010 Vienna, Austria %
|
|
% %
|
|
% File: ineq.pl %
|
|
% Author: Christian Holzbaur christian@ai.univie.ac.at %
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
%
|
|
% Lin (=)< 0
|
|
%
|
|
ineq( [], I, _, Strictness) :- ineq_ground( Strictness, I).
|
|
ineq( [v(K,[X^1])|Tail], I, Lin, Strictness) :-
|
|
ineq_cases( Tail, I, Lin, Strictness, X, K).
|
|
|
|
ineq_cases( [], I, _, Strictness, X, K) :-
|
|
ineq_one( Strictness, X, K, I).
|
|
ineq_cases( [_|_], _, Lin, Strictness, _, _) :-
|
|
deref( Lin, Lind), % Id+Hd =< 0
|
|
decompose( Lind, Hom, _, Inhom),
|
|
ineq_more( Hom, Inhom, Lind, Strictness).
|
|
|
|
ineq_ground( strict, I) :- arith_eval( I < 0).
|
|
ineq_ground( nonstrict, I) :- arith_eval( I =< 0).
|
|
|
|
%
|
|
% Special cases: k={+-}1,i=0
|
|
%
|
|
ineq_one( strict, X, K, I) :-
|
|
( arith_eval(K>0) ->
|
|
( arith_eval(I=:=0) ->
|
|
ineq_one_s_p_0( X)
|
|
;
|
|
arith_eval( I/K, Inhom),
|
|
ineq_one_s_p_i( X, Inhom)
|
|
)
|
|
;
|
|
( arith_eval(I=:=0) ->
|
|
ineq_one_s_n_0( X)
|
|
;
|
|
arith_eval( -I/K, Inhom),
|
|
ineq_one_s_n_i( X, Inhom)
|
|
)
|
|
).
|
|
ineq_one( nonstrict, X, K, I) :-
|
|
( arith_eval(K>0) ->
|
|
( arith_eval(I=:=0) ->
|
|
ineq_one_n_p_0( X)
|
|
;
|
|
arith_eval( I/K, Inhom),
|
|
ineq_one_n_p_i( X, Inhom)
|
|
)
|
|
;
|
|
( arith_eval(I=:=0) ->
|
|
ineq_one_n_n_0( X)
|
|
;
|
|
arith_eval( -I/K, Inhom),
|
|
ineq_one_n_n_i( X, Inhom)
|
|
)
|
|
).
|
|
|
|
/*
|
|
ineq_one( Strictness, X, K, I) :-
|
|
get_atts( X, lin(LinX)),
|
|
!, % old variable, this is deref
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old( OrdX, K, I, Strictness, X, Ix).
|
|
ineq_one( Strictness, X, K, I) :- % new variable, nothing depends on it
|
|
arith_eval( -I/K, Bound),
|
|
ineq_one_new( Strictness, X, K, Bound).
|
|
|
|
ineq_one_new( strict, X, K, Bound) :-
|
|
arith_eval( 1, One),
|
|
( arith_eval( K < 0) ->
|
|
var_intern( t_l(Bound), X, 2'10)
|
|
;
|
|
var_intern( t_u(Bound), X, 2'01)
|
|
).
|
|
ineq_one_new( nonstrict, X, K, Bound) :-
|
|
arith_eval( 1, One),
|
|
( arith_eval( K < 0) ->
|
|
var_intern( t_l(Bound), X, 2'00)
|
|
;
|
|
var_intern( t_u(Bound), X, 2'00)
|
|
).
|
|
|
|
|
|
ineq_one_old( [], K, I, Strictness, _X, Ix) :-
|
|
arith_eval( K*Ix+I, Inhom),
|
|
ineq_ground( Strictness, Inhom).
|
|
%
|
|
% here we would have the choice to bound X or Y
|
|
%
|
|
ineq_one_old( [Y*Ky|Tail], K, I, Strictness, X, Ix) :-
|
|
( Tail = [],
|
|
arith_eval( K*Ky, Coeff),
|
|
arith_eval( -(K*Ix+I)/Coeff, Bound),
|
|
update_indep( Strictness, Y, Coeff, Bound)
|
|
; Tail = [_|_],
|
|
arith_eval( -I/K, Bound),
|
|
update_dep( Strictness, X, K, Bound)
|
|
).
|
|
|
|
update_dep( strict, X, K, Bound) :-
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
( arith_eval( K < 0) ->
|
|
udls( Type, X, Lin, Bound, Old)
|
|
;
|
|
udus( Type, X, Lin, Bound, Old)
|
|
).
|
|
update_dep( nonstrict, X, K, Bound) :-
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
( arith_eval( K < 0) ->
|
|
udl( Type, X, Lin, Bound, Old)
|
|
;
|
|
udu( Type, X, Lin, Bound, Old)
|
|
).
|
|
*/
|
|
|
|
% --------------------------- strict ----------------------------
|
|
|
|
ineq_one_s_p_0( X) :-
|
|
get_atts( X, lin(LinX)),
|
|
!, % old variable, this is deref
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_s_p_0( OrdX, X, Ix).
|
|
ineq_one_s_p_0( X) :- % new variable, nothing depends on it
|
|
arith_eval( 0, Zero),
|
|
var_intern( t_u(Zero), X, 2'01).
|
|
|
|
ineq_one_s_n_0( X) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_s_n_0( OrdX, X, Ix).
|
|
ineq_one_s_n_0( X) :-
|
|
arith_eval( 0, Zero),
|
|
var_intern( t_l(Zero), X, 2'10).
|
|
|
|
ineq_one_s_p_i( X, I) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_s_p_i( OrdX, I, X, Ix).
|
|
ineq_one_s_p_i( X, I) :-
|
|
arith_eval( -I, Bound),
|
|
var_intern( t_u(Bound), X, 2'01).
|
|
|
|
ineq_one_s_n_i( X, I) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_s_n_i( OrdX, I, X, Ix).
|
|
ineq_one_s_n_i( X, I) :-
|
|
var_intern( t_l(I), X, 2'10).
|
|
|
|
ineq_one_old_s_p_0( [], _, Ix) :-
|
|
arith_eval( Ix < 0).
|
|
ineq_one_old_s_p_0( [Y*Ky|Tail], X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ix/Ky, Bound),
|
|
update_indep( strict, Y, Ky, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( 0, Zero),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udus( Type, X, Lin, Zero, Old)
|
|
).
|
|
|
|
ineq_one_old_s_n_0( [], _, Ix) :-
|
|
arith_eval( Ix > 0).
|
|
ineq_one_old_s_n_0( [Y*Ky|Tail], X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ky, Coeff),
|
|
arith_eval( Ix/Coeff, Bound),
|
|
update_indep( strict, Y, Coeff, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( 0, Zero),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udls( Type, X, Lin, Zero, Old)
|
|
).
|
|
|
|
ineq_one_old_s_p_i( [], I, _, Ix) :-
|
|
arith_eval( Ix+I < 0).
|
|
ineq_one_old_s_p_i( [Y*Ky|Tail], I, X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -(Ix+I)/Ky, Bound),
|
|
update_indep( strict, Y, Ky, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( -I, Bound),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udus( Type, X, Lin, Bound, Old)
|
|
).
|
|
|
|
ineq_one_old_s_n_i( [], I, _, Ix) :-
|
|
arith_eval( -Ix+I < 0).
|
|
ineq_one_old_s_n_i( [Y*Ky|Tail], I, X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ky, Coeff),
|
|
arith_eval( (Ix-I)/Coeff, Bound),
|
|
update_indep( strict, Y, Coeff, Bound)
|
|
; Tail = [_|_] ->
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udls( Type, X, Lin, I, Old)
|
|
).
|
|
|
|
% -------------------------- nonstrict --------------------------
|
|
|
|
ineq_one_n_p_0( X) :-
|
|
get_atts( X, lin(LinX)),
|
|
!, % old variable, this is deref
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_n_p_0( OrdX, X, Ix).
|
|
ineq_one_n_p_0( X) :- % new variable, nothing depends on it
|
|
arith_eval( 0, Zero),
|
|
var_intern( t_u(Zero), X, 2'00).
|
|
|
|
ineq_one_n_n_0( X) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_n_n_0( OrdX, X, Ix).
|
|
ineq_one_n_n_0( X) :-
|
|
arith_eval( 0, Zero),
|
|
var_intern( t_l(Zero), X, 2'00).
|
|
|
|
ineq_one_n_p_i( X, I) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_n_p_i( OrdX, I, X, Ix).
|
|
ineq_one_n_p_i( X, I) :-
|
|
arith_eval( -I, Bound),
|
|
var_intern( t_u(Bound), X, 2'00).
|
|
|
|
ineq_one_n_n_i( X, I) :-
|
|
get_atts( X, lin(LinX)),
|
|
!,
|
|
decompose( LinX, OrdX, _, Ix),
|
|
ineq_one_old_n_n_i( OrdX, I, X, Ix).
|
|
ineq_one_n_n_i( X, I) :-
|
|
var_intern( t_l(I), X, 2'00).
|
|
|
|
ineq_one_old_n_p_0( [], _, Ix) :-
|
|
arith_eval( Ix =< 0).
|
|
ineq_one_old_n_p_0( [Y*Ky|Tail], X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ix/Ky, Bound),
|
|
update_indep( nonstrict, Y, Ky, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( 0, Zero),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udu( Type, X, Lin, Zero, Old)
|
|
).
|
|
|
|
ineq_one_old_n_n_0( [], _, Ix) :-
|
|
arith_eval( Ix >= 0).
|
|
ineq_one_old_n_n_0( [Y*Ky|Tail], X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ky, Coeff),
|
|
arith_eval( Ix/Coeff, Bound),
|
|
update_indep( nonstrict, Y, Coeff, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( 0, Zero),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udl( Type, X, Lin, Zero, Old)
|
|
).
|
|
|
|
ineq_one_old_n_p_i( [], I, _, Ix) :-
|
|
arith_eval( Ix+I =< 0).
|
|
ineq_one_old_n_p_i( [Y*Ky|Tail], I, X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -(Ix+I)/Ky, Bound),
|
|
update_indep( nonstrict, Y, Ky, Bound)
|
|
; Tail = [_|_] ->
|
|
arith_eval( -I, Bound),
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udu( Type, X, Lin, Bound, Old)
|
|
).
|
|
|
|
ineq_one_old_n_n_i( [], I, _, Ix) :-
|
|
arith_eval( -Ix+I =< 0).
|
|
ineq_one_old_n_n_i( [Y*Ky|Tail], I, X, Ix) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] ->
|
|
arith_eval( -Ky, Coeff),
|
|
arith_eval( (Ix-I)/Coeff, Bound),
|
|
update_indep( nonstrict, Y, Coeff, Bound)
|
|
; Tail = [_|_] ->
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
udl( Type, X, Lin, I, Old)
|
|
).
|
|
|
|
% ---------------------------------------------------------------
|
|
|
|
|
|
ineq_more( [], I, _, Strictness) :- ineq_ground( Strictness, I).
|
|
ineq_more( [X*K|Tail], Id, Lind, Strictness) :-
|
|
%vsc: added -> (01/06/06)
|
|
( Tail = [] -> % one var: update bound instead of slack introduction
|
|
get_or_add_class( X, _),
|
|
arith_eval( -Id/K, Bound),
|
|
update_indep( Strictness, X, K, Bound)
|
|
; Tail = [_|_] ->
|
|
ineq_more( Strictness, Lind)
|
|
).
|
|
|
|
ineq_more( strict, Lind) :-
|
|
( unconstrained( Lind, U,K, Rest) -> % never fails, no implied value
|
|
arith_eval( 0, Z),
|
|
arith_eval( 1, One),
|
|
var_intern( t_l(Z), S, 2'10),
|
|
arith_eval( -1/K, Ki),
|
|
add_linear_ff( Rest, Ki, [Z,Z,S*One], Ki, LinU),
|
|
decompose( LinU, Hu, _, _),
|
|
get_or_add_class( U, Class),
|
|
same_class( Hu, Class),
|
|
backsubst( U, LinU)
|
|
;
|
|
arith_eval( 0, Z),
|
|
var_with_def_intern( t_u(Z), S, Lind, 2'01),
|
|
basis_add( S, _),
|
|
determine_active_dec( Lind),
|
|
reconsider( S)
|
|
).
|
|
ineq_more( nonstrict, Lind) :-
|
|
( unconstrained( Lind, U,K, Rest) -> % never fails, no implied value
|
|
arith_eval( 0, Z),
|
|
arith_eval( 1, One),
|
|
var_intern( t_l(Z), S, 2'00),
|
|
arith_eval( -1/K, Ki),
|
|
add_linear_ff( Rest, Ki, [Z,Z,S*One], Ki, LinU),
|
|
decompose( LinU, Hu, _, _),
|
|
get_or_add_class( U, Class),
|
|
same_class( Hu, Class),
|
|
backsubst( U, LinU)
|
|
;
|
|
arith_eval( 0, Z),
|
|
var_with_def_intern( t_u(Z), S, Lind, 2'00),
|
|
basis_add( S, _),
|
|
determine_active_dec( Lind),
|
|
reconsider( S)
|
|
).
|
|
|
|
update_indep( strict, X, K, Bound) :-
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
( arith_eval( K < 0) ->
|
|
uils( Type, X, Lin, Bound, Old)
|
|
;
|
|
uius( Type, X, Lin, Bound, Old)
|
|
).
|
|
update_indep( nonstrict, X, K, Bound) :-
|
|
get_atts( X, [lin(Lin),type(Type),strictness(Old)]),
|
|
( arith_eval( K < 0) ->
|
|
uil( Type, X, Lin, Bound, Old)
|
|
;
|
|
uiu( Type, X, Lin, Bound, Old)
|
|
).
|
|
|
|
|
|
% ---------------------------------------------------------------------------------------
|
|
|
|
%
|
|
% Update a bound on a var xi
|
|
%
|
|
% a) independent variable
|
|
%
|
|
% a1) update inactive bound: done
|
|
%
|
|
% a2) update active bound:
|
|
% Determine [lu]b including most constraining row R
|
|
% If we are within: done
|
|
% else pivot(R,xi) and introduce bound via (b)
|
|
%
|
|
% a3) introduce a bound on an unconstrained var:
|
|
% All vars that depend on xi are unconstrained (invariant) ->
|
|
% the bound cannot invalidate any Lhs
|
|
%
|
|
% b) dependent variable
|
|
%
|
|
% repair upper or lower (maybe just swap with an unconstrained var from Rhs)
|
|
%
|
|
|
|
%
|
|
% Sign = 1,0,-1 means inside,at,outside
|
|
%
|
|
|
|
udl( t_none, X, Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_l(Bound)),strictness(2'00)]),
|
|
( unconstrained( Lin, Uc,Kuc, Rest) ->
|
|
arith_eval( -1/Kuc, Ki),
|
|
arith_eval( 0, Z),
|
|
arith_eval( -1, Mone),
|
|
add_linear_ff( Rest, Ki, [Z,Z,X*Mone], Ki, LinU),
|
|
backsubst( Uc, LinU)
|
|
;
|
|
basis_add( X, _),
|
|
determine_active_inc( Lin),
|
|
reconsider( X)
|
|
).
|
|
udl( t_l(L), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
put_atts( X, [type(t_l(Bound)),strictness(Strict)]),
|
|
reconsider_lower( X, Lin, Bound)
|
|
)).
|
|
udl( t_u(U), X, Lin, Bound, _Sold) :-
|
|
case_signum( U-Bound,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
(
|
|
put_atts( X, type(t_lu(Bound,U))),
|
|
reconsider_lower( X, Lin, Bound)
|
|
)).
|
|
udl( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( U-Bound,
|
|
fail,
|
|
(
|
|
Sold /\ 2'01 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)]),
|
|
reconsider_lower( X, Lin, Bound)
|
|
))
|
|
)).
|
|
|
|
udls( t_none, X, Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_l(Bound)),strictness(2'10)]),
|
|
( unconstrained( Lin, Uc,Kuc, Rest) ->
|
|
arith_eval( -1/Kuc, Ki),
|
|
arith_eval( -1, Mone),
|
|
arith_eval( 0, Z),
|
|
add_linear_ff( Rest, Ki, [Z,Z,X*Mone], Ki, LinU),
|
|
backsubst( Uc, LinU)
|
|
;
|
|
basis_add( X, _),
|
|
determine_active_inc( Lin),
|
|
reconsider( X)
|
|
).
|
|
udls( t_l(L), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_l(Bound)),strictness(Strict)]),
|
|
reconsider_lower( X, Lin, Bound)
|
|
)).
|
|
udls( t_u(U), X, Lin, Bound, Sold) :-
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)]),
|
|
reconsider_lower( X, Lin, Bound).
|
|
udls( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)]),
|
|
reconsider_lower( X, Lin, Bound)
|
|
)).
|
|
|
|
|
|
udu( t_none, X, Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_u(Bound)),strictness(2'00)]),
|
|
( unconstrained( Lin, Uc,Kuc, Rest) ->
|
|
arith_eval( -1/Kuc, Ki),
|
|
arith_eval( -1, Mone),
|
|
arith_eval( 0, Z),
|
|
add_linear_ff( Rest, Ki, [Z,Z,X*Mone], Ki, LinU),
|
|
backsubst( Uc, LinU)
|
|
;
|
|
basis_add( X, _),
|
|
determine_active_dec( Lin),
|
|
reconsider( X)
|
|
).
|
|
udu( t_u(U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
put_atts( X, [type(t_u(Bound)),strictness(Strict)]),
|
|
reconsider_upper( X, Lin, Bound)
|
|
)).
|
|
udu( t_l(L), X, Lin, Bound, _Sold) :-
|
|
case_signum( Bound-L,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
(
|
|
put_atts( X, type(t_lu(L,Bound))),
|
|
reconsider_upper( X, Lin, Bound)
|
|
)).
|
|
udu( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( Bound-L,
|
|
fail,
|
|
(
|
|
Sold /\ 2'10 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)]),
|
|
reconsider_upper( X, Lin, Bound)
|
|
))
|
|
)).
|
|
|
|
udus( t_none, X, Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_u(Bound)),strictness(2'01)]),
|
|
( unconstrained( Lin, Uc,Kuc, Rest) ->
|
|
arith_eval( -1/Kuc, Ki),
|
|
arith_eval( -1, Mone),
|
|
arith_eval( 0, Z),
|
|
add_linear_ff( Rest, Ki, [Z,Z,X*Mone], Ki, LinU),
|
|
backsubst( Uc, LinU)
|
|
;
|
|
basis_add( X, _),
|
|
determine_active_dec( Lin),
|
|
reconsider( X)
|
|
).
|
|
udus( t_u(U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_u(Bound)),strictness(Strict)]),
|
|
reconsider_upper( X, Lin, Bound)
|
|
)).
|
|
udus( t_l(L), X, Lin, Bound, Sold) :-
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)]),
|
|
reconsider_upper( X, Lin, Bound).
|
|
udus( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)]),
|
|
reconsider_upper( X, Lin, Bound)
|
|
)).
|
|
|
|
uiu( t_none, X, _Lin, Bound, _) :-
|
|
put_atts( X, [type(t_u(Bound)),strictness(2'00)]).
|
|
uiu( t_u(U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
put_atts( X, [type(t_u(Bound)),strictness(Strict)])
|
|
)).
|
|
uiu( t_l(L), X, Lin, Bound, _Sold) :-
|
|
case_signum( Bound-L,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
put_atts( X, type(t_lu(L,Bound)))).
|
|
uiu( t_L(L), X, Lin, Bound, _Sold) :-
|
|
case_signum( Bound-L,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
put_atts( X, type(t_Lu(L,Bound)))).
|
|
uiu( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( Bound-L,
|
|
fail,
|
|
(
|
|
Sold /\ 2'10 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)])
|
|
))
|
|
)).
|
|
uiu( t_Lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( Bound-L,
|
|
fail,
|
|
(
|
|
Sold /\ 2'10 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
put_atts( X, [type(t_Lu(L,Bound)),strictness(Strict)])
|
|
))
|
|
)).
|
|
%
|
|
% update active:
|
|
%
|
|
uiu( t_U(U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
( lb( X, Vlb-Vb-Lb),
|
|
arith_eval( Bound =< Lb+U) ->
|
|
put_atts( X, [type(t_U(Bound)),strictness(Strict)]),
|
|
pivot_a( Vlb, X, Vb, t_u(Bound)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_U(Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-U, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
)).
|
|
uiu( t_lU(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( Bound-L,
|
|
fail,
|
|
(
|
|
Sold /\ 2'10 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'10,
|
|
( lb( X, Vlb-Vb-Lb),
|
|
arith_eval( Bound =< Lb+U) ->
|
|
put_atts( X, [type(t_lU(L,Bound)),strictness(Strict)]),
|
|
pivot_a( Vlb, X, Vb, t_lu(L,Bound)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_lU(L,Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-U, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
))
|
|
)).
|
|
|
|
|
|
uius( t_none, X, _Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_u(Bound)),strictness(2'01)]).
|
|
uius( t_u(U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_u(Bound)),strictness(Strict)])
|
|
)).
|
|
uius( t_l(L), X, _Lin, Bound, Sold) :-
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)]).
|
|
uius( t_L(L), X, _Lin, Bound, Sold) :-
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_Lu(L,Bound)),strictness(Strict)]).
|
|
uius( t_lu(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_lu(L,Bound)),strictness(Strict)])
|
|
)).
|
|
uius( t_Lu(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, [type(t_Lu(L,Bound)),strictness(Strict)])
|
|
)).
|
|
%
|
|
% update active:
|
|
%
|
|
uius( t_U(U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
( lb( X, Vlb-Vb-Lb),
|
|
arith_eval( Bound =< Lb+U) ->
|
|
put_atts( X, [type(t_U(Bound)),strictness(Strict)]),
|
|
pivot_a( Vlb, X, Vb, t_u(Bound)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_U(Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-U, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
)).
|
|
uius( t_lU(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( U-Bound,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'01,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( Bound>L),
|
|
Strict is Sold \/ 2'01,
|
|
( lb( X, Vlb-Vb-Lb),
|
|
arith_eval( Bound =< Lb+U) ->
|
|
put_atts( X, [type(t_lU(L,Bound)),strictness(Strict)]),
|
|
pivot_a( Vlb, X, Vb, t_lu(L,Bound)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_lU(L,Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-U, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
)).
|
|
|
|
|
|
uil( t_none, X, _Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_l(Bound)),strictness(2'00)]).
|
|
uil( t_l(L), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
put_atts( X, [type(t_l(Bound)),strictness(Strict)])
|
|
)).
|
|
uil( t_u(U), X, Lin, Bound, _Sold) :-
|
|
case_signum( U-Bound,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
put_atts( X, type(t_lu(Bound,U)))).
|
|
uil( t_U(U), X, Lin, Bound, _Sold) :-
|
|
case_signum( U-Bound,
|
|
fail,
|
|
solve_bound( Lin, Bound),
|
|
put_atts( X, type(t_lU(Bound,U)))).
|
|
uil( t_lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( U-Bound,
|
|
fail,
|
|
(
|
|
Sold /\ 2'01 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)])
|
|
))
|
|
)).
|
|
uil( t_lU(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( U-Bound,
|
|
fail,
|
|
(
|
|
Sold /\ 2'01 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
put_atts( X, [type(t_lU(Bound,U)),strictness(Strict)])
|
|
))
|
|
)).
|
|
%
|
|
% update active bound: % { a>=100,d=<5000,c>=10,-2*a+d-c=10,a>=2490 }.
|
|
%
|
|
uil( t_L(L), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
( ub( X, Vub-Vb-Ub),
|
|
arith_eval( Bound >= Ub+L) ->
|
|
put_atts( X, [type(t_L(Bound)),strictness(Strict)]),
|
|
pivot_a( Vub, X, Vb, t_l(Bound)),
|
|
reconsider( X)
|
|
; %
|
|
% max(X) >= Ub, no implied value missed
|
|
%
|
|
put_atts( X, [type(t_L(Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-L, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
)).
|
|
uil( t_Lu(L,U), X, Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
true,
|
|
(
|
|
case_signum( U-Bound,
|
|
fail,
|
|
(
|
|
Sold /\ 2'01 =:= 0,
|
|
solve_bound( Lin, Bound)
|
|
),
|
|
(
|
|
Strict is Sold /\ 2'01,
|
|
( ub( X, Vub-Vb-Ub),
|
|
arith_eval( Bound >= Ub+L) ->
|
|
put_atts( X, [type(t_Lu(Bound,U)),strictness(Strict)]),
|
|
pivot_a( Vub, X, Vb, t_lu(Bound,U)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_Lu(Bound,U)),strictness(Strict)]),
|
|
arith_eval( Bound-L, Delta),
|
|
backsubst_delta( X, Delta)
|
|
)
|
|
)))).
|
|
|
|
|
|
uils( t_none, X, _Lin, Bound, _Sold) :-
|
|
put_atts( X, [type(t_l(Bound)),strictness(2'10)]).
|
|
uils( t_l(L), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_l(Bound)),strictness(Strict)])
|
|
)).
|
|
uils( t_u(U), X, _Lin, Bound, Sold) :-
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)]).
|
|
uils( t_U(U), X, _Lin, Bound, Sold) :-
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lU(Bound,U)),strictness(Strict)]).
|
|
uils( t_lu(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lu(Bound,U)),strictness(Strict)])
|
|
)).
|
|
uils( t_lU(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, [type(t_lU(Bound,U)),strictness(Strict)])
|
|
)).
|
|
%
|
|
% update active bound:
|
|
%
|
|
uils( t_L(L), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
( ub( X, Vub-Vb-Ub),
|
|
arith_eval( Bound >= Ub+L) ->
|
|
put_atts( X, [type(t_L(Bound)),strictness(Strict)]),
|
|
pivot_a( Vub, X, Vb, t_l(Bound)),
|
|
reconsider( X)
|
|
; %
|
|
% max(X) >= Ub, no implied value missed
|
|
%
|
|
put_atts( X, [type(t_L(Bound)),strictness(Strict)]),
|
|
arith_eval( Bound-L, Delta),
|
|
backsubst_delta( X, Delta)
|
|
))).
|
|
uils( t_Lu(L,U), X, _Lin, Bound, Sold) :-
|
|
case_signum( Bound-L,
|
|
true,
|
|
(
|
|
Strict is Sold \/ 2'10,
|
|
put_atts( X, strictness(Strict))
|
|
),
|
|
(
|
|
arith_eval( U>Bound),
|
|
Strict is Sold \/ 2'10,
|
|
( ub( X, Vub-Vb-Ub),
|
|
arith_eval( Bound >= Ub+L) ->
|
|
put_atts( X, [type(t_Lu(Bound,U)),strictness(Strict)]),
|
|
pivot_a( Vub, X, Vb, t_lu(Bound,U)),
|
|
reconsider( X)
|
|
;
|
|
put_atts( X, [type(t_Lu(Bound,U)),strictness(Strict)]),
|
|
arith_eval( Bound-L, Delta),
|
|
backsubst_delta( X, Delta)
|
|
))).
|
|
|
|
reconsider_upper( X, Lin, U) :-
|
|
decompose( Lin, H, R, I),
|
|
arith_eval( R+I >= U),
|
|
!,
|
|
dec_step( H, Status),
|
|
rcbl_status( Status, X, [], Binds,[], u(U)),
|
|
export_binding( Binds).
|
|
reconsider_upper( _, _, _).
|
|
|
|
reconsider_lower( X, Lin, L) :-
|
|
decompose( Lin, H, R, I),
|
|
arith_eval( R+I =< L),
|
|
!,
|
|
inc_step( H, Status),
|
|
rcbl_status( Status, X, [], Binds,[], l(L)),
|
|
export_binding( Binds).
|
|
reconsider_lower( _, _, _).
|
|
|
|
%
|
|
% lin is dereferenced
|
|
%
|
|
solve_bound( Lin, Bound) :-
|
|
arith_eval( Bound =:= 0),
|
|
!,
|
|
solve( Lin).
|
|
solve_bound( Lin, Bound) :-
|
|
arith_eval( -Bound, Nb),
|
|
normalize_scalar( Nb, Nbs),
|
|
add_linear_11( Nbs, Lin, Eq),
|
|
solve( Eq).
|