This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/GPL/clpqr/clpq/bv_q.pl
2008-03-13 17:16:47 +00:00

1761 lines
47 KiB
Prolog

/*
Part of CLP(Q) (Constraint Logic Programming over Rationals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(bv_q,
[
allvars/2,
backsubst/3,
backsubst_delta/4,
basis_add/2,
dec_step/2,
deref/2,
deref_var/2,
detach_bounds/1,
detach_bounds_vlv/5,
determine_active_dec/1,
determine_active_inc/1,
dump_var/6,
dump_nz/5,
export_binding/1,
get_or_add_class/2,
inc_step/2,
intro_at/3,
iterate_dec/2,
lb/3,
pivot_a/4,
pivot/5,
rcbl_status/6,
reconsider/1,
same_class/2,
solve/1,
solve_ord_x/3,
ub/3,
unconstrained/4,
var_intern/2,
var_intern/3,
var_with_def_assign/2,
var_with_def_intern/4,
maximize/1,
minimize/1,
sup/2,
sup/4,
inf/2,
inf/4,
'solve_<'/1,
'solve_=<'/1,
'solve_=\\='/1,
log_deref/4
]).
:- use_module(store_q,
[
add_linear_11/3,
add_linear_f1/4,
add_linear_ff/5,
delete_factor/4,
indep/2,
isolate/3,
nf2sum/3,
nf_rhs_x/4,
nf_substitute/4,
normalize_scalar/2,
mult_hom/3,
mult_linear_factor/3
]).
:- use_module('../clpqr/class',
[
class_allvars/2,
class_basis/2,
class_basis_add/3,
class_basis_drop/2,
class_basis_pivot/3,
class_new/5
]).
:- use_module(ineq_q,
[
ineq/4
]).
:- use_module(nf_q,
[
{}/1,
split/3,
wait_linear/3
]).
:- use_module(bb_q,
[
vertex_value/2
]).
:- use_module(library(ordsets),
[
ord_add_element/3
]).
% For the rhs maint. the following events are important:
%
% -) introduction of an indep var at active bound B
% -) narrowing of active bound
% -) swap active bound
% -) pivot
%
% a variables bound (L/U) can have the states:
%
% -) t_none no bounds
% -) t_l inactive lower bound
% -) t_u inactive upper bound
% -) t_L active lower bound
% -) t_U active upper bound
% -) t_lu inactive lower and upper bound
% -) t_Lu active lower bound and inactive upper bound
% -) t_lU inactive lower bound and active upper bound
% ----------------------------------- deref -----------------------------------
%
% deref(Lin,Lind)
%
% Makes a linear equation of the form [v(I,[])|H] into a solvable linear
% equation.
% If the variables are new, they are initialized with the linear equation X=X.
deref(Lin,Lind) :-
split(Lin,H,I),
normalize_scalar(I,Nonvar),
length(H,Len),
log_deref(Len,H,[],Restd),
add_linear_11(Nonvar,Restd,Lind).
% log_deref(Len,[Vs|VsTail],VsTail,Res)
%
% Logarithmically converts a linear equation in normal form ([v(_,_)|_]) into a
% linear equation in solver form ([I,R,K*X|_]). Res contains the result, Len is
% the length of the part to convert and [Vs|VsTail] is a difference list
% containing the equation in normal form.
log_deref(0,Vs,Vs,Lin) :-
!,
Lin = [0,0].
log_deref(1,[v(K,[X^1])|Vs],Vs,Lin) :-
!,
deref_var(X,Lx),
mult_linear_factor(Lx,K,Lin).
log_deref(2,[v(Kx,[X^1]),v(Ky,[Y^1])|Vs],Vs,Lin) :-
!,
deref_var(X,Lx),
deref_var(Y,Ly),
add_linear_ff(Lx,Kx,Ly,Ky,Lin).
log_deref(N,V0,V2,Lin) :-
P is N >> 1,
Q is N - P,
log_deref(P,V0,V1,Lp),
log_deref(Q,V1,V2,Lq),
add_linear_11(Lp,Lq,Lin).
% deref_var(X,Lin)
%
% Returns the equation of variable X. If X is a new variable, a new equation
% X = X is made.
deref_var(X,Lin) :-
( get_attr(X,itf,Att)
-> ( \+ arg(1,Att,clpq)
-> throw(error(permission_error('mix CLP(Q) variables with',
'CLP(R) variables:',X),context(_)))
; arg(4,Att,lin(Lin))
-> true
; setarg(2,Att,type(t_none)),
setarg(3,Att,strictness(0)),
Lin = [0,0,l(X*1,Ord)],
setarg(4,Att,lin(Lin)),
setarg(5,Att,order(Ord))
)
; Lin = [0,0,l(X*1,Ord)],
put_attr(X,itf,t(clpq,type(t_none),strictness(0),
lin(Lin),order(Ord),n,n,n,n,n,n))
).
% TODO
%
%
var_with_def_assign(Var,Lin) :-
Lin = [I,_|Hom],
( Hom = []
-> % X=k
Var = I
; Hom = [l(V*K,_)|Cs]
-> ( Cs = [],
K =:= 1,
I =:= 0
-> % X=Y
Var = V
; % general case
var_with_def_intern(t_none,Var,Lin,0)
)
).
% var_with_def_intern(Type,Var,Lin,Strictness)
%
% Makes Lin the linear equation of new variable Var, makes all variables of
% Lin, and Var of the same class and bounds Var by type(Type) and
% strictness(Strictness)
var_with_def_intern(Type,Var,Lin,Strict) :-
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),lin(Lin),
order(_),n,n,n,n,n,n)), % check uses
Lin = [_,_|Hom],
get_or_add_class(Var,Class),
same_class(Hom,Class).
% TODO
%
%
var_intern(Type,Var,Strict) :-
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
get_or_add_class(Var,_Class).
% TODO
%
%
var_intern(Var,Class) :- % for ordered/1 but otherwise free vars
get_attr(Var,itf,Att),
arg(2,Att,type(_)),
arg(4,Att,lin(_)),
!,
get_or_add_class(Var,Class).
var_intern(Var,Class) :-
put_attr(Var,itf,t(clpq,type(t_none),strictness(0),
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
get_or_add_class(Var,Class).
% -----------------------------------------------------------------------------
% export_binding(Lst)
%
% Binds variables X to Y where Lst contains elements of the form [X-Y].
export_binding([]).
export_binding([X-Y|Gs]) :-
Y = X,
export_binding(Gs).
% 'solve_='(Nf)
%
% Solves linear equation Nf = 0 where Nf is in normal form.
'solve_='(Nf) :-
deref(Nf,Nfd), % dereferences and turns Nf into solvable form Nfd
solve(Nfd).
% 'solve_=\\='(Nf)
%
% Solves linear inequality Nf =\= 0 where Nf is in normal form.
'solve_=\\='(Nf) :-
deref(Nf,Lind), % dereferences and turns Nf into solvable form Lind
Lind = [Inhom,_|Hom],
( Hom = []
-> Inhom =\= 0
; % make new variable Nz = Lind
var_with_def_intern(t_none,Nz,Lind,0),
% make Nz nonzero
get_attr(Nz,itf,Att),
setarg(8,Att,nonzero)
).
% 'solve_<'(Nf)
%
% Solves linear inequality Nf < 0 where Nf is in normal form.
'solve_<'(Nf) :-
split(Nf,H,I),
ineq(H,I,Nf,strict).
% 'solve_=<'(Nf)
%
% Solves linear inequality Nf =< 0 where Nf is in normal form.
'solve_=<'(Nf) :-
split(Nf,H,I),
ineq(H,I,Nf,nonstrict).
maximize(Term) :-
minimize(-Term).
%
% This is NOT coded as minimize(Expr) :- inf(Expr,Expr).
%
% because the new version of inf/2 only visits
% the vertex where the infimum is assumed and returns
% to the 'current' vertex via backtracking.
% The rationale behind this construction is to eliminate
% all garbage in the solver data structures produced by
% the pivots on the way to the extremal point caused by
% {inf,sup}/{2,4}.
%
% If we are after the infimum/supremum for minimizing/maximizing,
% this strategy may have adverse effects on performance because
% the simplex algorithm is forced to re-discover the
% extremal vertex through the equation {Inf =:= Expr}.
%
% Thus the extra code for {minimize,maximize}/1.
%
% In case someone comes up with an example where
%
% inf(Expr,Expr)
%
% outperforms the provided formulation for minimize - so be it.
% Both forms are available to the user.
%
minimize(Term) :-
wait_linear(Term,Nf,minimize_lin(Nf)).
% minimize_lin(Lin)
%
% Minimizes the linear expression Lin. It does so by making a new
% variable Dep and minimizes its value.
minimize_lin(Lin) :-
deref(Lin,Lind),
var_with_def_intern(t_none,Dep,Lind,0),
determine_active_dec(Lind),
iterate_dec(Dep,Inf),
{ Dep =:= Inf }.
sup(Expression,Sup) :-
sup(Expression,Sup,[],[]).
sup(Expression,Sup,Vector,Vertex) :-
inf(-Expression,-Sup,Vector,Vertex).
inf(Expression,Inf) :-
inf(Expression,Inf,[],[]).
inf(Expression,Inf,Vector,Vertex) :-
% wait until Expression becomes linear, Nf contains linear Expression
% in normal form
wait_linear(Expression,Nf,inf_lin(Nf,Inf,Vector,Vertex)).
inf_lin(Lin,_,Vector,_) :-
deref(Lin,Lind),
var_with_def_intern(t_none,Dep,Lind,0), % make new variable Dep = Lind
determine_active_dec(Lind), % minimizes Lind
iterate_dec(Dep,Inf),
vertex_value(Vector,Values),
nb_setval(inf,[Inf|Values]),
fail.
inf_lin(_,Infimum,_,Vertex) :-
catch(nb_getval(inf,L),_,fail),
nb_delete(inf),
assign([Infimum|Vertex],L).
% assign(L1,L2)
%
% The elements of L1 are pairwise assigned to the elements of L2
% by means of asserting {X =:= Y} where X is an element of L1 and Y
% is the corresponding element of L2.
assign([],[]).
assign([X|Xs],[Y|Ys]) :-
{X =:= Y}, % more defensive/expressive than X=Y
assign(Xs,Ys).
% --------------------------------- optimization ------------------------------
%
% The _sn(S) =< 0 row might be temporarily infeasible.
% We use reconsider/1 to fix this.
%
% s(S) e [_,0] = d +xi ... -xj, Rhs > 0 so we want to decrease s(S)
%
% positive xi would have to be moved towards their lower bound,
% negative xj would have to be moved towards their upper bound,
%
% the row s(S) does not limit the lower bound of xi
% the row s(S) does not limit the upper bound of xj
%
% a) if some other row R is limiting xk, we pivot(R,xk),
% s(S) will decrease and get more feasible until (b)
% b) if there is no limiting row for some xi: we pivot(s(S),xi)
% xj: we pivot(s(S),xj)
% which cures the infeasibility in one step
%
% iterate_dec(OptVar,Opt)
%
% Decreases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.
iterate_dec(OptVar,Opt) :-
get_attr(OptVar,itf,Att),
arg(4,Att,lin([I,R|H])),
dec_step(H,Status),
( Status = applied
-> iterate_dec(OptVar,Opt)
; Status = optimum,
Opt is R + I
).
% iterate_inc(OptVar,Opt)
%
% Increases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.
iterate_inc(OptVar,Opt) :-
get_attr(OptVar,itf,Att),
arg(4,Att,lin([I,R|H])),
inc_step(H,Status),
( Status = applied
-> iterate_inc(OptVar,Opt)
; Status = optimum,
Opt is R + I
).
%
% Status = {optimum,unlimited(Indep,DepT),applied}
% If Status = optimum, the tables have not been changed at all.
% Searches left to right, does not try to find the 'best' pivot
% Therefore we might discover unboundedness only after a few pivots
%
dec_step_cont([],optimum,Cont,Cont).
dec_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( dec_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
-> true
; dec_step_cont(Vs,Status,ContIn,ContOut)
).
inc_step_cont([],optimum,Cont,Cont).
inc_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( inc_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
-> true
; inc_step_cont(Vs,Status,ContIn,ContOut)
).
dec_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K > 0,
( lb(Class,OrdV,Vub-Vb-_)
-> % found a lower bound
Status = applied,
pivot_a(Vub,V,Vb,t_u(U)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_u(U)),
ContIn = ContOut
).
dec_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K > 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K < 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_l(L)),
ContIn = ContOut
).
dec_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K < 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
inc_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K < 0,
( lb(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_u(U)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_u(U)),
ContIn = ContOut
).
inc_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K < 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K > 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_l(L)),
ContIn = ContOut
).
inc_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K > 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
replace_in_cont([],_,_,[]).
replace_in_cont([H1|T1],X,Y,[H2|T2]) :-
( H1 == X
-> H2 = Y,
T1 = T2
; H2 = H1,
replace_in_cont(T1,X,Y,T2)
).
dec_step([],optimum).
dec_step([l(V*K,OrdV)|Vs],Status) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( dec_step_2(W,l(V*K,OrdV),Class,Status)
-> true
; dec_step(Vs,Status)
).
dec_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
K > 0,
( lb(Class,OrdV,Vub-Vb-_)
-> % found a lower bound
Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
; Status = unlimited(V,t_u(U))
).
dec_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
K > 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
K < 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
; Status = unlimited(V,t_l(L))
).
dec_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
K < 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
inc_step([],optimum). % if status has not been set yet: no changes
inc_step([l(V*K,OrdV)|Vs],Status) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( inc_step_2(W,l(V*K,OrdV),Class,Status)
-> true
; inc_step(Vs,Status)
).
inc_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
K < 0,
( lb(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
; Status = unlimited(V,t_u(U))
).
inc_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
K < 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
K > 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
; Status = unlimited(V,t_l(L))
).
inc_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
K > 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
% ------------------------- find the most constraining row --------------------
%
% The code for the lower and the upper bound are dual versions of each other.
% The only difference is in the orientation of the comparisons.
% Indeps are ruled out by their types.
% If there is no bound, this fails.
%
% *** The actual lb and ub on an indep variable X are [lu]b + b(X), where b(X)
% is the value of the active bound.
%
% Nota bene: We must NOT consider infeasible rows as candidates to
% leave the basis!
%
% ub(Class,OrdX,Ub)
%
% See lb/3: this is similar
ub(Class,OrdX,Ub) :-
class_basis(Class,Deps),
ub_first(Deps,OrdX,Ub).
% ub_first(Deps,X,Dep-W-Ub)
%
% Finds the tightest upperbound for variable X from the linear equations of
% basis variables Deps, and puts the resulting bound in Ub. Dep is the basis
% variable that generates the bound, and W is bound of that variable that has
% to be activated to achieve this.
ub_first([Dep|Deps],OrdX,Tightest) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
ub_inner(Type,OrdX,Lin,W,Ub),
Ub >= 0
-> ub(Deps,OrdX,Dep-W-Ub,Tightest)
; ub_first(Deps,OrdX,Tightest)
).
% ub(Deps,OrdX,TightestIn,TightestOut)
%
% See lb/4: this is similar
ub([],_,T0,T0).
ub([Dep|Deps],OrdX,T0,T1) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
ub_inner(Type,OrdX,Lin,W,Ub),
T0 = _-Ubb,
Ub < Ubb,
Ub >= 0
-> ub(Deps,OrdX,Dep-W-Ub,T1) % tighter bound, use new bound
; ub(Deps,OrdX,T0,T1) % no tighter bound, keep current one
).
% ub_inner(Type,OrdX,Lin,W,Ub)
%
% See lb_inner/5: this is similar
ub_inner(t_l(L),OrdX,Lin,t_L(L),Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K < 0,
Ub is (L - Rhs) rdiv K.
ub_inner(t_u(U),OrdX,Lin,t_U(U),Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K > 0,
Ub is (U - Rhs) rdiv K.
ub_inner(t_lu(L,U),OrdX,Lin,W,Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
( K < 0 % use lowerbound
-> W = t_Lu(L,U),
Ub = (L - Rhs) rdiv K
; K > 0 % use upperbound
-> W = t_lU(L,U),
Ub = (U - Rhs) rdiv K
).
% lb(Class,OrdX,Lb)
%
% Returns in Lb how much we can lower the upperbound of X without violating
% a bound of the basisvariables.
% Lb has the form Dep-W-Lb with Dep the variable whose bound is violated when
% lowering the bound for X more, W the actual bound that has to be activated
% and Lb the amount that the upperbound can be lowered.
% X has ordering OrdX and class Class.
lb(Class,OrdX,Lb) :-
class_basis(Class,Deps),
lb_first(Deps,OrdX,Lb).
% lb_first(Deps,OrdX,Tightest)
%
% Returns in Tightest how much we can lower the upperbound of X without
% violating a bound of Deps.
% Tightest has the form Dep-W-Lb with Dep the variable whose bound is violated
% when lowering the bound for X more, W the actual bound that has to be
% activated and Lb the amount that the upperbound can be lowered. X has
% ordering attribute OrdX.
lb_first([Dep|Deps],OrdX,Tightest) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
lb_inner(Type,OrdX,Lin,W,Lb),
Lb =< 0 % Lb > 0 means a violated bound
-> lb(Deps,OrdX,Dep-W-Lb,Tightest)
; lb_first(Deps,OrdX,Tightest)
).
% lb(Deps,OrdX,TightestIn,TightestOut)
%
% See lb_first/3: this one does the same thing, but is used for the steps after
% the first one and remembers the tightest bound so far.
lb([],_,T0,T0).
lb([Dep|Deps],OrdX,T0,T1) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
lb_inner(Type,OrdX,Lin,W,Lb),
T0 = _-Lbb,
Lb > Lbb, % choose the least lowering, others might violate
% bounds
Lb =< 0 % violation of a bound (without lowering)
-> lb(Deps,OrdX,Dep-W-Lb,T1)
; lb(Deps,OrdX,T0,T1)
).
% lb_inner(Type,X,Lin,W,Lb)
%
% Returns in Lb how much lower we can make X without violating a bound
% by using the linear equation Lin of basis variable B which has type
% Type and which has to activate a bound (type W) to do so.
%
% E.g. when B has a lowerbound L, then L should always be smaller than I + R.
% So a lowerbound of X (which has scalar K in Lin), could be at most
% (L-(I+R))/K lower than its upperbound (if K is positive).
% Also note that Lb should always be smaller than 0, otherwise the row is
% not feasible.
% X has ordering attribute OrdX.
lb_inner(t_l(L),OrdX,Lin,t_L(L),Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K), % if linear equation Lin contains the term
% X*K, Rhs is the right hand side of that
% equation
K > 0,
Lb is (L - Rhs) rdiv K.
lb_inner(t_u(U),OrdX,Lin,t_U(U),Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K < 0, % K < 0
Lb is (U - Rhs) rdiv K.
lb_inner(t_lu(L,U),OrdX,Lin,W,Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
( K < 0
-> W = t_lU(L,U),
Lb is (U - Rhs) rdiv K
; K > 0
-> W = t_Lu(L,U),
Lb is (L - Rhs) rdiv K
).
% ---------------------------------- equations --------------------------------
%
% backsubstitution will not make the system infeasible, if the bounds on the
% indep vars are obeyed, but some implied values might pop up in rows where X
% occurs
% -) special case X=Y during bs -> get rid of dependend var(s), alias
%
solve(Lin) :-
Lin = [I,_|H],
solve(H,Lin,I,Bindings,[]),
export_binding(Bindings).
% solve(Hom,Lin,I,Bind,BindT)
%
% Solves a linear equation Lin = [I,_|H] = 0 and exports the generated bindings
solve([],_,I,Bind0,Bind0) :-
!,
I =:= 0.
solve(H,Lin,_,Bind0,BindT) :-
sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT),
get_attr(Selected,itf,Att),
arg(5,Att,order(Ord)),
isolate(Ord,Lin,Lin1), % Lin = 0 => Selected = Lin1
( Category = 1 % classless variable, no bounds
-> setarg(4,Att,lin(Lin1)),
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,Selected,Inhom,Bind0,BindT),
eq_classes(NV,NVT,ClassesUniq)
; Category = 2 % class variable, no bounds
-> arg(6,Att,class(NewC)),
class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,Ord,Lin1)
),
eq_classes(NV,NVT,ClassesUniq)
; Category = 3 % classless variable, all variables in Lin and
% Selected are bounded
-> arg(2,Att,type(Type)),
setarg(4,Att,lin(Lin1)),
deactivate_bound(Type,Selected),
eq_classes(NV,NVT,ClassesUniq),
basis_add(Selected,Basis),
undet_active(Lin1), % we can't tell which bound will likely be a
% problem at this point
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,Selected,Inhom,Bind0,Bind1), % only if
% Hom = []
rcbl(Basis,Bind1,BindT) % reconsider entire basis
; Category = 4 % class variable, all variables in Lin and Selected
% are bounded
-> arg(2,Att,type(Type)),
arg(6,Att,class(NewC)),
class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,Bind1)
; Bind0 = Bind1,
bs(Deps,Ord,Lin1)
),
deactivate_bound(Type,Selected),
basis_add(Selected,Basis),
% eq_classes( NV, NVT, ClassesUniq),
% 4 -> var(NV)
equate(ClassesUniq,_),
undet_active(Lin1),
rcbl(Basis,Bind1,BindT)
).
%
% Much like solve, but we solve for a particular variable of type t_none
%
% solve_x(H,Lin,I,X,[Bind|BindT],BindT)
%
%
solve_x(Lin,X) :-
Lin = [I,_|H],
solve_x(H,Lin,I,X,Bindings,[]),
export_binding(Bindings).
solve_x([],_,I,_,Bind0,Bind0) :-
!,
I =:= 0.
solve_x(H,Lin,_,X,Bind0,BindT) :-
sd(H,[],ClassesUniq,9-9-0,_,NV,NVT),
get_attr(X,itf,Att),
arg(5,Att,order(OrdX)),
isolate(OrdX,Lin,Lin1),
( arg(6,Att,class(NewC))
-> class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,OrdX,Lin1)
),
eq_classes(NV,NVT,ClassesUniq)
; setarg(4,Att,lin(Lin1)),
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,X,Inhom,Bind0,BindT),
eq_classes(NV,NVT,ClassesUniq)
).
% solve_ord_x(Lin,OrdX,ClassX)
%
% Does the same thing as solve_x/2, but has the ordering of X and its class as
% input. This also means that X has a class which is not sure in solve_x/2.
solve_ord_x(Lin,OrdX,ClassX) :-
Lin = [I,_|H],
solve_ord_x(H,Lin,I,OrdX,ClassX,Bindings,[]),
export_binding(Bindings).
solve_ord_x([],_,I,_,_,Bind0,Bind0) :-
I =:= 0.
solve_ord_x([_|_],Lin,_,OrdX,ClassX,Bind0,BindT) :-
isolate(OrdX,Lin,Lin1),
Lin1 = [_,_|H1],
sd(H1,[],ClassesUniq1,9-9-0,_,NV,NVT), % do sd on Lin without X, then
% add class of X
ord_add_element(ClassesUniq1,ClassX,ClassesUniq),
class_allvars(ClassX,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,OrdX,Lin1)
),
eq_classes(NV,NVT,ClassesUniq).
% sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT)
% sd(Hom,ClassesIn,ClassesOut,PreferenceIn,PreferenceOut,[NV|NVTail],NVTail)
%
% ClassesOut is a sorted list of the different classes that are either in
% ClassesIn or that are the classes of the variables in Hom. Variables that do
% not belong to a class yet, are put in the difference list NV.
sd([],Class0,Class0,Preference0,Preference0,NV0,NV0).
sd([l(X*K,_)|Xs],Class0,ClassN,Preference0,PreferenceN,NV0,NVt) :-
get_attr(X,itf,Att),
( arg(6,Att,class(Xc)) % old: has class
-> NV0 = NV1,
ord_add_element(Class0,Xc,Class1),
( arg(2,Att,type(t_none))
-> preference(Preference0,2-X-K,Preference1)
% has class, no bounds => category 2
; preference(Preference0,4-X-K,Preference1)
% has class, is bounded => category 4
)
; % new: has no class
Class1 = Class0,
NV0 = [X|NV1], % X has no class yet, add to list of new variables
( arg(2,Att,type(t_none))
-> preference(Preference0,1-X-K,Preference1)
% no class, no bounds => category 1
; preference(Preference0,3-X-K,Preference1)
% no class, is bounded => category 3
)
),
sd(Xs,Class1,ClassN,Preference1,PreferenceN,NV1,NVt).
%
% A is best sofar, B is current
% smallest prefered
preference(A,B,Pref) :-
A = Px-_-_,
B = Py-_-_,
( Px < Py
-> Pref = A
; Pref = B
).
% eq_classes(NV,NVTail,Cs)
%
% Attaches all classless variables NV to a new class and equates all other
% classes with this class. The equate operation only happens after attach_class
% because the unification of classes can bind the tail of the AllVars attribute
% to a nonvar and then the attach_class operation wouldn't work.
eq_classes(NV,_,Cs) :-
var(NV),
!,
equate(Cs,_).
eq_classes(NV,NVT,Cs) :-
class_new(Su,clpq,NV,NVT,[]), % make a new class Su with NV as the variables
attach_class(NV,Su), % attach the variables NV to Su
equate(Cs,Su).
equate([],_).
equate([X|Xs],X) :- equate(Xs,X).
%
% assert: none of the Vars has a class attribute yet
%
attach_class(Xs,_) :-
var(Xs), % Tail
!.
attach_class([X|Xs],Class) :-
get_attr(X,itf,Att),
setarg(6,Att,class(Class)),
attach_class(Xs,Class).
% unconstrained(Lin,Uc,Kuc,Rest)
%
% Finds an unconstrained variable Uc (type(t_none)) in Lin with scalar Kuc and
% removes it from Lin to return Rest.
unconstrained(Lin,Uc,Kuc,Rest) :-
Lin = [_,_|H],
sd(H,[],_,9-9-0,Category-Uc-_,_,_),
Category =< 2,
get_attr(Uc,itf,Att),
arg(5,Att,order(OrdUc)),
delete_factor(OrdUc,Lin,Rest,Kuc).
%
% point the vars in Lin into the same equivalence class
% maybe join some global data
%
same_class([],_).
same_class([l(X*_,_)|Xs],Class) :-
get_or_add_class(X,Class),
same_class(Xs,Class).
% get_or_add_class(X,Class)
%
% Returns in Class the class of X if X has one, or a new class where X now
% belongs to if X didn't have one.
get_or_add_class(X,Class) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
( arg(6,Att,class(ClassX))
-> ClassX = Class
; setarg(6,Att,class(Class)),
class_new(Class,CLP,[X|Tail],Tail,[])
).
% allvars(X,Allvars)
%
% Allvars is a list of all variables in the class to which X belongs.
allvars(X,Allvars) :-
get_attr(X,itf,Att),
arg(6,Att,class(C)),
class_allvars(C,Allvars).
% deactivate_bound(Type,Variable)
%
% The Type of the variable is changed to reflect the deactivation of its
% bounds.
% t_L(_) becomes t_l(_), t_lU(_,_) becomes t_lu(_,_) and so on.
deactivate_bound(t_l(_),_).
deactivate_bound(t_u(_),_).
deactivate_bound(t_lu(_,_),_).
deactivate_bound(t_L(L),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_l(L))).
deactivate_bound(t_Lu(L,U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
deactivate_bound(t_U(U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_u(U))).
deactivate_bound(t_lU(L,U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% intro_at(X,Value,Type)
%
% Variable X gets new type Type which reflects the activation of a bound with
% value Value. In the linear equations of all the variables belonging to the
% same class as X, X is substituted by [0,Value,X] to reflect the new active
% bound.
intro_at(X,Value,Type) :-
get_attr(X,itf,Att),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
setarg(2,Att,type(Type)),
( Value =:= 0
-> true
; backsubst_delta(Class,Ord,X,Value)
).
% undet_active(Lin)
%
% For each variable in the homogene part of Lin, a bound is activated
% if an inactive bound exists. (t_l(L) becomes t_L(L) and so on)
undet_active([_,_|H]) :-
undet_active_h(H).
% undet_active_h(Hom)
%
% For each variable in homogene part Hom, a bound is activated if an
% inactive bound exists (t_l(L) becomes t_L(L) and so on)
undet_active_h([]).
undet_active_h([l(X*_,_)|Xs]) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
undet_active(Type,X),
undet_active_h(Xs).
% undet_active(Type,Var)
%
% An inactive bound of Var is activated if such exists
% t_lu(L,U) is arbitrarily chosen to become t_Lu(L,U)
undet_active(t_none,_). % type_activity
undet_active(t_L(_),_).
undet_active(t_Lu(_,_),_).
undet_active(t_U(_),_).
undet_active(t_lU(_,_),_).
undet_active(t_l(L),X) :- intro_at(X,L,t_L(L)).
undet_active(t_u(U),X) :- intro_at(X,U,t_U(U)).
undet_active(t_lu(L,U),X) :- intro_at(X,L,t_Lu(L,U)).
% determine_active_dec(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as small as possible in order not to violate
% an upperbound (see reconsider/1)
determine_active_dec([_,_|H]) :-
determine_active(H,-1).
% determine_active_inc(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as large as possible in order not to violate
% a lowerbound (see reconsider/1)
determine_active_inc([_,_|H]) :-
determine_active(H,1).
% determine_active(Hom,S)
%
% For each variable in Hom, activates its bound if it is not yet activated.
% For the case of t_lu(_,_) the lower or upper bound is activated depending on
% K and S:
% If sign of K*S is negative, then lowerbound, otherwise upperbound.
determine_active([],_).
determine_active([l(X*K,_)|Xs],S) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
determine_active(Type,X,K,S),
determine_active(Xs,S).
determine_active(t_L(_),_,_,_).
determine_active(t_Lu(_,_),_,_,_).
determine_active(t_U(_),_,_,_).
determine_active(t_lU(_,_),_,_,_).
determine_active(t_l(L),X,_,_) :- intro_at(X,L,t_L(L)).
determine_active(t_u(U),X,_,_) :- intro_at(X,U,t_U(U)).
determine_active(t_lu(L,U),X,K,S) :-
KS is K*S,
( KS < 0
-> intro_at(X,L,t_Lu(L,U))
; KS > 0
-> intro_at(X,U,t_lU(L,U))
).
%
% Careful when an indep turns into t_none !!!
%
detach_bounds(V) :-
get_attr(V,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
arg(5,Att,order(OrdV)),
arg(6,Att,class(Class)),
setarg(2,Att,type(t_none)),
setarg(3,Att,strictness(0)),
( indep(Lin,OrdV)
-> ( ub(Class,OrdV,Vub-Vb-_)
-> % exchange against thightest
class_basis_drop(Class,Vub),
pivot(Vub,Class,OrdV,Vb,Type)
; lb(Class,OrdV,Vlb-Vb-_)
-> class_basis_drop(Class,Vlb),
pivot(Vlb,Class,OrdV,Vb,Type)
; true
)
; class_basis_drop(Class,V)
).
detach_bounds_vlv(OrdV,Lin,Class,Var,NewLin) :-
( indep(Lin,OrdV)
-> Lin = [_,R|_],
( ub(Class,OrdV,Vub-Vb-_)
-> % in verify_lin, class might contain two occurrences of Var,
% but it doesn't matter which one we delete
class_basis_drop(Class,Var),
pivot_vlv(Vub,Class,OrdV,Vb,R,NewLin)
; lb(Class,OrdV,Vlb-Vb-_)
-> class_basis_drop(Class,Var),
pivot_vlv(Vlb,Class,OrdV,Vb,R,NewLin)
; NewLin = Lin
)
; NewLin = Lin,
class_basis_drop(Class,Var)
).
% ----------------------------- manipulate the basis --------------------------
% basis_drop(X)
%
% Removes X from the basis of the class to which X belongs.
basis_drop(X) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis_drop(Cv,X).
% basis(X,Basis)
%
% Basis is the basis of the class to which X belongs.
basis(X,Basis) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis(Cv,Basis).
% basis_add(X,NewBasis)
%
% NewBasis is the result of adding X to the basis of the class to which X
% belongs.
basis_add(X,NewBasis) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis_add(Cv,X,NewBasis).
% basis_pivot(Leave,Enter)
%
% Removes Leave from the basis of the class to which it belongs, and adds
% Enter to that basis.
basis_pivot(Leave,Enter) :-
get_attr(Leave,itf,Att),
arg(6,Att,class(Cv)),
class_basis_pivot(Cv,Enter,Leave).
% ----------------------------------- pivot -----------------------------------
% pivot(Dep,Indep)
%
% The linear equation of variable Dep, is transformed into one of variable
% Indep, containing Dep. Then, all occurrences of Indep in linear equations are
% substituted by this new definition
%
% Pivot ignoring rhs and active states
%
pivot(Dep,Indep) :-
get_attr(Dep,itf,AttD),
arg(4,AttD,lin(H)),
arg(5,AttD,order(OrdDep)),
get_attr(Indep,itf,AttI),
arg(5,AttI,order(Ord)),
arg(5,AttI,class(Class)),
delete_factor(Ord,H,H0,Coeff),
K is -1 rdiv Coeff,
add_linear_ff(H0,K,[0,0,l(Dep* -1,OrdDep)],K,Lin),
backsubst(Class,Ord,Lin).
% pivot_a(Dep,Indep,IndepT,DepT)
%
% Removes Dep from the basis, puts Indep in, and pivots the equation of
% Dep to become one of Indep. The type of Dep becomes DepT (which means
% it gets deactivated), the type of Indep becomes IndepT (which means it
% gets activated)
pivot_a(Dep,Indep,Vb,Wd) :-
basis_pivot(Dep,Indep),
get_attr(Indep,itf,Att),
arg(2,Att,type(Type)),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
pivot(Dep,Class,Ord,Vb,Type),
get_attr(Indep,itf,Att2), %changed?
setarg(2,Att2,type(Wd)).
pivot_b(Vub,V,Vb,Wd) :-
( Vub == V
-> get_attr(V,itf,Att),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
setarg(2,Att,type(Vb)),
pivot_b_delta(Vb,Delta), % nonzero(Delta)
backsubst_delta(Class,Ord,V,Delta)
; pivot_a(Vub,V,Vb,Wd)
).
pivot_b_delta(t_Lu(L,U),Delta) :- Delta is L-U.
pivot_b_delta(t_lU(L,U),Delta) :- Delta is U-L.
% select_active_bound(Type,Bound)
%
% Returns the bound that is active in Type (if such exists, 0 otherwise)
select_active_bound(t_L(L),L).
select_active_bound(t_Lu(L,_),L).
select_active_bound(t_U(U),U).
select_active_bound(t_lU(_,U),U).
select_active_bound(t_none,0).
%
% for project.pl
%
select_active_bound(t_l(_),0).
select_active_bound(t_u(_),0).
select_active_bound(t_lu(_,_),0).
% pivot(Dep,Class,IndepOrd,DepAct,IndAct)
%
% See pivot/2.
% In addition, variable Indep with ordering IndepOrd has an active bound IndAct
%
%
% Pivot taking care of rhs and active states
%
pivot(Dep,Class,IndepOrd,DepAct,IndAct) :-
get_attr(Dep,itf,Att),
arg(4,Att,lin(H)),
arg(5,Att,order(DepOrd)),
setarg(2,Att,type(DepAct)),
select_active_bound(DepAct,AbvD), % New current value for Dep
select_active_bound(IndAct,AbvI), % Old current value of Indep
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
AbvDm is -AbvD,
AbvIm is -AbvI,
add_linear_f1([0,AbvIm],Coeff,H0,H1),
K is -1 rdiv Coeff,
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,H2),
% Indep = -1/Coeff*... + 1/Coeff*Dep
add_linear_11(H2,[0,AbvIm],Lin),
backsubst(Class,IndepOrd,Lin).
% Rewrite Dep = ... + Coeff*Indep + ...
% into Indep = ... + -1/Coeff*Dep + ...
%
% For backsubstitution, old current value of Indep must be removed from RHS
% New current value of Dep must be added to RHS
% For solving: old current value of Indep should be out of RHS
pivot_vlv(Dep,Class,IndepOrd,DepAct,AbvI,Lin) :-
get_attr(Dep,itf,Att),
arg(4,Att,lin(H)),
arg(5,Att,order(DepOrd)),
setarg(2,Att,type(DepAct)),
select_active_bound(DepAct,AbvD), % New current value for Dep
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
AbvDm is -AbvD,
AbvIm is -AbvI,
add_linear_f1([0,AbvIm],Coeff,H0,H1),
K is -1 rdiv Coeff,
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,Lin),
% Indep = -1/Coeff*... + 1/Coeff*Dep
add_linear_11(Lin,[0,AbvIm],SubstLin),
backsubst(Class,IndepOrd,SubstLin).
% backsubst_delta(Class,OrdX,X,Delta)
%
% X with ordering attribute OrdX, is substituted in all linear equations of
% variables in the class Class, by linear equation [0,Delta,l(X*1,OrdX)]. This
% reflects the activation of a bound.
backsubst_delta(Class,OrdX,X,Delta) :-
backsubst(Class,OrdX,[0,Delta,l(X*1,OrdX)]).
% backsubst(Class,OrdX,Lin)
%
% X with ordering OrdX is substituted in all linear equations of variables in
% the class Class, by linear equation Lin
backsubst(Class,OrdX,Lin) :-
class_allvars(Class,Allvars),
bs(Allvars,OrdX,Lin).
% bs(Vars,OrdV,Lin)
%
% In all linear equations of the variables Vars, variable V with ordering
% attribute OrdV is substituted by linear equation Lin.
%
% valid if nothing will go ground
%
bs(Xs,_,_) :-
var(Xs),
!.
bs([X|Xs],OrdV,Lin) :-
( get_attr(X,itf,Att),
arg(4,Att,lin(LinX)),
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
-> setarg(4,Att,lin(LinX1)),
bs(Xs,OrdV,Lin)
; bs(Xs,OrdV,Lin)
).
%
% rank increasing backsubstitution
%
% bs_collect_bindings(Deps,SelectedOrd,Lin,Bind,BindT)
%
% Collects bindings (of the form [X-I] where X = I is the binding) by
% substituting Selected in all linear equations of the variables Deps (which
% are of the same class), by Lin. Selected has ordering attribute SelectedOrd.
%
% E.g. when V = 2X + 3Y + 4, X = 3V + 2Z and Y = 4X + 3
% we can substitute V in the linear equation of X: X = 6X + 9Y + 2Z + 12
% we can't substitute V in the linear equation of Y of course.
bs_collect_bindings(Xs,_,_,Bind0,BindT) :-
var(Xs),
!,
Bind0 = BindT.
bs_collect_bindings([X|Xs],OrdV,Lin,Bind0,BindT) :-
( get_attr(X,itf,Att),
arg(4,Att,lin(LinX)),
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
-> setarg(4,Att,lin(LinX1)),
LinX1 = [Inhom,_|Hom],
bs_collect_binding(Hom,X,Inhom,Bind0,Bind1),
bs_collect_bindings(Xs,OrdV,Lin,Bind1,BindT)
; bs_collect_bindings(Xs,OrdV,Lin,Bind0,BindT)
).
% bs_collect_binding(Hom,Selected,Inhom,Bind,BindT)
%
% Collects binding following from Selected = Hom + Inhom.
% If Hom = [], returns the binding Selected-Inhom (=0)
%
bs_collect_binding([],X,Inhom) --> [X-Inhom].
bs_collect_binding([_|_],_,_) --> [].
%
% reconsider the basis
%
% rcbl(Basis,Bind,BindT)
%
%
rcbl([],Bind0,Bind0).
rcbl([X|Continuation],Bind0,BindT) :-
( rcb_cont(X,Status,Violated,Continuation,NewContinuation) % have a culprit
-> rcbl_status(Status,X,NewContinuation,Bind0,BindT,Violated)
; rcbl(Continuation,Bind0,BindT)
).
rcb_cont(X,Status,Violated,ContIn,ContOut) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin([I,R|H])),
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
% than the lowerbound
-> R + I =< L,
Violated = l(L),
inc_step_cont(H,Status,ContIn,ContOut)
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
% than the upperbound
-> R + I >= U,
Violated = u(U),
dec_step_cont(H,Status,ContIn,ContOut)
; Type = t_lu(L,U) % case 3: check both
-> At is R + I,
( At =< L
-> Violated = l(L),
inc_step_cont(H,Status,ContIn,ContOut)
; At >= U
-> Violated = u(U),
dec_step_cont(H,Status,ContIn,ContOut)
)
). % other types imply nonbasic variable or unbounded variable
%
% reconsider one element of the basis
% later: lift the binds
%
reconsider(X) :-
rcb(X,Status,Violated),
!,
rcbl_status(Status,X,[],Binds,[],Violated),
export_binding(Binds).
reconsider(_).
%
% Find a basis variable out of its bound or at its bound
% Try to move it into whithin its bound
% a) impossible -> fail
% b) optimum at the bound -> implied value
% c) else look at the remaining basis variables
%
%
% Idea: consider a variable V with linear equation Lin.
% When a bound on a variable X of Lin gets activated, its value, multiplied
% with the scalar of X, is added to the R component of Lin.
% When we consider the lowerbound of V, it must be smaller than R + I, since R
% contains at best the lowerbounds of the variables in Lin (but could contain
% upperbounds, which are of course larger). So checking this can show the
% violation of a bound of V. A similar case works for the upperbound.
rcb(X,Status,Violated) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin([I,R|H])),
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
% than the lowerbound
-> R + I =< L,
Violated = l(L),
inc_step(H,Status)
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
% than the upperbound
-> R + I >= U,
Violated = u(U),
dec_step(H,Status)
; Type = t_lu(L,U) % case 3: check both
-> At is R + I,
( At =< L
-> Violated = l(L),
inc_step(H,Status)
; At >= U
-> Violated = u(U),
dec_step(H,Status)
)
). % other types imply nonbasic variable or unbounded variable
% rcbl_status(Status,X,Continuation,[Bind|BindT],BindT,Violated)
%
%
rcbl_status(optimum,X,Cont,B0,Bt,Violated) :- rcbl_opt(Violated,X,Cont,B0,Bt).
rcbl_status(applied,X,Cont,B0,Bt,Violated) :- rcbl_app(Violated,X,Cont,B0,Bt).
rcbl_status(unlimited(Indep,DepT),X,Cont,B0,Bt,Violated) :-
rcbl_unl(Violated,X,Cont,B0,Bt,Indep,DepT).
%
% Might reach optimum immediately without changing the basis,
% but in general we must assume that there were pivots.
% If the optimum meets the bound, we backsubstitute the implied
% value, solve will call us again to check for further implied
% values or unsatisfiability in the rank increased system.
%
rcbl_opt(l(L),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(3,Att,strictness(Strict)),
arg(4,Att,lin(Lin)),
Lin = [I,R|_],
Opt is R + I,
( L < Opt
-> narrow_u(Type,X,Opt), % { X =< Opt }
rcbl(Continuation,B0,B1)
; L =:= Opt,
Strict /\ 2 =:= 0, % meets lower
Mop is -Opt,
normalize_scalar(Mop,MopN),
add_linear_11(MopN,Lin,Lin1),
Lin1 = [Inhom,_|Hom],
( Hom = []
-> rcbl(Continuation,B0,B1) % would not callback
; solve(Hom,Lin1,Inhom,B0,B1)
)
).
rcbl_opt(u(U),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(3,Att,strictness(Strict)),
arg(4,Att,lin(Lin)),
Lin = [I,R|_],
Opt is R + I,
( U > Opt
-> narrow_l(Type,X,Opt), % { X >= Opt }
rcbl(Continuation,B0,B1)
; U =:= Opt,
Strict /\ 1 =:= 0, % meets upper
Mop is -Opt,
normalize_scalar(Mop,MopN),
add_linear_11(MopN,Lin,Lin1),
Lin1 = [Inhom,_|Hom],
( Hom = []
-> rcbl(Continuation,B0,B1) % would not callback
; solve(Hom,Lin1,Inhom,B0,B1)
)
).
%
% Basis has already changed when this is called
%
rcbl_app(l(L),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(4,Att,lin([I,R|H])),
( R + I > L % within bound now
-> rcbl(Continuation,B0,B1)
; inc_step(H,Status),
rcbl_status(Status,X,Continuation,B0,B1,l(L))
).
rcbl_app(u(U),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(4,Att,lin([I,R|H])),
( R + I < U % within bound now
-> rcbl(Continuation,B0,B1)
; dec_step(H,Status),
rcbl_status(Status,X,Continuation,B0,B1,u(U))
).
%
% This is never called for a t_lu culprit
%
rcbl_unl(l(L),X,Continuation,B0,B1,Indep,DepT) :-
pivot_a(X,Indep,t_L(L),DepT), % changes the basis
rcbl(Continuation,B0,B1).
rcbl_unl(u(U),X,Continuation,B0,B1,Indep,DepT) :-
pivot_a(X,Indep,t_U(U),DepT), % changes the basis
rcbl(Continuation,B0,B1).
% narrow_u(Type,X,U)
%
% Narrows down the upperbound of X (type Type) to U.
% Fails if Type is not t_u(_) or t_lu(_)
narrow_u(t_u(_),X,U) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_u(U))).
narrow_u(t_lu(L,_),X,U) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% narrow_l(Type,X,L)
%
% Narrows down the lowerbound of X (type Type) to L.
% Fails if Type is not t_l(_) or t_lu(_)
narrow_l( t_l(_), X, L) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_l(L))).
narrow_l( t_lu(_,U), X, L) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% ----------------------------------- dump ------------------------------------
% dump_var(Type,Var,I,H,Dump,DumpTail)
%
% Returns in Dump a representation of the linear constraint on variable
% Var which has linear equation H + I and has type Type.
dump_var(t_none,V,I,H) -->
!,
( {
H = [l(W*K,_)],
V == W,
I =:= 0,
K =:= 1
}
-> % indep var
[]
; {nf2sum(H,I,Sum)},
[V = Sum]
).
dump_var(t_L(L),V,I,H) -->
!,
dump_var(t_l(L),V,I,H).
% case lowerbound: V >= L or V > L
% say V >= L, and V = K*V1 + ... + I, then K*V1 + ... + I >= L
% and K*V1 + ... >= L-I and V1 + .../K = (L-I)/K
dump_var(t_l(L),V,I,H) -->
!,
{
H = [l(_*K,_)|_], % avoid 1 >= 0
get_attr(V,itf,Att),
arg(3,Att,strictness(Strict)),
Sm is Strict /\ 2,
Kr is 1 rdiv K,
Li is Kr*(L - I),
mult_hom(H,Kr,H1),
nf2sum(H1,0,Sum),
( K > 0 % K > 0
-> dump_strict(Sm,Sum >= Li,Sum > Li,Result)
; dump_strict(Sm,Sum =< Li,Sum < Li,Result)
)
},
[Result].
dump_var(t_U(U),V,I,H) -->
!,
dump_var(t_u(U),V,I,H).
dump_var(t_u(U),V,I,H) -->
!,
{
H = [l(_*K,_)|_], % avoid 0 =< 1
get_attr(V,itf,Att),
arg(3,Att,strictness(Strict)),
Sm is Strict /\ 1,
Kr is 1 rdiv K,
Ui is Kr*(U-I),
mult_hom(H,Kr,H1),
nf2sum(H1,0.0,Sum),
( K > 0
-> dump_strict(Sm,Sum =< Ui,Sum < Ui,Result)
; dump_strict(Sm,Sum >= Ui,Sum > Ui,Result)
)
},
[Result].
dump_var(t_Lu(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_u(U),V,I,H).
dump_var(t_lU(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_u(U),V,I,H).
dump_var(t_lu(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_U(U),V,I,H).
dump_var(T,V,I,H) --> % should not happen
[V:T:I+H].
% dump_strict(FilteredStrictness,Nonstrict,Strict,Res)
%
% Unifies Res with either Nonstrict or Strict depending on FilteredStrictness.
% FilteredStrictness is the component of strictness related to the bound: 0
% means nonstrict, 1 means strict upperbound, 2 means strict lowerbound,
% 3 is filtered out to either 1 or 2.
dump_strict(0,Result,_,Result).
dump_strict(1,_,Result,Result).
dump_strict(2,_,Result,Result).
% dump_nz(V,H,I,Dump,DumpTail)
%
% Returns in Dump a representation of the nonzero constraint of variable V
% which has linear
% equation H + I.
dump_nz(_,H,I) -->
{
H = [l(_*K,_)|_],
Kr is 1 rdiv K,
I1 is -Kr*I,
mult_hom(H,Kr,H1),
nf2sum(H1,0,Sum)
},
[Sum =\= I1].