0e45f242d4
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@2145 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
1761 lines
47 KiB
Prolog
1761 lines
47 KiB
Prolog
/*
|
|
|
|
Part of CLP(Q) (Constraint Logic Programming over Rationals)
|
|
|
|
Author: Leslie De Koninck
|
|
E-mail: Leslie.DeKoninck@cs.kuleuven.be
|
|
WWW: http://www.swi-prolog.org
|
|
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
|
|
Copyright (C): 2006, K.U. Leuven and
|
|
1992-1995, Austrian Research Institute for
|
|
Artificial Intelligence (OFAI),
|
|
Vienna, Austria
|
|
|
|
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
|
|
Prolog and distributed under the license details below with permission from
|
|
all mentioned authors.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
As a special exception, if you link this library with other files,
|
|
compiled with a Free Software compiler, to produce an executable, this
|
|
library does not by itself cause the resulting executable to be covered
|
|
by the GNU General Public License. This exception does not however
|
|
invalidate any other reasons why the executable file might be covered by
|
|
the GNU General Public License.
|
|
*/
|
|
|
|
:- module(bv_q,
|
|
[
|
|
allvars/2,
|
|
backsubst/3,
|
|
backsubst_delta/4,
|
|
basis_add/2,
|
|
dec_step/2,
|
|
deref/2,
|
|
deref_var/2,
|
|
detach_bounds/1,
|
|
detach_bounds_vlv/5,
|
|
determine_active_dec/1,
|
|
determine_active_inc/1,
|
|
dump_var/6,
|
|
dump_nz/5,
|
|
export_binding/1,
|
|
get_or_add_class/2,
|
|
inc_step/2,
|
|
intro_at/3,
|
|
iterate_dec/2,
|
|
lb/3,
|
|
pivot_a/4,
|
|
pivot/5,
|
|
rcbl_status/6,
|
|
reconsider/1,
|
|
same_class/2,
|
|
solve/1,
|
|
solve_ord_x/3,
|
|
ub/3,
|
|
unconstrained/4,
|
|
var_intern/2,
|
|
var_intern/3,
|
|
var_with_def_assign/2,
|
|
var_with_def_intern/4,
|
|
maximize/1,
|
|
minimize/1,
|
|
sup/2,
|
|
sup/4,
|
|
inf/2,
|
|
inf/4,
|
|
'solve_<'/1,
|
|
'solve_=<'/1,
|
|
'solve_=\\='/1,
|
|
log_deref/4
|
|
]).
|
|
:- use_module(store_q,
|
|
[
|
|
add_linear_11/3,
|
|
add_linear_f1/4,
|
|
add_linear_ff/5,
|
|
delete_factor/4,
|
|
indep/2,
|
|
isolate/3,
|
|
nf2sum/3,
|
|
nf_rhs_x/4,
|
|
nf_substitute/4,
|
|
normalize_scalar/2,
|
|
mult_hom/3,
|
|
mult_linear_factor/3
|
|
]).
|
|
:- use_module('../clpqr/class',
|
|
[
|
|
class_allvars/2,
|
|
class_basis/2,
|
|
class_basis_add/3,
|
|
class_basis_drop/2,
|
|
class_basis_pivot/3,
|
|
class_new/5
|
|
]).
|
|
:- use_module(ineq_q,
|
|
[
|
|
ineq/4
|
|
]).
|
|
:- use_module(nf_q,
|
|
[
|
|
{}/1,
|
|
split/3,
|
|
wait_linear/3
|
|
]).
|
|
:- use_module(bb_q,
|
|
[
|
|
vertex_value/2
|
|
]).
|
|
:- use_module(library(ordsets),
|
|
[
|
|
ord_add_element/3
|
|
]).
|
|
|
|
% For the rhs maint. the following events are important:
|
|
%
|
|
% -) introduction of an indep var at active bound B
|
|
% -) narrowing of active bound
|
|
% -) swap active bound
|
|
% -) pivot
|
|
%
|
|
|
|
% a variables bound (L/U) can have the states:
|
|
%
|
|
% -) t_none no bounds
|
|
% -) t_l inactive lower bound
|
|
% -) t_u inactive upper bound
|
|
% -) t_L active lower bound
|
|
% -) t_U active upper bound
|
|
% -) t_lu inactive lower and upper bound
|
|
% -) t_Lu active lower bound and inactive upper bound
|
|
% -) t_lU inactive lower bound and active upper bound
|
|
|
|
% ----------------------------------- deref -----------------------------------
|
|
%
|
|
|
|
% deref(Lin,Lind)
|
|
%
|
|
% Makes a linear equation of the form [v(I,[])|H] into a solvable linear
|
|
% equation.
|
|
% If the variables are new, they are initialized with the linear equation X=X.
|
|
|
|
deref(Lin,Lind) :-
|
|
split(Lin,H,I),
|
|
normalize_scalar(I,Nonvar),
|
|
length(H,Len),
|
|
log_deref(Len,H,[],Restd),
|
|
add_linear_11(Nonvar,Restd,Lind).
|
|
|
|
% log_deref(Len,[Vs|VsTail],VsTail,Res)
|
|
%
|
|
% Logarithmically converts a linear equation in normal form ([v(_,_)|_]) into a
|
|
% linear equation in solver form ([I,R,K*X|_]). Res contains the result, Len is
|
|
% the length of the part to convert and [Vs|VsTail] is a difference list
|
|
% containing the equation in normal form.
|
|
|
|
log_deref(0,Vs,Vs,Lin) :-
|
|
!,
|
|
Lin = [0,0].
|
|
log_deref(1,[v(K,[X^1])|Vs],Vs,Lin) :-
|
|
!,
|
|
deref_var(X,Lx),
|
|
mult_linear_factor(Lx,K,Lin).
|
|
log_deref(2,[v(Kx,[X^1]),v(Ky,[Y^1])|Vs],Vs,Lin) :-
|
|
!,
|
|
deref_var(X,Lx),
|
|
deref_var(Y,Ly),
|
|
add_linear_ff(Lx,Kx,Ly,Ky,Lin).
|
|
log_deref(N,V0,V2,Lin) :-
|
|
P is N >> 1,
|
|
Q is N - P,
|
|
log_deref(P,V0,V1,Lp),
|
|
log_deref(Q,V1,V2,Lq),
|
|
add_linear_11(Lp,Lq,Lin).
|
|
|
|
% deref_var(X,Lin)
|
|
%
|
|
% Returns the equation of variable X. If X is a new variable, a new equation
|
|
% X = X is made.
|
|
|
|
deref_var(X,Lin) :-
|
|
( get_attr(X,itf,Att)
|
|
-> ( \+ arg(1,Att,clpq)
|
|
-> throw(error(permission_error('mix CLP(Q) variables with',
|
|
'CLP(R) variables:',X),context(_)))
|
|
; arg(4,Att,lin(Lin))
|
|
-> true
|
|
; setarg(2,Att,type(t_none)),
|
|
setarg(3,Att,strictness(0)),
|
|
Lin = [0,0,l(X*1,Ord)],
|
|
setarg(4,Att,lin(Lin)),
|
|
setarg(5,Att,order(Ord))
|
|
)
|
|
; Lin = [0,0,l(X*1,Ord)],
|
|
put_attr(X,itf,t(clpq,type(t_none),strictness(0),
|
|
lin(Lin),order(Ord),n,n,n,n,n,n))
|
|
).
|
|
|
|
% TODO
|
|
%
|
|
%
|
|
|
|
var_with_def_assign(Var,Lin) :-
|
|
Lin = [I,_|Hom],
|
|
( Hom = []
|
|
-> % X=k
|
|
Var = I
|
|
; Hom = [l(V*K,_)|Cs]
|
|
-> ( Cs = [],
|
|
K =:= 1,
|
|
I =:= 0
|
|
-> % X=Y
|
|
Var = V
|
|
; % general case
|
|
var_with_def_intern(t_none,Var,Lin,0)
|
|
)
|
|
).
|
|
|
|
% var_with_def_intern(Type,Var,Lin,Strictness)
|
|
%
|
|
% Makes Lin the linear equation of new variable Var, makes all variables of
|
|
% Lin, and Var of the same class and bounds Var by type(Type) and
|
|
% strictness(Strictness)
|
|
|
|
var_with_def_intern(Type,Var,Lin,Strict) :-
|
|
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),lin(Lin),
|
|
order(_),n,n,n,n,n,n)), % check uses
|
|
Lin = [_,_|Hom],
|
|
get_or_add_class(Var,Class),
|
|
same_class(Hom,Class).
|
|
|
|
% TODO
|
|
%
|
|
%
|
|
|
|
var_intern(Type,Var,Strict) :-
|
|
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),
|
|
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
|
|
get_or_add_class(Var,_Class).
|
|
|
|
% TODO
|
|
%
|
|
%
|
|
|
|
var_intern(Var,Class) :- % for ordered/1 but otherwise free vars
|
|
get_attr(Var,itf,Att),
|
|
arg(2,Att,type(_)),
|
|
arg(4,Att,lin(_)),
|
|
!,
|
|
get_or_add_class(Var,Class).
|
|
var_intern(Var,Class) :-
|
|
put_attr(Var,itf,t(clpq,type(t_none),strictness(0),
|
|
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
|
|
get_or_add_class(Var,Class).
|
|
|
|
% -----------------------------------------------------------------------------
|
|
|
|
% export_binding(Lst)
|
|
%
|
|
% Binds variables X to Y where Lst contains elements of the form [X-Y].
|
|
|
|
export_binding([]).
|
|
export_binding([X-Y|Gs]) :-
|
|
Y = X,
|
|
export_binding(Gs).
|
|
|
|
% 'solve_='(Nf)
|
|
%
|
|
% Solves linear equation Nf = 0 where Nf is in normal form.
|
|
|
|
'solve_='(Nf) :-
|
|
deref(Nf,Nfd), % dereferences and turns Nf into solvable form Nfd
|
|
solve(Nfd).
|
|
|
|
% 'solve_=\\='(Nf)
|
|
%
|
|
% Solves linear inequality Nf =\= 0 where Nf is in normal form.
|
|
|
|
'solve_=\\='(Nf) :-
|
|
deref(Nf,Lind), % dereferences and turns Nf into solvable form Lind
|
|
Lind = [Inhom,_|Hom],
|
|
( Hom = []
|
|
-> Inhom =\= 0
|
|
; % make new variable Nz = Lind
|
|
var_with_def_intern(t_none,Nz,Lind,0),
|
|
% make Nz nonzero
|
|
get_attr(Nz,itf,Att),
|
|
setarg(8,Att,nonzero)
|
|
).
|
|
|
|
% 'solve_<'(Nf)
|
|
%
|
|
% Solves linear inequality Nf < 0 where Nf is in normal form.
|
|
|
|
'solve_<'(Nf) :-
|
|
split(Nf,H,I),
|
|
ineq(H,I,Nf,strict).
|
|
|
|
% 'solve_=<'(Nf)
|
|
%
|
|
% Solves linear inequality Nf =< 0 where Nf is in normal form.
|
|
|
|
'solve_=<'(Nf) :-
|
|
split(Nf,H,I),
|
|
ineq(H,I,Nf,nonstrict).
|
|
|
|
maximize(Term) :-
|
|
minimize(-Term).
|
|
|
|
%
|
|
% This is NOT coded as minimize(Expr) :- inf(Expr,Expr).
|
|
%
|
|
% because the new version of inf/2 only visits
|
|
% the vertex where the infimum is assumed and returns
|
|
% to the 'current' vertex via backtracking.
|
|
% The rationale behind this construction is to eliminate
|
|
% all garbage in the solver data structures produced by
|
|
% the pivots on the way to the extremal point caused by
|
|
% {inf,sup}/{2,4}.
|
|
%
|
|
% If we are after the infimum/supremum for minimizing/maximizing,
|
|
% this strategy may have adverse effects on performance because
|
|
% the simplex algorithm is forced to re-discover the
|
|
% extremal vertex through the equation {Inf =:= Expr}.
|
|
%
|
|
% Thus the extra code for {minimize,maximize}/1.
|
|
%
|
|
% In case someone comes up with an example where
|
|
%
|
|
% inf(Expr,Expr)
|
|
%
|
|
% outperforms the provided formulation for minimize - so be it.
|
|
% Both forms are available to the user.
|
|
%
|
|
minimize(Term) :-
|
|
wait_linear(Term,Nf,minimize_lin(Nf)).
|
|
|
|
% minimize_lin(Lin)
|
|
%
|
|
% Minimizes the linear expression Lin. It does so by making a new
|
|
% variable Dep and minimizes its value.
|
|
|
|
minimize_lin(Lin) :-
|
|
deref(Lin,Lind),
|
|
var_with_def_intern(t_none,Dep,Lind,0),
|
|
determine_active_dec(Lind),
|
|
iterate_dec(Dep,Inf),
|
|
{ Dep =:= Inf }.
|
|
|
|
sup(Expression,Sup) :-
|
|
sup(Expression,Sup,[],[]).
|
|
|
|
sup(Expression,Sup,Vector,Vertex) :-
|
|
inf(-Expression,-Sup,Vector,Vertex).
|
|
|
|
inf(Expression,Inf) :-
|
|
inf(Expression,Inf,[],[]).
|
|
|
|
inf(Expression,Inf,Vector,Vertex) :-
|
|
% wait until Expression becomes linear, Nf contains linear Expression
|
|
% in normal form
|
|
wait_linear(Expression,Nf,inf_lin(Nf,Inf,Vector,Vertex)).
|
|
|
|
inf_lin(Lin,_,Vector,_) :-
|
|
deref(Lin,Lind),
|
|
var_with_def_intern(t_none,Dep,Lind,0), % make new variable Dep = Lind
|
|
determine_active_dec(Lind), % minimizes Lind
|
|
iterate_dec(Dep,Inf),
|
|
vertex_value(Vector,Values),
|
|
nb_setval(inf,[Inf|Values]),
|
|
fail.
|
|
inf_lin(_,Infimum,_,Vertex) :-
|
|
catch(nb_getval(inf,L),_,fail),
|
|
nb_delete(inf),
|
|
assign([Infimum|Vertex],L).
|
|
|
|
% assign(L1,L2)
|
|
%
|
|
% The elements of L1 are pairwise assigned to the elements of L2
|
|
% by means of asserting {X =:= Y} where X is an element of L1 and Y
|
|
% is the corresponding element of L2.
|
|
|
|
assign([],[]).
|
|
assign([X|Xs],[Y|Ys]) :-
|
|
{X =:= Y}, % more defensive/expressive than X=Y
|
|
assign(Xs,Ys).
|
|
|
|
% --------------------------------- optimization ------------------------------
|
|
%
|
|
% The _sn(S) =< 0 row might be temporarily infeasible.
|
|
% We use reconsider/1 to fix this.
|
|
%
|
|
% s(S) e [_,0] = d +xi ... -xj, Rhs > 0 so we want to decrease s(S)
|
|
%
|
|
% positive xi would have to be moved towards their lower bound,
|
|
% negative xj would have to be moved towards their upper bound,
|
|
%
|
|
% the row s(S) does not limit the lower bound of xi
|
|
% the row s(S) does not limit the upper bound of xj
|
|
%
|
|
% a) if some other row R is limiting xk, we pivot(R,xk),
|
|
% s(S) will decrease and get more feasible until (b)
|
|
% b) if there is no limiting row for some xi: we pivot(s(S),xi)
|
|
% xj: we pivot(s(S),xj)
|
|
% which cures the infeasibility in one step
|
|
%
|
|
|
|
|
|
% iterate_dec(OptVar,Opt)
|
|
%
|
|
% Decreases the bound on the variables of the linear equation of OptVar as much
|
|
% as possible and returns the resulting optimal bound in Opt. Fails if for some
|
|
% variable, a status of unlimited is found.
|
|
|
|
iterate_dec(OptVar,Opt) :-
|
|
get_attr(OptVar,itf,Att),
|
|
arg(4,Att,lin([I,R|H])),
|
|
dec_step(H,Status),
|
|
( Status = applied
|
|
-> iterate_dec(OptVar,Opt)
|
|
; Status = optimum,
|
|
Opt is R + I
|
|
).
|
|
|
|
% iterate_inc(OptVar,Opt)
|
|
%
|
|
% Increases the bound on the variables of the linear equation of OptVar as much
|
|
% as possible and returns the resulting optimal bound in Opt. Fails if for some
|
|
% variable, a status of unlimited is found.
|
|
|
|
iterate_inc(OptVar,Opt) :-
|
|
get_attr(OptVar,itf,Att),
|
|
arg(4,Att,lin([I,R|H])),
|
|
inc_step(H,Status),
|
|
( Status = applied
|
|
-> iterate_inc(OptVar,Opt)
|
|
; Status = optimum,
|
|
Opt is R + I
|
|
).
|
|
|
|
%
|
|
% Status = {optimum,unlimited(Indep,DepT),applied}
|
|
% If Status = optimum, the tables have not been changed at all.
|
|
% Searches left to right, does not try to find the 'best' pivot
|
|
% Therefore we might discover unboundedness only after a few pivots
|
|
%
|
|
|
|
|
|
dec_step_cont([],optimum,Cont,Cont).
|
|
dec_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
|
|
get_attr(V,itf,Att),
|
|
arg(2,Att,type(W)),
|
|
arg(6,Att,class(Class)),
|
|
( dec_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
|
|
-> true
|
|
; dec_step_cont(Vs,Status,ContIn,ContOut)
|
|
).
|
|
|
|
inc_step_cont([],optimum,Cont,Cont).
|
|
inc_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
|
|
get_attr(V,itf,Att),
|
|
arg(2,Att,type(W)),
|
|
arg(6,Att,class(Class)),
|
|
( inc_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
|
|
-> true
|
|
; inc_step_cont(Vs,Status,ContIn,ContOut)
|
|
).
|
|
|
|
dec_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
|
|
K > 0,
|
|
( lb(Class,OrdV,Vub-Vb-_)
|
|
-> % found a lower bound
|
|
Status = applied,
|
|
pivot_a(Vub,V,Vb,t_u(U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut)
|
|
; Status = unlimited(V,t_u(U)),
|
|
ContIn = ContOut
|
|
).
|
|
dec_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
|
|
K > 0,
|
|
Init is L - U,
|
|
class_basis(Class,Deps),
|
|
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut).
|
|
dec_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
|
|
K < 0,
|
|
( ub(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_l(L)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut)
|
|
; Status = unlimited(V,t_l(L)),
|
|
ContIn = ContOut
|
|
).
|
|
dec_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
|
|
K < 0,
|
|
Init is U - L,
|
|
class_basis(Class,Deps),
|
|
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut).
|
|
dec_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
|
|
|
|
|
|
|
|
inc_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
|
|
K < 0,
|
|
( lb(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_u(U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut)
|
|
; Status = unlimited(V,t_u(U)),
|
|
ContIn = ContOut
|
|
).
|
|
inc_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
|
|
K < 0,
|
|
Init is L - U,
|
|
class_basis(Class,Deps),
|
|
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut).
|
|
inc_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
|
|
K > 0,
|
|
( ub(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_l(L)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut)
|
|
; Status = unlimited(V,t_l(L)),
|
|
ContIn = ContOut
|
|
).
|
|
inc_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
|
|
K > 0,
|
|
Init is U - L,
|
|
class_basis(Class,Deps),
|
|
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)),
|
|
replace_in_cont(ContIn,Vub,V,ContOut).
|
|
inc_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
|
|
|
|
replace_in_cont([],_,_,[]).
|
|
replace_in_cont([H1|T1],X,Y,[H2|T2]) :-
|
|
( H1 == X
|
|
-> H2 = Y,
|
|
T1 = T2
|
|
; H2 = H1,
|
|
replace_in_cont(T1,X,Y,T2)
|
|
).
|
|
|
|
dec_step([],optimum).
|
|
dec_step([l(V*K,OrdV)|Vs],Status) :-
|
|
get_attr(V,itf,Att),
|
|
arg(2,Att,type(W)),
|
|
arg(6,Att,class(Class)),
|
|
( dec_step_2(W,l(V*K,OrdV),Class,Status)
|
|
-> true
|
|
; dec_step(Vs,Status)
|
|
).
|
|
|
|
dec_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
|
|
K > 0,
|
|
( lb(Class,OrdV,Vub-Vb-_)
|
|
-> % found a lower bound
|
|
Status = applied,
|
|
pivot_a(Vub,V,Vb,t_u(U))
|
|
; Status = unlimited(V,t_u(U))
|
|
).
|
|
dec_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
|
|
K > 0,
|
|
Init is L - U,
|
|
class_basis(Class,Deps),
|
|
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)).
|
|
dec_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
|
|
K < 0,
|
|
( ub(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_l(L))
|
|
; Status = unlimited(V,t_l(L))
|
|
).
|
|
dec_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
|
|
K < 0,
|
|
Init is U - L,
|
|
class_basis(Class,Deps),
|
|
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)).
|
|
dec_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
|
|
|
|
inc_step([],optimum). % if status has not been set yet: no changes
|
|
inc_step([l(V*K,OrdV)|Vs],Status) :-
|
|
get_attr(V,itf,Att),
|
|
arg(2,Att,type(W)),
|
|
arg(6,Att,class(Class)),
|
|
( inc_step_2(W,l(V*K,OrdV),Class,Status)
|
|
-> true
|
|
; inc_step(Vs,Status)
|
|
).
|
|
|
|
inc_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
|
|
K < 0,
|
|
( lb(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_u(U))
|
|
; Status = unlimited(V,t_u(U))
|
|
).
|
|
inc_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
|
|
K < 0,
|
|
Init is L - U,
|
|
class_basis(Class,Deps),
|
|
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)).
|
|
inc_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
|
|
K > 0,
|
|
( ub(Class,OrdV,Vub-Vb-_)
|
|
-> Status = applied,
|
|
pivot_a(Vub,V,Vb,t_l(L))
|
|
; Status = unlimited(V,t_l(L))
|
|
).
|
|
inc_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
|
|
K > 0,
|
|
Init is U - L,
|
|
class_basis(Class,Deps),
|
|
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
|
|
pivot_b(Vub,V,Vb,t_lu(L,U)).
|
|
inc_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
|
|
|
|
% ------------------------- find the most constraining row --------------------
|
|
%
|
|
% The code for the lower and the upper bound are dual versions of each other.
|
|
% The only difference is in the orientation of the comparisons.
|
|
% Indeps are ruled out by their types.
|
|
% If there is no bound, this fails.
|
|
%
|
|
% *** The actual lb and ub on an indep variable X are [lu]b + b(X), where b(X)
|
|
% is the value of the active bound.
|
|
%
|
|
% Nota bene: We must NOT consider infeasible rows as candidates to
|
|
% leave the basis!
|
|
%
|
|
% ub(Class,OrdX,Ub)
|
|
%
|
|
% See lb/3: this is similar
|
|
|
|
ub(Class,OrdX,Ub) :-
|
|
class_basis(Class,Deps),
|
|
ub_first(Deps,OrdX,Ub).
|
|
|
|
% ub_first(Deps,X,Dep-W-Ub)
|
|
%
|
|
% Finds the tightest upperbound for variable X from the linear equations of
|
|
% basis variables Deps, and puts the resulting bound in Ub. Dep is the basis
|
|
% variable that generates the bound, and W is bound of that variable that has
|
|
% to be activated to achieve this.
|
|
|
|
ub_first([Dep|Deps],OrdX,Tightest) :-
|
|
( get_attr(Dep,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin(Lin)),
|
|
ub_inner(Type,OrdX,Lin,W,Ub),
|
|
Ub >= 0
|
|
-> ub(Deps,OrdX,Dep-W-Ub,Tightest)
|
|
; ub_first(Deps,OrdX,Tightest)
|
|
).
|
|
|
|
% ub(Deps,OrdX,TightestIn,TightestOut)
|
|
%
|
|
% See lb/4: this is similar
|
|
|
|
ub([],_,T0,T0).
|
|
ub([Dep|Deps],OrdX,T0,T1) :-
|
|
( get_attr(Dep,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin(Lin)),
|
|
ub_inner(Type,OrdX,Lin,W,Ub),
|
|
T0 = _-Ubb,
|
|
Ub < Ubb,
|
|
Ub >= 0
|
|
-> ub(Deps,OrdX,Dep-W-Ub,T1) % tighter bound, use new bound
|
|
; ub(Deps,OrdX,T0,T1) % no tighter bound, keep current one
|
|
).
|
|
|
|
% ub_inner(Type,OrdX,Lin,W,Ub)
|
|
%
|
|
% See lb_inner/5: this is similar
|
|
|
|
ub_inner(t_l(L),OrdX,Lin,t_L(L),Ub) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K),
|
|
K < 0,
|
|
Ub is (L - Rhs) rdiv K.
|
|
ub_inner(t_u(U),OrdX,Lin,t_U(U),Ub) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K),
|
|
K > 0,
|
|
Ub is (U - Rhs) rdiv K.
|
|
ub_inner(t_lu(L,U),OrdX,Lin,W,Ub) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K),
|
|
( K < 0 % use lowerbound
|
|
-> W = t_Lu(L,U),
|
|
Ub = (L - Rhs) rdiv K
|
|
; K > 0 % use upperbound
|
|
-> W = t_lU(L,U),
|
|
Ub = (U - Rhs) rdiv K
|
|
).
|
|
|
|
% lb(Class,OrdX,Lb)
|
|
%
|
|
% Returns in Lb how much we can lower the upperbound of X without violating
|
|
% a bound of the basisvariables.
|
|
% Lb has the form Dep-W-Lb with Dep the variable whose bound is violated when
|
|
% lowering the bound for X more, W the actual bound that has to be activated
|
|
% and Lb the amount that the upperbound can be lowered.
|
|
% X has ordering OrdX and class Class.
|
|
|
|
lb(Class,OrdX,Lb) :-
|
|
class_basis(Class,Deps),
|
|
lb_first(Deps,OrdX,Lb).
|
|
|
|
% lb_first(Deps,OrdX,Tightest)
|
|
%
|
|
% Returns in Tightest how much we can lower the upperbound of X without
|
|
% violating a bound of Deps.
|
|
% Tightest has the form Dep-W-Lb with Dep the variable whose bound is violated
|
|
% when lowering the bound for X more, W the actual bound that has to be
|
|
% activated and Lb the amount that the upperbound can be lowered. X has
|
|
% ordering attribute OrdX.
|
|
|
|
lb_first([Dep|Deps],OrdX,Tightest) :-
|
|
( get_attr(Dep,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin(Lin)),
|
|
lb_inner(Type,OrdX,Lin,W,Lb),
|
|
Lb =< 0 % Lb > 0 means a violated bound
|
|
-> lb(Deps,OrdX,Dep-W-Lb,Tightest)
|
|
; lb_first(Deps,OrdX,Tightest)
|
|
).
|
|
|
|
% lb(Deps,OrdX,TightestIn,TightestOut)
|
|
%
|
|
% See lb_first/3: this one does the same thing, but is used for the steps after
|
|
% the first one and remembers the tightest bound so far.
|
|
|
|
lb([],_,T0,T0).
|
|
lb([Dep|Deps],OrdX,T0,T1) :-
|
|
( get_attr(Dep,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin(Lin)),
|
|
lb_inner(Type,OrdX,Lin,W,Lb),
|
|
T0 = _-Lbb,
|
|
Lb > Lbb, % choose the least lowering, others might violate
|
|
% bounds
|
|
Lb =< 0 % violation of a bound (without lowering)
|
|
-> lb(Deps,OrdX,Dep-W-Lb,T1)
|
|
; lb(Deps,OrdX,T0,T1)
|
|
).
|
|
|
|
% lb_inner(Type,X,Lin,W,Lb)
|
|
%
|
|
% Returns in Lb how much lower we can make X without violating a bound
|
|
% by using the linear equation Lin of basis variable B which has type
|
|
% Type and which has to activate a bound (type W) to do so.
|
|
%
|
|
% E.g. when B has a lowerbound L, then L should always be smaller than I + R.
|
|
% So a lowerbound of X (which has scalar K in Lin), could be at most
|
|
% (L-(I+R))/K lower than its upperbound (if K is positive).
|
|
% Also note that Lb should always be smaller than 0, otherwise the row is
|
|
% not feasible.
|
|
% X has ordering attribute OrdX.
|
|
|
|
lb_inner(t_l(L),OrdX,Lin,t_L(L),Lb) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K), % if linear equation Lin contains the term
|
|
% X*K, Rhs is the right hand side of that
|
|
% equation
|
|
K > 0,
|
|
Lb is (L - Rhs) rdiv K.
|
|
lb_inner(t_u(U),OrdX,Lin,t_U(U),Lb) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K),
|
|
K < 0, % K < 0
|
|
Lb is (U - Rhs) rdiv K.
|
|
lb_inner(t_lu(L,U),OrdX,Lin,W,Lb) :-
|
|
nf_rhs_x(Lin,OrdX,Rhs,K),
|
|
( K < 0
|
|
-> W = t_lU(L,U),
|
|
Lb is (U - Rhs) rdiv K
|
|
; K > 0
|
|
-> W = t_Lu(L,U),
|
|
Lb is (L - Rhs) rdiv K
|
|
).
|
|
|
|
% ---------------------------------- equations --------------------------------
|
|
%
|
|
% backsubstitution will not make the system infeasible, if the bounds on the
|
|
% indep vars are obeyed, but some implied values might pop up in rows where X
|
|
% occurs
|
|
% -) special case X=Y during bs -> get rid of dependend var(s), alias
|
|
%
|
|
|
|
solve(Lin) :-
|
|
Lin = [I,_|H],
|
|
solve(H,Lin,I,Bindings,[]),
|
|
export_binding(Bindings).
|
|
|
|
% solve(Hom,Lin,I,Bind,BindT)
|
|
%
|
|
% Solves a linear equation Lin = [I,_|H] = 0 and exports the generated bindings
|
|
|
|
solve([],_,I,Bind0,Bind0) :-
|
|
!,
|
|
I =:= 0.
|
|
solve(H,Lin,_,Bind0,BindT) :-
|
|
sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT),
|
|
get_attr(Selected,itf,Att),
|
|
arg(5,Att,order(Ord)),
|
|
isolate(Ord,Lin,Lin1), % Lin = 0 => Selected = Lin1
|
|
( Category = 1 % classless variable, no bounds
|
|
-> setarg(4,Att,lin(Lin1)),
|
|
Lin1 = [Inhom,_|Hom],
|
|
bs_collect_binding(Hom,Selected,Inhom,Bind0,BindT),
|
|
eq_classes(NV,NVT,ClassesUniq)
|
|
; Category = 2 % class variable, no bounds
|
|
-> arg(6,Att,class(NewC)),
|
|
class_allvars(NewC,Deps),
|
|
( ClassesUniq = [_] % rank increasing
|
|
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,BindT)
|
|
; Bind0 = BindT,
|
|
bs(Deps,Ord,Lin1)
|
|
),
|
|
eq_classes(NV,NVT,ClassesUniq)
|
|
; Category = 3 % classless variable, all variables in Lin and
|
|
% Selected are bounded
|
|
-> arg(2,Att,type(Type)),
|
|
setarg(4,Att,lin(Lin1)),
|
|
deactivate_bound(Type,Selected),
|
|
eq_classes(NV,NVT,ClassesUniq),
|
|
basis_add(Selected,Basis),
|
|
undet_active(Lin1), % we can't tell which bound will likely be a
|
|
% problem at this point
|
|
Lin1 = [Inhom,_|Hom],
|
|
bs_collect_binding(Hom,Selected,Inhom,Bind0,Bind1), % only if
|
|
% Hom = []
|
|
rcbl(Basis,Bind1,BindT) % reconsider entire basis
|
|
; Category = 4 % class variable, all variables in Lin and Selected
|
|
% are bounded
|
|
-> arg(2,Att,type(Type)),
|
|
arg(6,Att,class(NewC)),
|
|
class_allvars(NewC,Deps),
|
|
( ClassesUniq = [_] % rank increasing
|
|
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,Bind1)
|
|
; Bind0 = Bind1,
|
|
bs(Deps,Ord,Lin1)
|
|
),
|
|
deactivate_bound(Type,Selected),
|
|
basis_add(Selected,Basis),
|
|
% eq_classes( NV, NVT, ClassesUniq),
|
|
% 4 -> var(NV)
|
|
equate(ClassesUniq,_),
|
|
undet_active(Lin1),
|
|
rcbl(Basis,Bind1,BindT)
|
|
).
|
|
|
|
%
|
|
% Much like solve, but we solve for a particular variable of type t_none
|
|
%
|
|
|
|
% solve_x(H,Lin,I,X,[Bind|BindT],BindT)
|
|
%
|
|
%
|
|
|
|
solve_x(Lin,X) :-
|
|
Lin = [I,_|H],
|
|
solve_x(H,Lin,I,X,Bindings,[]),
|
|
export_binding(Bindings).
|
|
|
|
solve_x([],_,I,_,Bind0,Bind0) :-
|
|
!,
|
|
I =:= 0.
|
|
solve_x(H,Lin,_,X,Bind0,BindT) :-
|
|
sd(H,[],ClassesUniq,9-9-0,_,NV,NVT),
|
|
get_attr(X,itf,Att),
|
|
arg(5,Att,order(OrdX)),
|
|
isolate(OrdX,Lin,Lin1),
|
|
( arg(6,Att,class(NewC))
|
|
-> class_allvars(NewC,Deps),
|
|
( ClassesUniq = [_] % rank increasing
|
|
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
|
|
; Bind0 = BindT,
|
|
bs(Deps,OrdX,Lin1)
|
|
),
|
|
eq_classes(NV,NVT,ClassesUniq)
|
|
; setarg(4,Att,lin(Lin1)),
|
|
Lin1 = [Inhom,_|Hom],
|
|
bs_collect_binding(Hom,X,Inhom,Bind0,BindT),
|
|
eq_classes(NV,NVT,ClassesUniq)
|
|
).
|
|
|
|
% solve_ord_x(Lin,OrdX,ClassX)
|
|
%
|
|
% Does the same thing as solve_x/2, but has the ordering of X and its class as
|
|
% input. This also means that X has a class which is not sure in solve_x/2.
|
|
|
|
solve_ord_x(Lin,OrdX,ClassX) :-
|
|
Lin = [I,_|H],
|
|
solve_ord_x(H,Lin,I,OrdX,ClassX,Bindings,[]),
|
|
export_binding(Bindings).
|
|
|
|
solve_ord_x([],_,I,_,_,Bind0,Bind0) :-
|
|
I =:= 0.
|
|
solve_ord_x([_|_],Lin,_,OrdX,ClassX,Bind0,BindT) :-
|
|
isolate(OrdX,Lin,Lin1),
|
|
Lin1 = [_,_|H1],
|
|
sd(H1,[],ClassesUniq1,9-9-0,_,NV,NVT), % do sd on Lin without X, then
|
|
% add class of X
|
|
ord_add_element(ClassesUniq1,ClassX,ClassesUniq),
|
|
class_allvars(ClassX,Deps),
|
|
( ClassesUniq = [_] % rank increasing
|
|
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
|
|
; Bind0 = BindT,
|
|
bs(Deps,OrdX,Lin1)
|
|
),
|
|
eq_classes(NV,NVT,ClassesUniq).
|
|
|
|
% sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT)
|
|
|
|
% sd(Hom,ClassesIn,ClassesOut,PreferenceIn,PreferenceOut,[NV|NVTail],NVTail)
|
|
%
|
|
% ClassesOut is a sorted list of the different classes that are either in
|
|
% ClassesIn or that are the classes of the variables in Hom. Variables that do
|
|
% not belong to a class yet, are put in the difference list NV.
|
|
|
|
sd([],Class0,Class0,Preference0,Preference0,NV0,NV0).
|
|
sd([l(X*K,_)|Xs],Class0,ClassN,Preference0,PreferenceN,NV0,NVt) :-
|
|
get_attr(X,itf,Att),
|
|
( arg(6,Att,class(Xc)) % old: has class
|
|
-> NV0 = NV1,
|
|
ord_add_element(Class0,Xc,Class1),
|
|
( arg(2,Att,type(t_none))
|
|
-> preference(Preference0,2-X-K,Preference1)
|
|
% has class, no bounds => category 2
|
|
; preference(Preference0,4-X-K,Preference1)
|
|
% has class, is bounded => category 4
|
|
)
|
|
; % new: has no class
|
|
Class1 = Class0,
|
|
NV0 = [X|NV1], % X has no class yet, add to list of new variables
|
|
( arg(2,Att,type(t_none))
|
|
-> preference(Preference0,1-X-K,Preference1)
|
|
% no class, no bounds => category 1
|
|
; preference(Preference0,3-X-K,Preference1)
|
|
% no class, is bounded => category 3
|
|
)
|
|
),
|
|
sd(Xs,Class1,ClassN,Preference1,PreferenceN,NV1,NVt).
|
|
|
|
%
|
|
% A is best sofar, B is current
|
|
% smallest prefered
|
|
preference(A,B,Pref) :-
|
|
A = Px-_-_,
|
|
B = Py-_-_,
|
|
( Px < Py
|
|
-> Pref = A
|
|
; Pref = B
|
|
).
|
|
|
|
% eq_classes(NV,NVTail,Cs)
|
|
%
|
|
% Attaches all classless variables NV to a new class and equates all other
|
|
% classes with this class. The equate operation only happens after attach_class
|
|
% because the unification of classes can bind the tail of the AllVars attribute
|
|
% to a nonvar and then the attach_class operation wouldn't work.
|
|
|
|
eq_classes(NV,_,Cs) :-
|
|
var(NV),
|
|
!,
|
|
equate(Cs,_).
|
|
eq_classes(NV,NVT,Cs) :-
|
|
class_new(Su,clpq,NV,NVT,[]), % make a new class Su with NV as the variables
|
|
attach_class(NV,Su), % attach the variables NV to Su
|
|
equate(Cs,Su).
|
|
|
|
equate([],_).
|
|
equate([X|Xs],X) :- equate(Xs,X).
|
|
|
|
%
|
|
% assert: none of the Vars has a class attribute yet
|
|
%
|
|
attach_class(Xs,_) :-
|
|
var(Xs), % Tail
|
|
!.
|
|
attach_class([X|Xs],Class) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(6,Att,class(Class)),
|
|
attach_class(Xs,Class).
|
|
|
|
% unconstrained(Lin,Uc,Kuc,Rest)
|
|
%
|
|
% Finds an unconstrained variable Uc (type(t_none)) in Lin with scalar Kuc and
|
|
% removes it from Lin to return Rest.
|
|
|
|
unconstrained(Lin,Uc,Kuc,Rest) :-
|
|
Lin = [_,_|H],
|
|
sd(H,[],_,9-9-0,Category-Uc-_,_,_),
|
|
Category =< 2,
|
|
get_attr(Uc,itf,Att),
|
|
arg(5,Att,order(OrdUc)),
|
|
delete_factor(OrdUc,Lin,Rest,Kuc).
|
|
|
|
%
|
|
% point the vars in Lin into the same equivalence class
|
|
% maybe join some global data
|
|
%
|
|
same_class([],_).
|
|
same_class([l(X*_,_)|Xs],Class) :-
|
|
get_or_add_class(X,Class),
|
|
same_class(Xs,Class).
|
|
|
|
% get_or_add_class(X,Class)
|
|
%
|
|
% Returns in Class the class of X if X has one, or a new class where X now
|
|
% belongs to if X didn't have one.
|
|
|
|
get_or_add_class(X,Class) :-
|
|
get_attr(X,itf,Att),
|
|
arg(1,Att,CLP),
|
|
( arg(6,Att,class(ClassX))
|
|
-> ClassX = Class
|
|
; setarg(6,Att,class(Class)),
|
|
class_new(Class,CLP,[X|Tail],Tail,[])
|
|
).
|
|
|
|
% allvars(X,Allvars)
|
|
%
|
|
% Allvars is a list of all variables in the class to which X belongs.
|
|
|
|
allvars(X,Allvars) :-
|
|
get_attr(X,itf,Att),
|
|
arg(6,Att,class(C)),
|
|
class_allvars(C,Allvars).
|
|
|
|
% deactivate_bound(Type,Variable)
|
|
%
|
|
% The Type of the variable is changed to reflect the deactivation of its
|
|
% bounds.
|
|
% t_L(_) becomes t_l(_), t_lU(_,_) becomes t_lu(_,_) and so on.
|
|
|
|
deactivate_bound(t_l(_),_).
|
|
deactivate_bound(t_u(_),_).
|
|
deactivate_bound(t_lu(_,_),_).
|
|
deactivate_bound(t_L(L),X) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_l(L))).
|
|
deactivate_bound(t_Lu(L,U),X) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_lu(L,U))).
|
|
deactivate_bound(t_U(U),X) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_u(U))).
|
|
deactivate_bound(t_lU(L,U),X) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_lu(L,U))).
|
|
|
|
% intro_at(X,Value,Type)
|
|
%
|
|
% Variable X gets new type Type which reflects the activation of a bound with
|
|
% value Value. In the linear equations of all the variables belonging to the
|
|
% same class as X, X is substituted by [0,Value,X] to reflect the new active
|
|
% bound.
|
|
|
|
intro_at(X,Value,Type) :-
|
|
get_attr(X,itf,Att),
|
|
arg(5,Att,order(Ord)),
|
|
arg(6,Att,class(Class)),
|
|
setarg(2,Att,type(Type)),
|
|
( Value =:= 0
|
|
-> true
|
|
; backsubst_delta(Class,Ord,X,Value)
|
|
).
|
|
|
|
% undet_active(Lin)
|
|
%
|
|
% For each variable in the homogene part of Lin, a bound is activated
|
|
% if an inactive bound exists. (t_l(L) becomes t_L(L) and so on)
|
|
|
|
undet_active([_,_|H]) :-
|
|
undet_active_h(H).
|
|
|
|
% undet_active_h(Hom)
|
|
%
|
|
% For each variable in homogene part Hom, a bound is activated if an
|
|
% inactive bound exists (t_l(L) becomes t_L(L) and so on)
|
|
|
|
undet_active_h([]).
|
|
undet_active_h([l(X*_,_)|Xs]) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
undet_active(Type,X),
|
|
undet_active_h(Xs).
|
|
|
|
% undet_active(Type,Var)
|
|
%
|
|
% An inactive bound of Var is activated if such exists
|
|
% t_lu(L,U) is arbitrarily chosen to become t_Lu(L,U)
|
|
|
|
undet_active(t_none,_). % type_activity
|
|
undet_active(t_L(_),_).
|
|
undet_active(t_Lu(_,_),_).
|
|
undet_active(t_U(_),_).
|
|
undet_active(t_lU(_,_),_).
|
|
undet_active(t_l(L),X) :- intro_at(X,L,t_L(L)).
|
|
undet_active(t_u(U),X) :- intro_at(X,U,t_U(U)).
|
|
undet_active(t_lu(L,U),X) :- intro_at(X,L,t_Lu(L,U)).
|
|
|
|
% determine_active_dec(Lin)
|
|
%
|
|
% Activates inactive bounds on the variables of Lin if such bounds exist.
|
|
% If the type of a variable is t_none, this fails. This version is aimed
|
|
% to make the R component of Lin as small as possible in order not to violate
|
|
% an upperbound (see reconsider/1)
|
|
|
|
determine_active_dec([_,_|H]) :-
|
|
determine_active(H,-1).
|
|
|
|
% determine_active_inc(Lin)
|
|
%
|
|
% Activates inactive bounds on the variables of Lin if such bounds exist.
|
|
% If the type of a variable is t_none, this fails. This version is aimed
|
|
% to make the R component of Lin as large as possible in order not to violate
|
|
% a lowerbound (see reconsider/1)
|
|
|
|
determine_active_inc([_,_|H]) :-
|
|
determine_active(H,1).
|
|
|
|
% determine_active(Hom,S)
|
|
%
|
|
% For each variable in Hom, activates its bound if it is not yet activated.
|
|
% For the case of t_lu(_,_) the lower or upper bound is activated depending on
|
|
% K and S:
|
|
% If sign of K*S is negative, then lowerbound, otherwise upperbound.
|
|
|
|
determine_active([],_).
|
|
determine_active([l(X*K,_)|Xs],S) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
determine_active(Type,X,K,S),
|
|
determine_active(Xs,S).
|
|
|
|
determine_active(t_L(_),_,_,_).
|
|
determine_active(t_Lu(_,_),_,_,_).
|
|
determine_active(t_U(_),_,_,_).
|
|
determine_active(t_lU(_,_),_,_,_).
|
|
determine_active(t_l(L),X,_,_) :- intro_at(X,L,t_L(L)).
|
|
determine_active(t_u(U),X,_,_) :- intro_at(X,U,t_U(U)).
|
|
determine_active(t_lu(L,U),X,K,S) :-
|
|
KS is K*S,
|
|
( KS < 0
|
|
-> intro_at(X,L,t_Lu(L,U))
|
|
; KS > 0
|
|
-> intro_at(X,U,t_lU(L,U))
|
|
).
|
|
|
|
%
|
|
% Careful when an indep turns into t_none !!!
|
|
%
|
|
|
|
detach_bounds(V) :-
|
|
get_attr(V,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin(Lin)),
|
|
arg(5,Att,order(OrdV)),
|
|
arg(6,Att,class(Class)),
|
|
setarg(2,Att,type(t_none)),
|
|
setarg(3,Att,strictness(0)),
|
|
( indep(Lin,OrdV)
|
|
-> ( ub(Class,OrdV,Vub-Vb-_)
|
|
-> % exchange against thightest
|
|
class_basis_drop(Class,Vub),
|
|
pivot(Vub,Class,OrdV,Vb,Type)
|
|
; lb(Class,OrdV,Vlb-Vb-_)
|
|
-> class_basis_drop(Class,Vlb),
|
|
pivot(Vlb,Class,OrdV,Vb,Type)
|
|
; true
|
|
)
|
|
; class_basis_drop(Class,V)
|
|
).
|
|
|
|
detach_bounds_vlv(OrdV,Lin,Class,Var,NewLin) :-
|
|
( indep(Lin,OrdV)
|
|
-> Lin = [_,R|_],
|
|
( ub(Class,OrdV,Vub-Vb-_)
|
|
-> % in verify_lin, class might contain two occurrences of Var,
|
|
% but it doesn't matter which one we delete
|
|
class_basis_drop(Class,Var),
|
|
pivot_vlv(Vub,Class,OrdV,Vb,R,NewLin)
|
|
; lb(Class,OrdV,Vlb-Vb-_)
|
|
-> class_basis_drop(Class,Var),
|
|
pivot_vlv(Vlb,Class,OrdV,Vb,R,NewLin)
|
|
; NewLin = Lin
|
|
)
|
|
; NewLin = Lin,
|
|
class_basis_drop(Class,Var)
|
|
).
|
|
|
|
% ----------------------------- manipulate the basis --------------------------
|
|
|
|
% basis_drop(X)
|
|
%
|
|
% Removes X from the basis of the class to which X belongs.
|
|
|
|
basis_drop(X) :-
|
|
get_attr(X,itf,Att),
|
|
arg(6,Att,class(Cv)),
|
|
class_basis_drop(Cv,X).
|
|
|
|
% basis(X,Basis)
|
|
%
|
|
% Basis is the basis of the class to which X belongs.
|
|
|
|
basis(X,Basis) :-
|
|
get_attr(X,itf,Att),
|
|
arg(6,Att,class(Cv)),
|
|
class_basis(Cv,Basis).
|
|
|
|
% basis_add(X,NewBasis)
|
|
%
|
|
% NewBasis is the result of adding X to the basis of the class to which X
|
|
% belongs.
|
|
|
|
basis_add(X,NewBasis) :-
|
|
get_attr(X,itf,Att),
|
|
arg(6,Att,class(Cv)),
|
|
class_basis_add(Cv,X,NewBasis).
|
|
|
|
% basis_pivot(Leave,Enter)
|
|
%
|
|
% Removes Leave from the basis of the class to which it belongs, and adds
|
|
% Enter to that basis.
|
|
|
|
basis_pivot(Leave,Enter) :-
|
|
get_attr(Leave,itf,Att),
|
|
arg(6,Att,class(Cv)),
|
|
class_basis_pivot(Cv,Enter,Leave).
|
|
|
|
% ----------------------------------- pivot -----------------------------------
|
|
|
|
% pivot(Dep,Indep)
|
|
%
|
|
% The linear equation of variable Dep, is transformed into one of variable
|
|
% Indep, containing Dep. Then, all occurrences of Indep in linear equations are
|
|
% substituted by this new definition
|
|
|
|
%
|
|
% Pivot ignoring rhs and active states
|
|
%
|
|
|
|
pivot(Dep,Indep) :-
|
|
get_attr(Dep,itf,AttD),
|
|
arg(4,AttD,lin(H)),
|
|
arg(5,AttD,order(OrdDep)),
|
|
get_attr(Indep,itf,AttI),
|
|
arg(5,AttI,order(Ord)),
|
|
arg(5,AttI,class(Class)),
|
|
delete_factor(Ord,H,H0,Coeff),
|
|
K is -1 rdiv Coeff,
|
|
add_linear_ff(H0,K,[0,0,l(Dep* -1,OrdDep)],K,Lin),
|
|
backsubst(Class,Ord,Lin).
|
|
|
|
% pivot_a(Dep,Indep,IndepT,DepT)
|
|
%
|
|
% Removes Dep from the basis, puts Indep in, and pivots the equation of
|
|
% Dep to become one of Indep. The type of Dep becomes DepT (which means
|
|
% it gets deactivated), the type of Indep becomes IndepT (which means it
|
|
% gets activated)
|
|
|
|
|
|
pivot_a(Dep,Indep,Vb,Wd) :-
|
|
basis_pivot(Dep,Indep),
|
|
get_attr(Indep,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(5,Att,order(Ord)),
|
|
arg(6,Att,class(Class)),
|
|
pivot(Dep,Class,Ord,Vb,Type),
|
|
get_attr(Indep,itf,Att2), %changed?
|
|
setarg(2,Att2,type(Wd)).
|
|
|
|
pivot_b(Vub,V,Vb,Wd) :-
|
|
( Vub == V
|
|
-> get_attr(V,itf,Att),
|
|
arg(5,Att,order(Ord)),
|
|
arg(6,Att,class(Class)),
|
|
setarg(2,Att,type(Vb)),
|
|
pivot_b_delta(Vb,Delta), % nonzero(Delta)
|
|
backsubst_delta(Class,Ord,V,Delta)
|
|
; pivot_a(Vub,V,Vb,Wd)
|
|
).
|
|
|
|
pivot_b_delta(t_Lu(L,U),Delta) :- Delta is L-U.
|
|
pivot_b_delta(t_lU(L,U),Delta) :- Delta is U-L.
|
|
|
|
% select_active_bound(Type,Bound)
|
|
%
|
|
% Returns the bound that is active in Type (if such exists, 0 otherwise)
|
|
|
|
select_active_bound(t_L(L),L).
|
|
select_active_bound(t_Lu(L,_),L).
|
|
select_active_bound(t_U(U),U).
|
|
select_active_bound(t_lU(_,U),U).
|
|
select_active_bound(t_none,0).
|
|
%
|
|
% for project.pl
|
|
%
|
|
select_active_bound(t_l(_),0).
|
|
select_active_bound(t_u(_),0).
|
|
select_active_bound(t_lu(_,_),0).
|
|
|
|
|
|
% pivot(Dep,Class,IndepOrd,DepAct,IndAct)
|
|
%
|
|
% See pivot/2.
|
|
% In addition, variable Indep with ordering IndepOrd has an active bound IndAct
|
|
|
|
%
|
|
%
|
|
% Pivot taking care of rhs and active states
|
|
%
|
|
pivot(Dep,Class,IndepOrd,DepAct,IndAct) :-
|
|
get_attr(Dep,itf,Att),
|
|
arg(4,Att,lin(H)),
|
|
arg(5,Att,order(DepOrd)),
|
|
setarg(2,Att,type(DepAct)),
|
|
select_active_bound(DepAct,AbvD), % New current value for Dep
|
|
select_active_bound(IndAct,AbvI), % Old current value of Indep
|
|
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
|
|
AbvDm is -AbvD,
|
|
AbvIm is -AbvI,
|
|
add_linear_f1([0,AbvIm],Coeff,H0,H1),
|
|
K is -1 rdiv Coeff,
|
|
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,H2),
|
|
% Indep = -1/Coeff*... + 1/Coeff*Dep
|
|
add_linear_11(H2,[0,AbvIm],Lin),
|
|
backsubst(Class,IndepOrd,Lin).
|
|
|
|
% Rewrite Dep = ... + Coeff*Indep + ...
|
|
% into Indep = ... + -1/Coeff*Dep + ...
|
|
%
|
|
% For backsubstitution, old current value of Indep must be removed from RHS
|
|
% New current value of Dep must be added to RHS
|
|
% For solving: old current value of Indep should be out of RHS
|
|
|
|
pivot_vlv(Dep,Class,IndepOrd,DepAct,AbvI,Lin) :-
|
|
get_attr(Dep,itf,Att),
|
|
arg(4,Att,lin(H)),
|
|
arg(5,Att,order(DepOrd)),
|
|
setarg(2,Att,type(DepAct)),
|
|
select_active_bound(DepAct,AbvD), % New current value for Dep
|
|
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
|
|
AbvDm is -AbvD,
|
|
AbvIm is -AbvI,
|
|
add_linear_f1([0,AbvIm],Coeff,H0,H1),
|
|
K is -1 rdiv Coeff,
|
|
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,Lin),
|
|
% Indep = -1/Coeff*... + 1/Coeff*Dep
|
|
add_linear_11(Lin,[0,AbvIm],SubstLin),
|
|
backsubst(Class,IndepOrd,SubstLin).
|
|
|
|
% backsubst_delta(Class,OrdX,X,Delta)
|
|
%
|
|
% X with ordering attribute OrdX, is substituted in all linear equations of
|
|
% variables in the class Class, by linear equation [0,Delta,l(X*1,OrdX)]. This
|
|
% reflects the activation of a bound.
|
|
|
|
backsubst_delta(Class,OrdX,X,Delta) :-
|
|
backsubst(Class,OrdX,[0,Delta,l(X*1,OrdX)]).
|
|
|
|
% backsubst(Class,OrdX,Lin)
|
|
%
|
|
% X with ordering OrdX is substituted in all linear equations of variables in
|
|
% the class Class, by linear equation Lin
|
|
|
|
backsubst(Class,OrdX,Lin) :-
|
|
class_allvars(Class,Allvars),
|
|
bs(Allvars,OrdX,Lin).
|
|
|
|
% bs(Vars,OrdV,Lin)
|
|
%
|
|
% In all linear equations of the variables Vars, variable V with ordering
|
|
% attribute OrdV is substituted by linear equation Lin.
|
|
%
|
|
% valid if nothing will go ground
|
|
%
|
|
|
|
bs(Xs,_,_) :-
|
|
var(Xs),
|
|
!.
|
|
bs([X|Xs],OrdV,Lin) :-
|
|
( get_attr(X,itf,Att),
|
|
arg(4,Att,lin(LinX)),
|
|
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
|
|
-> setarg(4,Att,lin(LinX1)),
|
|
bs(Xs,OrdV,Lin)
|
|
; bs(Xs,OrdV,Lin)
|
|
).
|
|
|
|
%
|
|
% rank increasing backsubstitution
|
|
%
|
|
|
|
% bs_collect_bindings(Deps,SelectedOrd,Lin,Bind,BindT)
|
|
%
|
|
% Collects bindings (of the form [X-I] where X = I is the binding) by
|
|
% substituting Selected in all linear equations of the variables Deps (which
|
|
% are of the same class), by Lin. Selected has ordering attribute SelectedOrd.
|
|
%
|
|
% E.g. when V = 2X + 3Y + 4, X = 3V + 2Z and Y = 4X + 3
|
|
% we can substitute V in the linear equation of X: X = 6X + 9Y + 2Z + 12
|
|
% we can't substitute V in the linear equation of Y of course.
|
|
|
|
bs_collect_bindings(Xs,_,_,Bind0,BindT) :-
|
|
var(Xs),
|
|
!,
|
|
Bind0 = BindT.
|
|
bs_collect_bindings([X|Xs],OrdV,Lin,Bind0,BindT) :-
|
|
( get_attr(X,itf,Att),
|
|
arg(4,Att,lin(LinX)),
|
|
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
|
|
-> setarg(4,Att,lin(LinX1)),
|
|
LinX1 = [Inhom,_|Hom],
|
|
bs_collect_binding(Hom,X,Inhom,Bind0,Bind1),
|
|
bs_collect_bindings(Xs,OrdV,Lin,Bind1,BindT)
|
|
; bs_collect_bindings(Xs,OrdV,Lin,Bind0,BindT)
|
|
).
|
|
|
|
% bs_collect_binding(Hom,Selected,Inhom,Bind,BindT)
|
|
%
|
|
% Collects binding following from Selected = Hom + Inhom.
|
|
% If Hom = [], returns the binding Selected-Inhom (=0)
|
|
%
|
|
bs_collect_binding([],X,Inhom) --> [X-Inhom].
|
|
bs_collect_binding([_|_],_,_) --> [].
|
|
|
|
%
|
|
% reconsider the basis
|
|
%
|
|
|
|
% rcbl(Basis,Bind,BindT)
|
|
%
|
|
%
|
|
|
|
rcbl([],Bind0,Bind0).
|
|
rcbl([X|Continuation],Bind0,BindT) :-
|
|
( rcb_cont(X,Status,Violated,Continuation,NewContinuation) % have a culprit
|
|
-> rcbl_status(Status,X,NewContinuation,Bind0,BindT,Violated)
|
|
; rcbl(Continuation,Bind0,BindT)
|
|
).
|
|
|
|
rcb_cont(X,Status,Violated,ContIn,ContOut) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin([I,R|H])),
|
|
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
|
|
% than the lowerbound
|
|
-> R + I =< L,
|
|
Violated = l(L),
|
|
inc_step_cont(H,Status,ContIn,ContOut)
|
|
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
|
|
% than the upperbound
|
|
-> R + I >= U,
|
|
Violated = u(U),
|
|
dec_step_cont(H,Status,ContIn,ContOut)
|
|
; Type = t_lu(L,U) % case 3: check both
|
|
-> At is R + I,
|
|
( At =< L
|
|
-> Violated = l(L),
|
|
inc_step_cont(H,Status,ContIn,ContOut)
|
|
; At >= U
|
|
-> Violated = u(U),
|
|
dec_step_cont(H,Status,ContIn,ContOut)
|
|
)
|
|
). % other types imply nonbasic variable or unbounded variable
|
|
|
|
|
|
|
|
%
|
|
% reconsider one element of the basis
|
|
% later: lift the binds
|
|
%
|
|
reconsider(X) :-
|
|
rcb(X,Status,Violated),
|
|
!,
|
|
rcbl_status(Status,X,[],Binds,[],Violated),
|
|
export_binding(Binds).
|
|
reconsider(_).
|
|
|
|
%
|
|
% Find a basis variable out of its bound or at its bound
|
|
% Try to move it into whithin its bound
|
|
% a) impossible -> fail
|
|
% b) optimum at the bound -> implied value
|
|
% c) else look at the remaining basis variables
|
|
%
|
|
%
|
|
% Idea: consider a variable V with linear equation Lin.
|
|
% When a bound on a variable X of Lin gets activated, its value, multiplied
|
|
% with the scalar of X, is added to the R component of Lin.
|
|
% When we consider the lowerbound of V, it must be smaller than R + I, since R
|
|
% contains at best the lowerbounds of the variables in Lin (but could contain
|
|
% upperbounds, which are of course larger). So checking this can show the
|
|
% violation of a bound of V. A similar case works for the upperbound.
|
|
|
|
rcb(X,Status,Violated) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(4,Att,lin([I,R|H])),
|
|
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
|
|
% than the lowerbound
|
|
-> R + I =< L,
|
|
Violated = l(L),
|
|
inc_step(H,Status)
|
|
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
|
|
% than the upperbound
|
|
-> R + I >= U,
|
|
Violated = u(U),
|
|
dec_step(H,Status)
|
|
; Type = t_lu(L,U) % case 3: check both
|
|
-> At is R + I,
|
|
( At =< L
|
|
-> Violated = l(L),
|
|
inc_step(H,Status)
|
|
; At >= U
|
|
-> Violated = u(U),
|
|
dec_step(H,Status)
|
|
)
|
|
). % other types imply nonbasic variable or unbounded variable
|
|
|
|
% rcbl_status(Status,X,Continuation,[Bind|BindT],BindT,Violated)
|
|
%
|
|
%
|
|
|
|
rcbl_status(optimum,X,Cont,B0,Bt,Violated) :- rcbl_opt(Violated,X,Cont,B0,Bt).
|
|
rcbl_status(applied,X,Cont,B0,Bt,Violated) :- rcbl_app(Violated,X,Cont,B0,Bt).
|
|
rcbl_status(unlimited(Indep,DepT),X,Cont,B0,Bt,Violated) :-
|
|
rcbl_unl(Violated,X,Cont,B0,Bt,Indep,DepT).
|
|
|
|
%
|
|
% Might reach optimum immediately without changing the basis,
|
|
% but in general we must assume that there were pivots.
|
|
% If the optimum meets the bound, we backsubstitute the implied
|
|
% value, solve will call us again to check for further implied
|
|
% values or unsatisfiability in the rank increased system.
|
|
%
|
|
rcbl_opt(l(L),X,Continuation,B0,B1) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(3,Att,strictness(Strict)),
|
|
arg(4,Att,lin(Lin)),
|
|
Lin = [I,R|_],
|
|
Opt is R + I,
|
|
( L < Opt
|
|
-> narrow_u(Type,X,Opt), % { X =< Opt }
|
|
rcbl(Continuation,B0,B1)
|
|
; L =:= Opt,
|
|
Strict /\ 2 =:= 0, % meets lower
|
|
Mop is -Opt,
|
|
normalize_scalar(Mop,MopN),
|
|
add_linear_11(MopN,Lin,Lin1),
|
|
Lin1 = [Inhom,_|Hom],
|
|
( Hom = []
|
|
-> rcbl(Continuation,B0,B1) % would not callback
|
|
; solve(Hom,Lin1,Inhom,B0,B1)
|
|
)
|
|
).
|
|
rcbl_opt(u(U),X,Continuation,B0,B1) :-
|
|
get_attr(X,itf,Att),
|
|
arg(2,Att,type(Type)),
|
|
arg(3,Att,strictness(Strict)),
|
|
arg(4,Att,lin(Lin)),
|
|
Lin = [I,R|_],
|
|
Opt is R + I,
|
|
( U > Opt
|
|
-> narrow_l(Type,X,Opt), % { X >= Opt }
|
|
rcbl(Continuation,B0,B1)
|
|
; U =:= Opt,
|
|
Strict /\ 1 =:= 0, % meets upper
|
|
Mop is -Opt,
|
|
normalize_scalar(Mop,MopN),
|
|
add_linear_11(MopN,Lin,Lin1),
|
|
Lin1 = [Inhom,_|Hom],
|
|
( Hom = []
|
|
-> rcbl(Continuation,B0,B1) % would not callback
|
|
; solve(Hom,Lin1,Inhom,B0,B1)
|
|
)
|
|
).
|
|
|
|
%
|
|
% Basis has already changed when this is called
|
|
%
|
|
rcbl_app(l(L),X,Continuation,B0,B1) :-
|
|
get_attr(X,itf,Att),
|
|
arg(4,Att,lin([I,R|H])),
|
|
( R + I > L % within bound now
|
|
-> rcbl(Continuation,B0,B1)
|
|
; inc_step(H,Status),
|
|
rcbl_status(Status,X,Continuation,B0,B1,l(L))
|
|
).
|
|
rcbl_app(u(U),X,Continuation,B0,B1) :-
|
|
get_attr(X,itf,Att),
|
|
arg(4,Att,lin([I,R|H])),
|
|
( R + I < U % within bound now
|
|
-> rcbl(Continuation,B0,B1)
|
|
; dec_step(H,Status),
|
|
rcbl_status(Status,X,Continuation,B0,B1,u(U))
|
|
).
|
|
%
|
|
% This is never called for a t_lu culprit
|
|
%
|
|
rcbl_unl(l(L),X,Continuation,B0,B1,Indep,DepT) :-
|
|
pivot_a(X,Indep,t_L(L),DepT), % changes the basis
|
|
rcbl(Continuation,B0,B1).
|
|
rcbl_unl(u(U),X,Continuation,B0,B1,Indep,DepT) :-
|
|
pivot_a(X,Indep,t_U(U),DepT), % changes the basis
|
|
rcbl(Continuation,B0,B1).
|
|
|
|
% narrow_u(Type,X,U)
|
|
%
|
|
% Narrows down the upperbound of X (type Type) to U.
|
|
% Fails if Type is not t_u(_) or t_lu(_)
|
|
|
|
narrow_u(t_u(_),X,U) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_u(U))).
|
|
narrow_u(t_lu(L,_),X,U) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_lu(L,U))).
|
|
|
|
% narrow_l(Type,X,L)
|
|
%
|
|
% Narrows down the lowerbound of X (type Type) to L.
|
|
% Fails if Type is not t_l(_) or t_lu(_)
|
|
|
|
narrow_l( t_l(_), X, L) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_l(L))).
|
|
|
|
narrow_l( t_lu(_,U), X, L) :-
|
|
get_attr(X,itf,Att),
|
|
setarg(2,Att,type(t_lu(L,U))).
|
|
|
|
% ----------------------------------- dump ------------------------------------
|
|
|
|
% dump_var(Type,Var,I,H,Dump,DumpTail)
|
|
%
|
|
% Returns in Dump a representation of the linear constraint on variable
|
|
% Var which has linear equation H + I and has type Type.
|
|
|
|
dump_var(t_none,V,I,H) -->
|
|
!,
|
|
( {
|
|
H = [l(W*K,_)],
|
|
V == W,
|
|
I =:= 0,
|
|
K =:= 1
|
|
}
|
|
-> % indep var
|
|
[]
|
|
; {nf2sum(H,I,Sum)},
|
|
[V = Sum]
|
|
).
|
|
dump_var(t_L(L),V,I,H) -->
|
|
!,
|
|
dump_var(t_l(L),V,I,H).
|
|
% case lowerbound: V >= L or V > L
|
|
% say V >= L, and V = K*V1 + ... + I, then K*V1 + ... + I >= L
|
|
% and K*V1 + ... >= L-I and V1 + .../K = (L-I)/K
|
|
dump_var(t_l(L),V,I,H) -->
|
|
!,
|
|
{
|
|
H = [l(_*K,_)|_], % avoid 1 >= 0
|
|
get_attr(V,itf,Att),
|
|
arg(3,Att,strictness(Strict)),
|
|
Sm is Strict /\ 2,
|
|
Kr is 1 rdiv K,
|
|
Li is Kr*(L - I),
|
|
mult_hom(H,Kr,H1),
|
|
nf2sum(H1,0,Sum),
|
|
( K > 0 % K > 0
|
|
-> dump_strict(Sm,Sum >= Li,Sum > Li,Result)
|
|
; dump_strict(Sm,Sum =< Li,Sum < Li,Result)
|
|
)
|
|
},
|
|
[Result].
|
|
dump_var(t_U(U),V,I,H) -->
|
|
!,
|
|
dump_var(t_u(U),V,I,H).
|
|
dump_var(t_u(U),V,I,H) -->
|
|
!,
|
|
{
|
|
H = [l(_*K,_)|_], % avoid 0 =< 1
|
|
get_attr(V,itf,Att),
|
|
arg(3,Att,strictness(Strict)),
|
|
Sm is Strict /\ 1,
|
|
Kr is 1 rdiv K,
|
|
Ui is Kr*(U-I),
|
|
mult_hom(H,Kr,H1),
|
|
nf2sum(H1,0.0,Sum),
|
|
( K > 0
|
|
-> dump_strict(Sm,Sum =< Ui,Sum < Ui,Result)
|
|
; dump_strict(Sm,Sum >= Ui,Sum > Ui,Result)
|
|
)
|
|
},
|
|
[Result].
|
|
dump_var(t_Lu(L,U),V,I,H) -->
|
|
!,
|
|
dump_var(t_l(L),V,I,H),
|
|
dump_var(t_u(U),V,I,H).
|
|
dump_var(t_lU(L,U),V,I,H) -->
|
|
!,
|
|
dump_var(t_l(L),V,I,H),
|
|
dump_var(t_u(U),V,I,H).
|
|
dump_var(t_lu(L,U),V,I,H) -->
|
|
!,
|
|
dump_var(t_l(L),V,I,H),
|
|
dump_var(t_U(U),V,I,H).
|
|
dump_var(T,V,I,H) --> % should not happen
|
|
[V:T:I+H].
|
|
|
|
% dump_strict(FilteredStrictness,Nonstrict,Strict,Res)
|
|
%
|
|
% Unifies Res with either Nonstrict or Strict depending on FilteredStrictness.
|
|
% FilteredStrictness is the component of strictness related to the bound: 0
|
|
% means nonstrict, 1 means strict upperbound, 2 means strict lowerbound,
|
|
% 3 is filtered out to either 1 or 2.
|
|
|
|
dump_strict(0,Result,_,Result).
|
|
dump_strict(1,_,Result,Result).
|
|
dump_strict(2,_,Result,Result).
|
|
|
|
% dump_nz(V,H,I,Dump,DumpTail)
|
|
%
|
|
% Returns in Dump a representation of the nonzero constraint of variable V
|
|
% which has linear
|
|
% equation H + I.
|
|
|
|
dump_nz(_,H,I) -->
|
|
{
|
|
H = [l(_*K,_)|_],
|
|
Kr is 1 rdiv K,
|
|
I1 is -Kr*I,
|
|
mult_hom(H,Kr,H1),
|
|
nf2sum(H1,0,Sum)
|
|
},
|
|
[Sum =\= I1].
|