This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/CLPBN/clpbn/bp/BPSolver.cpp

892 lines
25 KiB
C++

#include <cstdlib>
#include <time.h>
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <sstream>
#include "BPSolver.h"
#include "BpNode.h"
BPSolver* Edge::klass = 0;
StatisticMap Statistics::stats_;
unsigned Statistics::numCreatedNets = 0;
unsigned Statistics::numSolvedPolyTrees = 0;
unsigned Statistics::numSolvedLoopyNets = 0;
unsigned Statistics::numUnconvergedRuns = 0;
unsigned Statistics::maxIterations = 0;
unsigned Statistics::totalOfIterations = 0;
BPSolver::BPSolver (const BayesNet& bn) : Solver (&bn)
{
bn_ = &bn;
forceGenericSolver_ = false;
//forceGenericSolver_ = true;
schedule_ = S_SEQ_FIXED;
//schedule_ = S_SEQ_RANDOM;
//schedule_ = S_PARALLEL;
//schedule_ = S_MAX_RESIDUAL;
maxIter_ = 205;
accuracy_ = 0.000001;
}
BPSolver::~BPSolver (void)
{
for (unsigned i = 0; i < msgs_.size(); i++) {
delete msgs_[i];
}
}
void
BPSolver::runSolver (void)
{
if (DL >= 1) {
//bn_->printNetwork();
}
clock_t start_ = clock();
if (bn_->isSingleConnected() && !forceGenericSolver_) {
runPolyTreeSolver();
Statistics::numSolvedPolyTrees ++;
} else {
runGenericSolver();
Statistics::numSolvedLoopyNets ++;
if (nIter_ >= maxIter_) {
Statistics::numUnconvergedRuns ++;
} else {
Statistics::updateIterations (nIter_);
}
if (DL >= 1) {
cout << endl;
if (nIter_ < maxIter_) {
cout << "Belief propagation converged in " ;
cout << nIter_ << " iterations" << endl;
} else {
cout << "The maximum number of iterations was hit, terminating..." ;
cout << endl;
}
}
}
double time = (double (clock() - start_)) / CLOCKS_PER_SEC;
unsigned size = bn_->getNumberOfNodes();
Statistics::updateStats (size, time);
//if (size > 30) {
// stringstream ss;
// ss << size << "." << Statistics::getCounting (size) << ".dot" ;
// bn_->exportToDotFile (ss.str().c_str());
//}
}
ParamSet
BPSolver::getPosterioriOf (const Variable* var) const
{
assert (var);
assert (var == bn_->getNode (var->getVarId()));
assert (var->getIndex() < msgs_.size());
return msgs_[var->getIndex()]->getBeliefs();
}
ParamSet
BPSolver::getJointDistribution (const NodeSet& jointVars) const
{
if (DL >= 1) {
cout << "calculating joint distribuition on: " ;
for (unsigned i = 0; i < jointVars.size(); i++) {
cout << jointVars[i]->getLabel() << " " ;
}
cout << endl;
}
//BayesNet* workingNet = bn_->pruneNetwork (bn_->getNodes());
//FIXME see if this works:
BayesNet* workingNet = bn_->pruneNetwork (jointVars);
BayesNode* node = workingNet->getNode (jointVars[0]->getVarId());
BayesNet* tempNet = workingNet->pruneNetwork (node);
BPSolver solver (*tempNet);
solver.runSolver();
NodeSet observedVars = { jointVars[0] };
node = tempNet->getNode (jointVars[0]->getVarId());
ParamSet prevBeliefs = solver.getPosterioriOf (node);
delete tempNet;
for (unsigned i = 1; i < jointVars.size(); i++) {
node = workingNet->getNode (observedVars[i - 1]->getVarId());
if (!node->hasEvidence()) {
node->setEvidence (0);
}
node = workingNet->getNode (jointVars[i]->getVarId());
tempNet = workingNet->pruneNetwork (node);
ParamSet allBeliefs;
vector<DomainConf> confs =
BayesNet::getDomainConfigurationsOf (observedVars);
for (unsigned j = 0; j < confs.size(); j++) {
for (unsigned k = 0; k < observedVars.size(); k++) {
node = tempNet->getNode (observedVars[k]->getVarId());
if (!observedVars[k]->hasEvidence()) {
if (node) {
node->setEvidence (confs[j][k]);
} else {
// FIXME try optimize
//assert (false);
cout << observedVars[k]->getLabel();
cout << " is not in temporary net!" ;
cout << endl;
}
} else {
cout << observedVars[k]->getLabel();
cout << " already has evidence in original net!" ;
cout << endl;
}
}
BPSolver solver (*tempNet);
node = tempNet->getNode (jointVars[i]->getVarId());
solver.runSolver();
ParamSet beliefs = solver.getPosterioriOf (node);
for (unsigned k = 0; k < beliefs.size(); k++) {
allBeliefs.push_back (beliefs[k]);
}
}
int count = -1;
for (unsigned j = 0; j < allBeliefs.size(); j++) {
if (j % jointVars[i]->getDomainSize() == 0) {
count ++;
}
allBeliefs[j] *= prevBeliefs[count];
}
prevBeliefs = allBeliefs;
observedVars.push_back (jointVars[i]);
delete tempNet;
}
delete workingNet;
return prevBeliefs;
}
void
BPSolver::initializeSolver (void)
{
if (DL >= 1) {
cout << "Initializing solver" << endl;
cout << "-> schedule = ";
if (forceGenericSolver_) {
switch (schedule_) {
case S_SEQ_FIXED: cout << "sequential fixed" ; break;
case S_SEQ_RANDOM: cout << "sequential random" ; break;
case S_PARALLEL: cout << "parallel" ; break;
case S_MAX_RESIDUAL: cout << "max residual" ; break;
}
} else {
cout << "polytree solver" ;
}
cout << endl;
cout << "-> max iters = " << maxIter_ << endl;
cout << "-> accuracy = " << accuracy_ << endl;
cout << endl;
}
const NodeSet& nodes = bn_->getNodes();
for (unsigned i = 0; i < msgs_.size(); i++) {
delete msgs_[i];
}
msgs_.clear();
msgs_.reserve (nodes.size());
updateOrder_.clear();
sortedOrder_.clear();
edgeMap_.clear();
for (unsigned i = 0; i < nodes.size(); i++) {
msgs_.push_back (new BpNode (nodes[i]));
}
NodeSet roots = bn_->getRootNodes();
for (unsigned i = 0; i < roots.size(); i++) {
const ParamSet& params = roots[i]->getParameters();
ParamSet& piVals = M(roots[i])->getPiValues();
for (int ri = 0; ri < roots[i]->getDomainSize(); ri++) {
piVals[ri] = params[ri];
}
}
}
void
BPSolver::incorporateEvidence (BayesNode* x)
{
ParamSet& piVals = M(x)->getPiValues();
ParamSet& ldVals = M(x)->getLambdaValues();
for (int xi = 0; xi < x->getDomainSize(); xi++) {
piVals[xi] = 0.0;
ldVals[xi] = 0.0;
}
piVals[x->getEvidence()] = 1.0;
ldVals[x->getEvidence()] = 1.0;
}
void
BPSolver::runPolyTreeSolver (void)
{
initializeSolver();
const NodeSet& nodes = bn_->getNodes();
// Hack: I need this else this can happen with bayes ball
// Variable: 174
// Id: 174
// Domain: -1, 0, 1
// Evidence: 1
// Parents:
// Childs: 176
// cpt
// ----------------------------------------------------
// -1 0 0 0 0 ...
// 0 0.857143 0.857143 0.857143 0.857143 ...
// 1 0.142857 0.142857 0.142857 0.142857 ...
// the cpt for this node would be 0,0,0
for (unsigned i = 0; i < nodes.size(); i++) {
if (nodes[i]->hasEvidence()) {
incorporateEvidence (nodes[i]);
}
}
// first compute all node marginals ...
NodeSet roots = bn_->getRootNodes();
for (unsigned i = 0; i < roots.size(); i++) {
const NodeSet& childs = roots[i]->getChilds();
for (unsigned j = 0; j < childs.size(); j++) {
polyTreePiMessage (roots[i], childs[j]);
}
}
// then propagate the evidence
for (unsigned i = 0; i < nodes.size(); i++) {
if (nodes[i]->hasEvidence()) {
incorporateEvidence (nodes[i]);
const NodeSet& parents = nodes[i]->getParents();
for (unsigned j = 0; j < parents.size(); j++) {
if (!parents[j]->hasEvidence()) {
polyTreeLambdaMessage (nodes[i], parents[j]);
}
}
const NodeSet& childs = nodes[i]->getChilds();
for (unsigned j = 0; j < childs.size(); j++) {
polyTreePiMessage (nodes[i], childs[j]);
}
}
}
}
void
BPSolver::polyTreePiMessage (BayesNode* z, BayesNode* x)
{
if (DL >= 1) {
cout << PI << " (" << z->getLabel();
cout << " --> " << x->getLabel();
cout << ")" << endl;
}
calculateNextPiMessage (z, x);
updatePiMessage (z, x);
if (!x->hasEvidence()) {
updatePiValues (x);
const NodeSet& xChilds = x->getChilds();
for (unsigned i = 0; i < xChilds.size(); i++) {
polyTreePiMessage (x, xChilds[i]);
}
}
if (M(x)->hasReceivedChildInfluence()) {
const NodeSet& xParents = x->getParents();
for (unsigned i = 0; i < xParents.size(); i++) {
if (xParents[i] != z && !xParents[i]->hasEvidence()) {
polyTreeLambdaMessage (x, xParents[i]);
}
}
}
}
void
BPSolver::polyTreeLambdaMessage (BayesNode* y, BayesNode* x)
{
if (DL >= 1) {
cout << LD << " (" << y->getLabel();
cout << " --> " << x->getLabel();
cout << ")" << endl;
}
calculateNextLambdaMessage (y, x);
updateLambdaMessage (y, x);
updateLambdaValues (x);
const NodeSet& xParents = x->getParents();
for (unsigned i = 0; i < xParents.size(); i++) {
if (!xParents[i]->hasEvidence()) {
polyTreeLambdaMessage (x, xParents[i]);
}
}
const NodeSet& xChilds = x->getChilds();
for (unsigned i = 0; i < xChilds.size(); i++) {
if (xChilds[i] != y) {
polyTreePiMessage (x, xChilds[i]);
}
}
}
void
BPSolver::runGenericSolver()
{
initializeSolver();
const NodeSet& nodes = bn_->getNodes();
for (unsigned i = 0; i < nodes.size(); i++) {
if (nodes[i]->hasEvidence()) {
incorporateEvidence (nodes[i]);
}
}
for (unsigned i = 0; i < nodes.size(); i++) {
// pi messages
const NodeSet& childs = nodes[i]->getChilds();
for (unsigned j = 0; j < childs.size(); j++) {
updateOrder_.push_back (Edge (nodes[i], childs[j], PI_MSG));
}
// lambda messages
const NodeSet& parents = nodes[i]->getParents();
for (unsigned j = 0; j < parents.size(); j++) {
if (!parents[j]->hasEvidence()) {
updateOrder_.push_back (Edge (nodes[i], parents[j], LAMBDA_MSG));
}
}
}
nIter_ = 0;
while (!converged() && nIter_ < maxIter_) {
nIter_++;
if (DL >= 1) {
cout << endl;
cout << "****************************************" ;
cout << "****************************************" ;
cout << endl;
cout << " Iteration " << nIter_ << endl;
cout << "****************************************" ;
cout << "****************************************" ;
cout << endl;
}
switch (schedule_) {
case S_SEQ_RANDOM:
random_shuffle (updateOrder_.begin(), updateOrder_.end());
// no break
case S_SEQ_FIXED:
for (unsigned i = 0; i < updateOrder_.size(); i++) {
calculateNextMessage (updateOrder_[i]);
updateMessage (updateOrder_[i]);
updateValues (updateOrder_[i]);
}
break;
case S_PARALLEL:
for (unsigned i = 0; i < updateOrder_.size(); i++) {
calculateNextMessage (updateOrder_[i]);
}
for (unsigned i = 0; i < updateOrder_.size(); i++) {
updateMessage (updateOrder_[i]);
updateValues (updateOrder_[i]);
}
break;
case S_MAX_RESIDUAL:
maxResidualSchedule();
break;
}
}
}
void
BPSolver::maxResidualSchedule (void)
{
if (nIter_ == 1) {
Edge::klass = this;
for (unsigned i = 0; i < updateOrder_.size(); i++) {
calculateNextMessage (updateOrder_[i]);
updateResidual (updateOrder_[i]);
SortedOrder::iterator it = sortedOrder_.insert (updateOrder_[i]);
edgeMap_.insert (make_pair (updateOrder_[i].getId(), it));
}
return;
}
for (unsigned c = 0; c < sortedOrder_.size(); c++) {
if (DL >= 1) {
for (set<Edge, compare>::iterator it = sortedOrder_.begin();
it != sortedOrder_.end(); it ++) {
cout << it->toString() << " residual = " ;
cout << getResidual (*it) << endl;
}
}
set<Edge, compare>::iterator it = sortedOrder_.begin();
Edge e = *it;
if (getResidual (e) < accuracy_) {
return;
}
updateMessage (e);
updateValues (e);
clearResidual (e);
sortedOrder_.erase (it);
assert (edgeMap_.find (e.getId()) != edgeMap_.end());
edgeMap_.find (e.getId())->second = sortedOrder_.insert (e);
// update the messages that depend on message source --> destination
const NodeSet& childs = e.destination->getChilds();
for (unsigned i = 0; i < childs.size(); i++) {
if (childs[i] != e.source) {
Edge neighbor (e.destination, childs[i], PI_MSG);
calculateNextMessage (neighbor);
updateResidual (neighbor);
assert (edgeMap_.find (neighbor.getId()) != edgeMap_.end());
EdgeMap::iterator iter = edgeMap_.find (neighbor.getId());
sortedOrder_.erase (iter->second);
iter->second = sortedOrder_.insert (neighbor);
}
}
const NodeSet& parents = e.destination->getParents();
for (unsigned i = 0; i < parents.size(); i++) {
if (parents[i] != e.source && !parents[i]->hasEvidence()) {
Edge neighbor (e.destination, parents[i], LAMBDA_MSG);
calculateNextMessage (neighbor);
updateResidual (neighbor);
assert (edgeMap_.find (neighbor.getId()) != edgeMap_.end());
EdgeMap::iterator iter = edgeMap_.find (neighbor.getId());
sortedOrder_.erase (iter->second);
iter->second = sortedOrder_.insert (neighbor);
}
}
}
}
bool
BPSolver::converged (void) const
{
bool converged = true;
if (schedule_ == S_MAX_RESIDUAL) {
if (nIter_ <= 2) {
return false;
}
// this can happen if every node does not have neighbors
if (sortedOrder_.size() == 0) {
return true;
}
Param maxResidual = getResidual (*(sortedOrder_.begin()));
if (maxResidual > accuracy_) {
return false;
}
} else {
if (nIter_ == 0) {
return false;
}
const NodeSet& nodes = bn_->getNodes();
for (unsigned i = 0; i < nodes.size(); i++) {
if (!nodes[i]->hasEvidence()) {
double change = M(nodes[i])->getBeliefChange();
if (DL >= 1) {
cout << nodes[i]->getLabel() + " belief change = " ;
cout << change << endl;
}
if (change > accuracy_) {
converged = false;
if (DL == 0) break;
}
}
}
}
return converged;
}
void
BPSolver::updatePiValues (BayesNode* x)
{
// π(Xi)
const NodeSet& parents = x->getParents();
const vector<CptEntry>& entries = x->getCptEntries();
assert (parents.size() != 0);
stringstream* calcs1;
stringstream* calcs2;
ParamSet messageProducts (entries.size());
for (unsigned k = 0; k < entries.size(); k++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double messageProduct = 1.0;
const DomainConf& conf = entries[k].getParentConfigurations();
for (unsigned i = 0; i < parents.size(); i++) {
messageProduct *= M(parents[i])->getPiMessageValue(x, conf[i]);
if (DL >= 5) {
if (i != 0) *calcs1 << "." ;
if (i != 0) *calcs2 << "*" ;
*calcs1 << PI << "(" << x->getLabel() << ")" ;
*calcs1 << "[" << parents[i]->getDomain()[conf[i]] << "]";
*calcs2 << M(parents[i])->getPiMessageValue(x, conf[i]);
}
}
messageProducts[k] = messageProduct;
if (DL >= 5) {
cout << " mp" << k;
cout << " = " << (*calcs1).str();
if (parents.size() == 1) {
cout << " = " << messageProduct << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << messageProduct << endl;
}
delete calcs1;
delete calcs2;
}
}
for (int xi = 0; xi < x->getDomainSize(); xi++) {
double sum = 0.0;
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
for (unsigned k = 0; k < entries.size(); k++) {
sum += x->getProbability (xi, entries[k]) * messageProducts[k];
if (DL >= 5) {
if (k != 0) *calcs1 << " + " ;
if (k != 0) *calcs2 << " + " ;
*calcs1 << x->cptEntryToString (xi, entries[k]);
*calcs1 << ".mp" << k;
*calcs2 << x->getProbability (xi, entries[k]);
*calcs2 << "*" << messageProducts[k];
}
}
M(x)->setPiValue (xi, sum);
if (DL >= 5) {
cout << " " << PI << "(" << x->getLabel() << ")" ;
cout << "[" << x->getDomain()[xi] << "]" ;
cout << " = " << (*calcs1).str();
cout << " = " << (*calcs2).str();
cout << " = " << sum << endl;
delete calcs1;
delete calcs2;
}
}
}
void
BPSolver::updateLambdaValues (BayesNode* x)
{
// λ(Xi)
const NodeSet& childs = x->getChilds();
assert (childs.size() != 0);
stringstream* calcs1;
stringstream* calcs2;
for (int xi = 0; xi < x->getDomainSize(); xi++) {
double product = 1.0;
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
for (unsigned i = 0; i < childs.size(); i++) {
product *= M(x)->getLambdaMessageValue(childs[i], xi);
if (DL >= 5) {
if (i != 0) *calcs1 << "." ;
if (i != 0) *calcs2 << "*" ;
*calcs1 << LD << "(" << childs[i]->getLabel();
*calcs1 << "-->" << x->getLabel() << ")" ;
*calcs1 << "[" << x->getDomain()[xi] << "]" ;
*calcs2 << M(x)->getLambdaMessageValue(childs[i], xi);
}
}
M(x)->setLambdaValue (xi, product);
if (DL >= 5) {
cout << " " << LD << "(" << x->getLabel() << ")" ;
cout << "[" << x->getDomain()[xi] << "]" ;
cout << " = " << (*calcs1).str();
if (childs.size() == 1) {
cout << " = " << product << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << product << endl;
}
delete calcs1;
delete calcs2;
}
}
}
void
BPSolver::calculateNextPiMessage (BayesNode* z, BayesNode* x)
{
// πX(Zi)
ParamSet& zxPiNextMessage = M(z)->piNextMessageReference (x);
const NodeSet& zChilds = z->getChilds();
stringstream* calcs1;
stringstream* calcs2;
for (int zi = 0; zi < z->getDomainSize(); zi++) {
double product = M(z)->getPiValue (zi);
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
*calcs1 << PI << "(" << z->getLabel() << ")";
*calcs1 << "[" << z->getDomain()[zi] << "]" ;
*calcs2 << product;
}
for (unsigned i = 0; i < zChilds.size(); i++) {
if (zChilds[i] != x) {
product *= M(z)->getLambdaMessageValue(zChilds[i], zi);
if (DL >= 5) {
*calcs1 << "." << LD << "(" << zChilds[i]->getLabel();
*calcs1 << "-->" << z->getLabel() << ")";
*calcs1 << "[" << z->getDomain()[zi] + "]" ;
*calcs2 << " * " << M(z)->getLambdaMessageValue(zChilds[i], zi);
}
}
}
zxPiNextMessage[zi] = product;
if (DL >= 5) {
cout << " " << PI << "(" << z->getLabel();
cout << "-->" << x->getLabel() << ")" ;
cout << "[" << z->getDomain()[zi] << "]" ;
cout << " = " << (*calcs1).str();
if (zChilds.size() == 1) {
cout << " = " << product << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << product << endl;
}
delete calcs1;
delete calcs2;
}
}
}
void
BPSolver::calculateNextLambdaMessage (BayesNode* y, BayesNode* x)
{
// λY(Xi)
//if (!y->hasEvidence() && !M(y)->hasReceivedChildInfluence()) {
// if (DL >= 5) {
// cout << "unnecessary calculation" << endl;
// }
// return;
//}
ParamSet& yxLambdaNextMessage = M(x)->lambdaNextMessageReference (y);
const NodeSet& yParents = y->getParents();
const vector<CptEntry>& allEntries = y->getCptEntries();
int parentIndex = y->getIndexOfParent (x);
stringstream* calcs1;
stringstream* calcs2;
vector<CptEntry> entries;
DomainConstr constr = make_pair (parentIndex, 0);
for (unsigned i = 0; i < allEntries.size(); i++) {
if (allEntries[i].matchConstraints(constr)) {
entries.push_back (allEntries[i]);
}
}
ParamSet messageProducts (entries.size());
for (unsigned k = 0; k < entries.size(); k++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
double messageProduct = 1.0;
const DomainConf& conf = entries[k].getParentConfigurations();
for (unsigned i = 0; i < yParents.size(); i++) {
if (yParents[i] != x) {
if (DL >= 5) {
if (messageProduct != 1.0) *calcs1 << "*" ;
if (messageProduct != 1.0) *calcs2 << "*" ;
*calcs1 << PI << "(" << yParents[i]->getLabel();
*calcs1 << "-->" << y->getLabel() << ")" ;
*calcs1 << "[" << yParents[i]->getDomain()[conf[i]] << "]" ;
*calcs2 << M(yParents[i])->getPiMessageValue(y, conf[i]);
}
messageProduct *= M(yParents[i])->getPiMessageValue(y, conf[i]);
}
}
messageProducts[k] = messageProduct;
if (DL >= 5) {
cout << " mp" << k;
cout << " = " << (*calcs1).str();
if (yParents.size() == 1) {
cout << 1 << endl;
} else if (yParents.size() == 2) {
cout << " = " << messageProduct << endl;
} else {
cout << " = " << (*calcs2).str();
cout << " = " << messageProduct << endl;
}
delete calcs1;
delete calcs2;
}
}
for (int xi = 0; xi < x->getDomainSize(); xi++) {
if (DL >= 5) {
calcs1 = new stringstream;
calcs2 = new stringstream;
}
vector<CptEntry> entries;
DomainConstr constr = make_pair (parentIndex, xi);
for (unsigned i = 0; i < allEntries.size(); i++) {
if (allEntries[i].matchConstraints(constr)) {
entries.push_back (allEntries[i]);
}
}
double outerSum = 0.0;
for (int yi = 0; yi < y->getDomainSize(); yi++) {
if (DL >= 5) {
(yi != 0) ? *calcs1 << " + {" : *calcs1 << "{" ;
(yi != 0) ? *calcs2 << " + {" : *calcs2 << "{" ;
}
double innerSum = 0.0;
for (unsigned k = 0; k < entries.size(); k++) {
if (DL >= 5) {
if (k != 0) *calcs1 << " + " ;
if (k != 0) *calcs2 << " + " ;
*calcs1 << y->cptEntryToString (yi, entries[k]);
*calcs1 << ".mp" << k;
*calcs2 << y->getProbability (yi, entries[k]);
*calcs2 << "*" << messageProducts[k];
}
innerSum += y->getProbability (yi, entries[k]) * messageProducts[k];
}
outerSum += innerSum * M(y)->getLambdaValue (yi);
if (DL >= 5) {
*calcs1 << "}." << LD << "(" << y->getLabel() << ")" ;
*calcs1 << "[" << y->getDomain()[yi] << "]";
*calcs2 << "}*" << M(y)->getLambdaValue (yi);
}
}
yxLambdaNextMessage[xi] = outerSum;
if (DL >= 5) {
cout << " " << LD << "(" << y->getLabel();
cout << "-->" << x->getLabel() << ")" ;
cout << "[" << x->getDomain()[xi] << "]" ;
cout << " = " << (*calcs1).str();
cout << " = " << (*calcs2).str();
cout << " = " << outerSum << endl;
delete calcs1;
delete calcs2;
}
}
}
void
BPSolver::printMessageStatusOf (const BayesNode* var) const
{
cout << left;
cout << setw (10) << "domain" ;
cout << setw (20) << PI << "(" + var->getLabel() + ")" ;
cout << setw (20) << LD << "(" + var->getLabel() + ")" ;
cout << setw (16) << "belief" ;
cout << endl;
cout << "--------------------------------" ;
cout << "--------------------------------" ;
cout << endl;
BpNode* x = M(var);
ParamSet& piVals = x->getPiValues();
ParamSet& ldVals = x->getLambdaValues();
ParamSet beliefs = x->getBeliefs();
const Domain& domain = var->getDomain();
const NodeSet& childs = var->getChilds();
for (int xi = 0; xi < var->getDomainSize(); xi++) {
cout << setw (10) << domain[xi];
cout << setw (19) << piVals[xi];
cout << setw (19) << ldVals[xi];
cout.precision (PRECISION);
cout << setw (16) << beliefs[xi];
cout << endl;
}
cout << endl;
if (childs.size() > 0) {
string s = "(" + var->getLabel() + ")" ;
for (unsigned j = 0; j < childs.size(); j++) {
cout << setw (10) << "domain" ;
cout << setw (28) << PI + childs[j]->getLabel() + s;
cout << setw (28) << LD + childs[j]->getLabel() + s;
cout << endl;
cout << "--------------------------------" ;
cout << "--------------------------------" ;
cout << endl;
const ParamSet& piMessage = x->getPiMessage (childs[j]);
const ParamSet& lambdaMessage = x->getLambdaMessage (childs[j]);
for (int xi = 0; xi < var->getDomainSize(); xi++) {
cout << setw (10) << domain[xi];
cout.precision (PRECISION);
cout << setw (27) << piMessage[xi];
cout.precision (PRECISION);
cout << setw (27) << lambdaMessage[xi];
cout << endl;
}
cout << endl;
}
}
}
void
BPSolver::printAllMessageStatus (void) const
{
const NodeSet& nodes = bn_->getNodes();
for (unsigned i = 0; i < nodes.size(); i++) {
printMessageStatusOf (nodes[i]);
}
}