This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/ProbLog/problog/completion.yap
2011-06-26 23:13:43 +01:00

1123 lines
36 KiB
Prolog

%%% -*- Mode: Prolog; -*-
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% $Date: 2011-04-21 14:18:59 +0200 (Thu, 21 Apr 2011) $
% $Revision: 6364 $
%
% Main authors of this file:
% Bernd Gutmann
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Artistic License 2.0
%
% Copyright (c) 2000-2006, The Perl Foundation.
%
% Everyone is permitted to copy and distribute verbatim copies of this
% license document, but changing it is not allowed. Preamble
%
% This license establishes the terms under which a given free software
% Package may be copied, modified, distributed, and/or
% redistributed. The intent is that the Copyright Holder maintains some
% artistic control over the development of that Package while still
% keeping the Package available as open source and free software.
%
% You are always permitted to make arrangements wholly outside of this
% license directly with the Copyright Holder of a given Package. If the
% terms of this license do not permit the full use that you propose to
% make of the Package, you should contact the Copyright Holder and seek
% a different licensing arrangement. Definitions
%
% "Copyright Holder" means the individual(s) or organization(s) named in
% the copyright notice for the entire Package.
%
% "Contributor" means any party that has contributed code or other
% material to the Package, in accordance with the Copyright Holder's
% procedures.
%
% "You" and "your" means any person who would like to copy, distribute,
% or modify the Package.
%
% "Package" means the collection of files distributed by the Copyright
% Holder, and derivatives of that collection and/or of those files. A
% given Package may consist of either the Standard Version, or a
% Modified Version.
%
% "Distribute" means providing a copy of the Package or making it
% accessible to anyone else, or in the case of a company or
% organization, to others outside of your company or organization.
%
% "Distributor Fee" means any fee that you charge for Distributing this
% Package or providing support for this Package to another party. It
% does not mean licensing fees.
%
% "Standard Version" refers to the Package if it has not been modified,
% or has been modified only in ways explicitly requested by the
% Copyright Holder.
%
% "Modified Version" means the Package, if it has been changed, and such
% changes were not explicitly requested by the Copyright Holder.
%
% "Original License" means this Artistic License as Distributed with the
% Standard Version of the Package, in its current version or as it may
% be modified by The Perl Foundation in the future.
%
% "Source" form means the source code, documentation source, and
% configuration files for the Package.
%
% "Compiled" form means the compiled bytecode, object code, binary, or
% any other form resulting from mechanical transformation or translation
% of the Source form.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Permission for Use and Modification Without Distribution
%
% (1) You are permitted to use the Standard Version and create and use
% Modified Versions for any purpose without restriction, provided that
% you do not Distribute the Modified Version.
%
% Permissions for Redistribution of the Standard Version
%
% (2) You may Distribute verbatim copies of the Source form of the
% Standard Version of this Package in any medium without restriction,
% either gratis or for a Distributor Fee, provided that you duplicate
% all of the original copyright notices and associated disclaimers. At
% your discretion, such verbatim copies may or may not include a
% Compiled form of the Package.
%
% (3) You may apply any bug fixes, portability changes, and other
% modifications made available from the Copyright Holder. The resulting
% Package will still be considered the Standard Version, and as such
% will be subject to the Original License.
%
% Distribution of Modified Versions of the Package as Source
%
% (4) You may Distribute your Modified Version as Source (either gratis
% or for a Distributor Fee, and with or without a Compiled form of the
% Modified Version) provided that you clearly document how it differs
% from the Standard Version, including, but not limited to, documenting
% any non-standard features, executables, or modules, and provided that
% you do at least ONE of the following:
%
% (a) make the Modified Version available to the Copyright Holder of the
% Standard Version, under the Original License, so that the Copyright
% Holder may include your modifications in the Standard Version. (b)
% ensure that installation of your Modified Version does not prevent the
% user installing or running the Standard Version. In addition, the
% modified Version must bear a name that is different from the name of
% the Standard Version. (c) allow anyone who receives a copy of the
% Modified Version to make the Source form of the Modified Version
% available to others under (i) the Original License or (ii) a license
% that permits the licensee to freely copy, modify and redistribute the
% Modified Version using the same licensing terms that apply to the copy
% that the licensee received, and requires that the Source form of the
% Modified Version, and of any works derived from it, be made freely
% available in that license fees are prohibited but Distributor Fees are
% allowed.
%
% Distribution of Compiled Forms of the Standard Version or
% Modified Versions without the Source
%
% (5) You may Distribute Compiled forms of the Standard Version without
% the Source, provided that you include complete instructions on how to
% get the Source of the Standard Version. Such instructions must be
% valid at the time of your distribution. If these instructions, at any
% time while you are carrying out such distribution, become invalid, you
% must provide new instructions on demand or cease further
% distribution. If you provide valid instructions or cease distribution
% within thirty days after you become aware that the instructions are
% invalid, then you do not forfeit any of your rights under this
% license.
%
% (6) You may Distribute a Modified Version in Compiled form without the
% Source, provided that you comply with Section 4 with respect to the
% Source of the Modified Version.
%
% Aggregating or Linking the Package
%
% (7) You may aggregate the Package (either the Standard Version or
% Modified Version) with other packages and Distribute the resulting
% aggregation provided that you do not charge a licensing fee for the
% Package. Distributor Fees are permitted, and licensing fees for other
% components in the aggregation are permitted. The terms of this license
% apply to the use and Distribution of the Standard or Modified Versions
% as included in the aggregation.
%
% (8) You are permitted to link Modified and Standard Versions with
% other works, to embed the Package in a larger work of your own, or to
% build stand-alone binary or bytecode versions of applications that
% include the Package, and Distribute the result without restriction,
% provided the result does not expose a direct interface to the Package.
%
% Items That are Not Considered Part of a Modified Version
%
% (9) Works (including, but not limited to, modules and scripts) that
% merely extend or make use of the Package, do not, by themselves, cause
% the Package to be a Modified Version. In addition, such works are not
% considered parts of the Package itself, and are not subject to the
% terms of this license.
%
% General Provisions
%
% (10) Any use, modification, and distribution of the Standard or
% Modified Versions is governed by this Artistic License. By using,
% modifying or distributing the Package, you accept this license. Do not
% use, modify, or distribute the Package, if you do not accept this
% license.
%
% (11) If your Modified Version has been derived from a Modified Version
% made by someone other than you, you are nevertheless required to
% ensure that your Modified Version complies with the requirements of
% this license.
%
% (12) This license does not grant you the right to use any trademark,
% service mark, tradename, or logo of the Copyright Holder.
%
% (13) This license includes the non-exclusive, worldwide,
% free-of-charge patent license to make, have made, use, offer to sell,
% sell, import and otherwise transfer the Package with respect to any
% patent claims licensable by the Copyright Holder that are necessarily
% infringed by the Package. If you institute patent litigation
% (including a cross-claim or counterclaim) against any party alleging
% that the Package constitutes direct or contributory patent
% infringement, then this Artistic License to you shall terminate on the
% date that such litigation is filed.
%
% (14) Disclaimer of Warranty: THE PACKAGE IS PROVIDED BY THE COPYRIGHT
% HOLDER AND CONTRIBUTORS "AS IS' AND WITHOUT ANY EXPRESS OR IMPLIED
% WARRANTIES. THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
% PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE DISCLAIMED TO THE EXTENT
% PERMITTED BY YOUR LOCAL LAW. UNLESS REQUIRED BY LAW, NO COPYRIGHT
% HOLDER OR CONTRIBUTOR WILL BE LIABLE FOR ANY DIRECT, INDIRECT,
% INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING IN ANY WAY OUT OF THE USE
% OF THE PACKAGE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
:- module(completion, [propagate_evidence/2,
bdd_cluster/2,
split_atom_name/3,
reset_completion/0]).
:- style_check(all).
:- yap_flag(unknown,error).
% load library modules
:- use_module(library(lists),[member/2,append/3,reverse/2]).
:- use_module(library(system), [tmpnam/1]).
% load our own modules
:- use_module('../problog').
:- use_module(logger).
:- use_module(termhandling).
:- use_module(flags).
:- use_module(print_learning).
:- use_module(utils).
:- use_module(utils_learning).
:- dynamic seen_atom/4.
:- dynamic bdd_cluster/2.
:- initialization(problog_define_flag(propagate_known,problog_flag_validate_boolean,'Propagate known atoms',true,learning_bdd_generation)).
:- initialization(problog_define_flag(propagate_det,problog_flag_validate_boolean,'Propagate deterministic atoms',true,learning_bdd_generation)).
:- initialization(problog_define_flag(output_dot_files,problog_flag_validate_boolean,'Output .dot files for BDD scripts',true,learning_bdd_generation)).
:- initialization(problog_define_flag(split_bdds,problog_flag_validate_boolean,'Split BDD scripts when possible',true,learning_bdd_generation)).
%========================================================================
%=
%========================================================================
user:myclause(_InterpretationID,Head,Body) :-
current_predicate(user:myclause/2),
user:myclause(Head,Body).
%========================================================================
%=
%========================================================================
reset_completion :-
retractall(seen_atom(_,_,_,_)),
retractall(bdd_cluster(_,_)).
%========================================================================
%=
%========================================================================
propagate_evidence(_,_) :-
\+ current_predicate(user:known/3),
!,
throw(error(system_error,'The predicate user:known/3 is not defined. If you really have empty interpretations declare the user:known/3 as dynamic and come back.')).
propagate_evidence(InterpretationID,Query_Type) :-
atomic(InterpretationID),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Clean up %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eraseall(rules),
eraseall(unpropagated_rules),
eraseall(known_atoms),
eraseall(reachable),
(
Query_Type==test
->
(
Key_BDD_script_generation=test_bdd_script_generation,
Key_BDD_script_generation_grounding=test_bdd_script_generation_grounding,
Key_BDD_script_generation_completion=test_bdd_script_generation_completion,
Key_BDD_script_generation_propagation=test_bdd_script_generation_propagation,
Key_BDD_script_generation_splitting=test_bdd_script_generation_splitting,
Key_BDD_script_generation_active_ground_atoms=test_bdd_script_generation_active_ground_atoms,
Key_BDD_script_generation_propagated_ground_atoms=test_bdd_script_generation_propagated_ground_atoms
);
(
Key_BDD_script_generation=train_bdd_script_generation,
Key_BDD_script_generation_grounding=train_bdd_script_generation_grounding,
Key_BDD_script_generation_completion=train_bdd_script_generation_completion,
Key_BDD_script_generation_propagation=train_bdd_script_generation_propagation,
Key_BDD_script_generation_splitting=train_bdd_script_generation_splitting,
Key_BDD_script_generation_active_ground_atoms=train_bdd_script_generation_active_ground_atoms,
Key_BDD_script_generation_propagated_ground_atoms=train_bdd_script_generation_propagated_ground_atoms
)
),
logger_start_timer(Key_BDD_script_generation),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Calc dep() %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
logger_start_timer(Key_BDD_script_generation_grounding),
format_learning(5,'d',[]),
% iterate over all evidence atoms
forall(user:known(InterpretationID,Atom,Value),
(
(calculate_dep_atom_outer(Atom,InterpretationID);Value==false)
->
true;
throw(unprovable_evidence(Atom))
)
),
logger_stop_timer(Key_BDD_script_generation_grounding),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Calc completion %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
logger_start_timer(Key_BDD_script_generation_completion),
format_learning(5,'c',[]),
once(completion(InterpretationID)),
logger_stop_timer(Key_BDD_script_generation_completion),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Bring out intermediate garbage %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eraseall(reachable),
!,
garbage_collect_atoms,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Calc propagation %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
problog_flag(propagate_known,Propagate_Known),
(
Propagate_Known==true
->
(
logger_start_timer(Key_BDD_script_generation_propagation),
format_learning(5,'p',[]),
once(propagate),
logger_stop_timer(Key_BDD_script_generation_propagation)
);
true
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Split BDD Script %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
problog_flag(split_bdds,Split_BDDs),
format_learning(5,'S',[]),
(
Split_BDDs==false
->
(
findall(R,(recorded(rules,_,R);recorded(unpropagated_rules,_,R)),All_R),
Cluster=[All_R]
);
(
logger_start_timer(Key_BDD_script_generation_splitting),
split_rules(Cluster),
logger_stop_timer(Key_BDD_script_generation_splitting)
)
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Print BDD script %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
format_learning(5,'s',[]),
print_script_per_cluster(Cluster,InterpretationID,1,0,Seen_Atoms,[],ClusterIDs),
store_known_atoms(InterpretationID,ClusterIDs,Query_Type),
key_statistics(known_atoms,Known_Atoms,_),
logger_add_to_variable(Key_BDD_script_generation_active_ground_atoms,Seen_Atoms),
logger_add_to_variable(Key_BDD_script_generation_propagated_ground_atoms,Known_Atoms),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Clean up %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eraseall(rules),
eraseall(unpropagated_rules),
eraseall(known_atoms),
eraseall(reachable),
logger_stop_timer(Key_BDD_script_generation).
%========================================================================
%=
%========================================================================
print_script_per_cluster([],_,_,Seen_Atoms,Seen_Atoms,Cluster_IDs,Cluster_IDs).
print_script_per_cluster([Refs|T],InterpretationID,Cluster_ID,Old_Seen_Atoms,Seen_Atoms,Old_Cluster_IDs,Cluster_IDs) :-
create_bdd_file_name(InterpretationID,Cluster_ID,File_Name),
%trace,
once(print_simplecudd_script(Refs,File_Name,This_Seen_Atoms)),
New_Seen_Atoms is Old_Seen_Atoms+This_Seen_Atoms,
Next_Cluster_ID is Cluster_ID+1,
print_script_per_cluster(T,InterpretationID,Next_Cluster_ID,New_Seen_Atoms,Seen_Atoms,[Cluster_ID|Old_Cluster_IDs],Cluster_IDs).
%========================================================================
%=
%========================================================================
completion(InterpretationID) :-
% iterate over all reachable atoms where the completion
% can be computed. This will skip reachable probabilistic facts.
forall((
recorded(reachable,Head,_),
completion_for_atom(Head,Rule,InterpretationID)
),
(
once(propagate_interpretation(Rule,InterpretationID,Rule2)),
simplify(Rule2,Rule3,_),
(
(Rule3\==false,record_constraint_cs_check(Rule3))
->
true;
(
print_theory,
format(user_error,'=============================~n',[]),
format(user_error,'Inconsistency error at building completion for atom ~q (Example ~q)~n',[Head,InterpretationID]),
format(user_error,' Completion was~n ~q~2n',[Rule]),
format(user_error,' After subsituting evidence~n ~q~2n',[Rule2]),
format(user_error,' After simplifying~n ~q~2n',[Rule3]),
format(user_error,'=============================~2n',[]),
throw(theory_is_inconsistent)
)
)
)
),
print_theory,
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Store known Atoms %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
forall(user:known(InterpretationID,Atom,Value),
recorda(known_atoms,'$atom'(Atom) <=> Value,_)
).
completion_for_atom(Head,'$atom'(Head)<=>Disjunction,InterpretationID) :-
% find all clauses
findall(Body2,(
user:myclause(InterpretationID,Head,Body),
ground_term_with_known_atoms(Body,Body2)
),Bodies),
Bodies\==[],
list_to_disjunction(Bodies,Disjunction).
%========================================================================
%= find rule which makes sense to propagate
%========================================================================
propagate :-
problog_flag(propagate_det,true),
!,
repeat,
once(propagate_intern_known(Result1)),
% print_theory,
Result1==false,
once(propagate_intern_deterministic(Result2)),
Result2==false,
!.
propagate :-
repeat,
once(propagate_intern_known(Result1)),
Result1==false,
!.
propagate_intern_known(true) :-
recorded(unpropagated_rules,Atom <=> AtomValue,Key1),
!,
erase(Key1),
recorda(known_atoms,Atom <=> AtomValue,_),
forall(
(
recorded(rules,Rule,Key2),
once(propagate(Rule,'$atom'(Atom),AtomValue,NewRule,true)) % will succeed only when Atom appears in Rule
),
(
erase(Key2),
once(simplify(NewRule,NewRuleSimplified,_)),
(
(NewRuleSimplified\==false,record_constraint_cs_check(NewRuleSimplified))
->
true;
(
print_theory,
format(user_error,'Propagating ~q=~q for ~q leads to an inconsistency.!!!~2n',[Atom,AtomValue,Rule]),
throw(inconsitent)
)
)
)
).
propagate_intern_known(false).
propagate_intern_deterministic(true) :-
recorded(rules,Atom <=> AtomValue,Key1),
!,
erase(Key1),
forall(
(
recorded(rules,Rule,Key2),
once(propagate(Rule,Atom,AtomValue,NewRule,true)) % will succeed only when Atom appears in Rule
),
(
erase(Key2),
once(simplify(NewRule,NewRuleSimplified,_)),
(
(NewRuleSimplified\=false,record_constraint_cs_check(NewRuleSimplified))
->
true;
(
print_theory,
format(user_error,'Propagating ~q=~q for ~q leads to an inconsistency.!!!~2n',[Atom,AtomValue,Rule]),
throw(inconsitent)
)
)
)
).
propagate_intern_deterministic(false).
%========================================================================
%=
%========================================================================
record_constraint_cs_check( (X <=> Y) ) :-
recorda(rules,(X <=> Y),_).
record_constraint_cs_check((X,Y)) :-
record_constraint_cs_check(X),
record_constraint_cs_check(Y).
record_constraint_cs_check( (X;Y)) :-
recorda(rules,(X;Y),_).
record_constraint_cs_check( \+ '$atom'(X) ) :-
(
recorded(unpropagated_rules, ('$atom'(X)<=>OldValue),_)
->
OldValue==false;
recorda(unpropagated_rules, ('$atom'(X) <=> false),_)
).
record_constraint_cs_check('$atom'(X)) :-
(
recorded(unpropagated_rules, ('$atom'(X)<=>OldValue),_)
->
OldValue==true;
recorda(unpropagated_rules, ('$atom'(X) <=> true),_)
).
record_constraint_cs_check(true).
%========================================================================
%=
%========================================================================
split_atom_name(Name,ID,GroundID) :-
atom(Name),
atomic_concat(x,Temp,Name),
atom_codes(Temp,TempC),
(
append(Head,[95|Tail],TempC) % 95-_-
->
(
number_chars(ID,Head),
number_chars(GroundID,Tail)
);
(
number_chars(ID,TempC),
GroundID=0
)
),
!.
store_known_atoms(ID,ClusterIDs,Query_Type) :-
(
Query_Type==test
->
(
KK_True_Array=known_count_true_test,
KK_False_Array=known_count_false_test
);
(
KK_True_Array=known_count_true_training,
KK_False_Array=known_count_false_training
)
),
retractall(bdd_cluster(ID,_)),
assertz(bdd_cluster(ID,ClusterIDs)),
create_known_values_file_name(ID,File_Name),
open(File_Name,'write',Handle),
format(Handle,'completion:bdd_cluster(~w,~w).~n',[ID,ClusterIDs]),
forall((
recorded(known_atoms,'$atom'(Atom) <=> Value,_),
remember(Atom,Name),
split_atom_name(Name,FactID,GroundID)
),
(
(
Value==true
->
add_to_array_element(KK_True_Array,FactID,1,_);
add_to_array_element(KK_False_Array,FactID,1,_)
),
know_atom_expected_count(Value,Count),
format(Handle,'completion:known_count(~w,~w,~w,~w). % ~w~n',[ID,FactID,GroundID,Count,Atom])
)
),
close(Handle).
know_atom_expected_count(true,1).
know_atom_expected_count(false,0).
%========================================================================
%=
%========================================================================
print_theory :-
format_learning(5,'== Unpropagated Rules ==~n',[]),
forall(recorded(unpropagated_rules,Rule,Key),
format_learning(6,'~q. (~q)~n',[Rule,Key])
),
forall(recorded(unpropagated_rules,Rule,Key),
format_learning_rule(5,Rule,Key)
),
format_learning(6,'== Rules ==~n',[]),
forall(recorded(rules,Rule,Key),
format_learning(6,'~q. (~q)~n',[Rule,Key])),
format_learning(5,'== Prettyprint Rules ==~n',[]),
forall(recorded(rules,Rule,Key),
(format_learning_rule(5,Rule,Key))
),
format_learning(5,'== Known and Propagated Atoms ==~n',[]),
forall(recorded(known_atoms,Head <=> Bodies,Key),
format('~q <=> ~q. (~q)~n',[Head,Bodies,Key])
).
%========================================================================
%= split_rules(-Cluster)
%========================================================================
split_rules(Cluster) :-
eraseall(cluster),
% add all rules to the clusters
forall(recorded(rules,Expression,Reference),
include_in_clusters(Expression,Reference)),
% add all unpropagated rules to the clusters
forall(recorded(unpropagated_rules,Expression,Reference),
include_in_clusters(Expression,Reference)),
garbage_collect_atoms,
% Merge clusters until
% no more clusters can be merged
(
repeat,
merge_cluster(Result),
Result==false,
!
),
findall(Keys,recorded(cluster,c(_Facts,Keys),_),Cluster),
eraseall(cluster),
garbage_collect_atoms.
%========================================================================
%= include_in_clusters(+Expression,+Reference)
%========================================================================
include_in_clusters(Expression,Reference) :-
(
setof(F, Expression^term_element(Expression, F), Facts_Sorted)
->
true;
Facts_Sorted = []
),
bb_put(facts,Facts_Sorted),
bb_put(rule_keys,[Reference]),
% iterate over all cluster that overlap with Current_Facts
forall((
recorded(cluster,c(CFacts,Cluster_Rule_Keys),CKey),
bb_get(facts,Current_Facts),
sorted_overlap_test(Current_Facts,CFacts)
),
(
erase(CKey),
bb_get(rule_keys,Current_Rule_Keys),
append(Current_Facts,CFacts,Merged_Facts),
append(Current_Rule_Keys,Cluster_Rule_Keys,Merged_Rule_Keys),
sort(Merged_Facts,Sorted_Facts),
bb_put(facts,Sorted_Facts),
bb_put(rule_keys,Merged_Rule_Keys)
)
),
%clean up and store the new (possibly merged) cluster
bb_delete(facts,Final_Facts),
bb_delete(rule_keys,Final_Rule_Keys),
recorda(cluster,c(Final_Facts,Final_Rule_Keys),_).
%========================================================================
%= find two clusters that should be merged because they both
%= contain the same fact
%========================================================================
merge_cluster(true) :-
recorded(cluster,c(CFacts1,Cluster_Rule_Keys1),CKey1),
recorded(cluster,c(CFacts2,Cluster_Rule_Keys2),CKey2),
CKey1 @< CKey2,
sorted_overlap_test(CFacts1,CFacts2),
!,
erase(CKey1),
erase(CKey2),
append(CFacts1,CFacts2,Merged_Facts),
sort(Merged_Facts,Sorted_Facts),
append(Cluster_Rule_Keys1,Cluster_Rule_Keys2,Merged_Rule_Keys),
recorda(cluster,c(Sorted_Facts,Merged_Rule_Keys),_).
merge_cluster(false).
%========================================================================
%=
%========================================================================
print_simplecudd_script(Refs,BDDFilename,Seen_Atoms) :-
retractall(seen_atom(_,_,_,_)),
retractall(script_hash(_,_)),
bb_put(counter,0),
bb_put(det_counter,0),
bb_put(grounding_counter,0),
tmpnam(Temp_File_Name),
open(Temp_File_Name,'write',Handle1),
findall(X,(
member(R,Refs),
recorded(_,Expression,R),
print_expression(Expression,Handle1,X)
),L),
reverse(L,L_Rev),
list_to_conjunction(L_Rev,Con),
print_expression_and_final(Con,Handle1,'',Final),
(
(atom_codes(Final,[76|_])) % X='L....'
->
LastID=Final;
(
next_counter(LastID),
format(Handle1,'~w=~w~n',[LastID,Final])
)
),
format(Handle1,'~w~n',[LastID]),
close(Handle1),
succeeds_n_times(seen_atom(_,_,_,_),Seen_Atoms),
bb_get(counter,IntermediateSteps),
prefix_bdd_file_with_header(BDDFilename,Seen_Atoms,IntermediateSteps,Temp_File_Name),
problog_flag(output_dot_files,Output_Dot_Files),
(
Output_Dot_Files==true
->
(
atomic_concat([BDDFilename,'.dot'],Dot_File_Name),
open(Dot_File_Name,'write',Handle2),
format(Handle2,'digraph d{~n',[]),
forall(seen_atom(Atom,ID,_FactID,_),
format(Handle2,'~q [label="~q\\n~q", style="filled", color="lightblue"];~n',[ID,Atom,ID])
),
findall(X,(member(R,Refs),recorded(_,Expression,R),print_dot_expression(Expression,Handle2,X)),_L2),
% switch off printing final line until bugfix
%list_to_conjunction(L2,Con2),
% print_dot_expression(Con2,Handle2,_),
format(Handle2,'}~n',[]),
close(Handle2)
);
true
),
retractall(script_hash(_,_)),
retractall(seen_atom(_,_,_,_)).
%========================================================================
%=
%========================================================================
print_expression(Term,_Handle,N) :-
script_hash(Term,N),
!.
print_expression(X <=> Y, Handle,N3) :-
print_expression(X,Handle,N1),
print_expression(Y,Handle,N2),
next_counter(N3),
assert(script_hash(X <=> Y, N3)),
format(Handle,'~w = ~w ~~# ~w~n',[N3,N1,N2]).
print_expression( (X,Y), Handle,Number) :-
print_expression_and((X,Y),Handle,'',Number),
assert(script_hash((X,Y), Number)).
print_expression( (X;Y), Handle,Number) :-
print_expression_or((X;Y),Handle,'',Number),
assert(script_hash((X;Y), Number)).
print_expression( \+ '$atom'(X), _Handle,ID) :-
remember(X,Name),
atomic_concat(['~',Name],ID).
print_expression( true, _Handle,'TRUE').
print_expression( false, _Handle,'FALSE').
print_expression('$atom'(X), _Handle,ID) :-
remember(X,ID).
print_expression_or((X;Y), Handle,OldAcc,Number) :-
!,
print_expression(X,Handle,NX),
atomic_concat([OldAcc,NX,' + '],NewAcc),
print_expression_or(Y,Handle,NewAcc,Number).
print_expression_or(X, Handle,OldAcc,Number) :-
print_expression(X,Handle,NX),
next_counter(Number),
format(Handle,'~w = ~w~w~n',[Number,OldAcc,NX]).
print_expression_and((X,Y), Handle,OldAcc,Number) :-
!,
print_expression(X,Handle,NX),
atomic_concat([OldAcc,NX,' * '],NewAcc),
print_expression_and(Y,Handle,NewAcc,Number).
print_expression_and(X, Handle,OldAcc,Number) :-
print_expression(X,Handle,NX),
next_counter(Number),
format(Handle,'~w = ~w~w~n',[Number,OldAcc,NX]).
print_expression_and_final((X,Y), Handle,OldAcc,Number) :-
!,
atomic_concat([OldAcc,X,' * '],NewAcc),
print_expression_and_final(Y,Handle,NewAcc,Number).
print_expression_and_final( true, _Handle,_ACC,'TRUE').
print_expression_and_final(X, Handle,OldAcc,Number) :-
next_counter(Number),
format(Handle,'~w = ~w~w~n',[Number,OldAcc,X]).
%========================================================================
%=
%========================================================================
print_dot_expression_or((X;Y), Handle,Number) :-
!,
print_dot_expression(X,Handle,NX),
print_dot_line(NX,Number,Handle),
print_dot_expression_or(Y,Handle,Number).
print_dot_expression_or(X, Handle,Number) :-
print_dot_expression(X,Handle,NX),
print_dot_line(NX,Number,Handle).
print_dot_expression_and((X,Y), Handle,Number) :-
!,
print_dot_expression(X,Handle,NX),
print_dot_line(NX,Number,Handle),
print_dot_expression_and(Y,Handle,Number).
print_dot_expression_and(X, Handle,Number) :-
print_dot_expression(X,Handle,NX),
print_dot_line(NX,Number,Handle).
print_dot_expression(X <=> Y, Handle,N3) :-
print_dot_expression(X,Handle,N1),
print_dot_expression(Y,Handle,N2),
next_counter(N3),
format(Handle,'~w [label="<=>",shape="diamond", style="filled", color="lightsalmon"];~n',[N3]),
print_dot_line(N1,N3,Handle),
print_dot_line(N2,N3,Handle).
print_dot_expression( (X,Y), Handle,Number) :-
next_counter(Number),
format(Handle,'~w [label="^",shape="triangle", style="filled", color="lightgoldenrod"];~n',[Number]),
print_dot_expression_and((X,Y),Handle,Number).
print_dot_expression( (X;Y), Handle,Number) :-
next_counter(Number),
format(Handle,'~w [label="v",shape="invtriangle", style="filled", color="greenyellow"];~n',[Number]),
print_dot_expression_or((X;Y),Handle,Number).
print_dot_expression( \+ '$atom'(X), _Handle,ID) :-
remember(X,Name),
atomic_concat(['~',Name],ID).
print_dot_expression(true, _Handle,'TRUE').
print_dot_expression( false, _Handle,'FALSE').
print_dot_expression( '$atom'(X), _Handle,ID) :-
remember(X,ID).
print_dot_line(N1,N2,Handle) :-
(
atomic_concat('~',ID,N1)
->
format(Handle,'~w -> ~w [style="dashed, bold"];~n',[ID,N2]);
format(Handle,'~w -> ~w;~n',[N1,N2])
).
%========================================================================
%=
%========================================================================
remember(X,Name) :-
seen_atom(X,Name,_,_),
!.
remember(X,X) :-
atom(X),
atom_codes(X,[76|_]), % X='L....'
!.
remember(X,Name) :-
probabilistic_fact(P,X,ID),
!,
(
non_ground_fact(ID)
->
(
next_grounding_id(Grounding_ID),
atomic_concat([x,ID,'_',Grounding_ID],Name)
);
atomic_concat([x,ID],Name)
),
assertz(seen_atom(X,Name,ID,P)).
remember(X,Name) :-
next_det_counter(Det_ID),
atomic_concat([y,Det_ID],Name),
assertz(seen_atom(X,Name,det,1.0)).
next_grounding_id(N) :-
bb_get(grounding_counter,N),
N2 is N+1,
bb_put(grounding_counter,N2).
next_det_counter(ID) :-
bb_get(det_counter,N),
N2 is N+1,
atomic_concat(['y',N2],ID),
bb_put(det_counter,N2).
next_counter(ID) :-
bb_get(counter,N),
N2 is N+1,
atomic_concat(['L',N2],ID),
bb_put(counter,N2).
%========================================================================
%= calculate_dep_atom(+Atom)
%========================================================================
calculate_dep_atom_outer(Atom,InterpretationID) :-
bb_put(dep_proven,false),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
( % go over all proofs for atom
calculate_dep_atom(Atom,InterpretationID),
bb_put(dep_proven,true),
fail; % go to next proof
true
),
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bb_delete(dep_proven,Result),
Result==true.
calculate_dep_atom(true,_) :-
!.
calculate_dep_atom(false,_) :-
!.
calculate_dep_atom( (X is Y),_ ) :-
!,
call(X is Y).
calculate_dep_atom( (X > Y),_ ) :-
!,
call(X > Y).
calculate_dep_atom( (X < Y),_ ) :-
!,
call(X < Y).
calculate_dep_atom( (X == Y),_ ) :-
!,
call(X == Y).
calculate_dep_atom( (X = Y),_ ) :-
!,
call(X = Y).
calculate_dep_atom( (X > Y),_ ) :-
!,
call(X > Y).
calculate_dep_atom( (X < Y),_ ) :-
!,
call(X < Y).
calculate_dep_atom( (X =< Y),_ ) :-
!,
call(X =< Y).
calculate_dep_atom( (X >= Y),_ ) :-
!,
call(X >= Y).
calculate_dep_atom(call(X),_) :-
!,
call(X).
calculate_dep_atom( Atom,_ ) :-
recorded(reachable,Atom,_),
% FIXME, could this cut prune away too much? what if Atom is non-ground?
!.
calculate_dep_atom( Atom,InterpretationID ) :-
ground(Atom),
!,
recorda(reachable,Atom,_),
if(user:myclause(InterpretationID,Atom,Body),(calculate_dep_atom_intern(Body,InterpretationID)),probabilistic_fact(_,Atom,_)).
calculate_dep_atom( Atom,InterpretationID ) :-
if(user:myclause(InterpretationID,Atom,Body),(calculate_dep_atom_intern(Body,InterpretationID)),probabilistic_fact(_,Atom,_)),
(
ground(Atom)
->
(
recorded(reachable,Atom,_)
->
true;
recorda(reachable,Atom,_)
);
(
format(user_error,'Error at running the meta interpreter.~n',[]),
format(user_error,'The clauses defined by myclause/2 have to be written in a way such that~n',[]),
format(user_error,'each atom in the body of a clause gets fully grounded when it is called.~n',[]),
format(user_error,' This is not the case for the atom ~w~3n',[Atom]),
throw(meta_interpreter_error(Atom))
)
).
calculate_dep_atom_intern((X,Y),InterpretationID) :-
!,
calculate_dep_atom_intern(X,InterpretationID),
calculate_dep_atom_intern(Y,InterpretationID).
calculate_dep_atom_intern((X;Y),InterpretationID) :-
!,
(
calculate_dep_atom_intern(X,InterpretationID);
calculate_dep_atom_intern(Y,InterpretationID)
).
calculate_dep_atom_intern(\+X,InterpretationID) :-
!,
calculate_dep_atom_intern(X,InterpretationID).
calculate_dep_atom_intern(X,InterpretationID) :-
calculate_dep_atom(X,InterpretationID).
%========================================================================
%=
%========================================================================
ground_term_with_known_atoms( (X,Y), (X2,Y2)) :-
!,
ground_term_with_known_atoms(X,X2),
ground_term_with_known_atoms(Y,Y2).
ground_term_with_known_atoms( (X;Y), (X2;Y2)) :-
!,
ground_term_with_known_atoms(X,X2),
ground_term_with_known_atoms(Y,Y2).
ground_term_with_known_atoms( \+ X, \+ X2) :-
!,
ground_term_with_known_atoms(X,X2).
ground_term_with_known_atoms( true, true) :-
!.
ground_term_with_known_atoms( false, false) :-
!.
ground_term_with_known_atoms( (X is Y), true) :-
!,
call(X is Y).
ground_term_with_known_atoms( (X < Y), true) :-
!,
call(X < Y).
ground_term_with_known_atoms( (X > Y), true) :-
!,
call(X > Y).
ground_term_with_known_atoms( (X >= Y), true) :-
!,
call(X >= Y).
ground_term_with_known_atoms( (X =< Y), true) :-
!,
call(X =< Y).
ground_term_with_known_atoms( (X = Y), true) :-
!,
call(X = Y).
ground_term_with_known_atoms( (X == Y), true) :-
!,
call(X == Y).
ground_term_with_known_atoms( call(X), '$atom'(X)) :-
!,
call(X).
ground_term_with_known_atoms( X, '$atom'(X)) :-
!,
recorded(reachable,X,_).