This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/bdd/cudd.c

927 lines
27 KiB
C

/**
@defgroup CUDD CUDD Interface
@ingroup BDDs
@brief Interface to the CUDD Library
CUDD represents a BDD as a tree of DdNode structures. Each tree has a manager
DdManager and a list of booleaan variables, also represented as DdNode
structures. Mapping from an Prolog tree to a ground BDD involves the following
steps:
1. Collect all logical variables in the Prolog term, and map each
variable $V$ to a boolean variable $i$ in the BDD. This is easily done
by having the variable as the argument argument $i$ of a Prolog
term. The implementation uses vars_of_term/2 and =../2.
2. Allocate an array of boolean variables.
3. Perform a posfix visit of the Prolog term, so that a new DdNode is
always obtained by composing its children nodes.
YAP supports a few tricks:
+ A term of the form `cudd(_Address_)` refers to a compiled BDD. Thus,
we can pass a BDD to another BDD, ie:
~~~~~.pl
bdd(BDD) :-
Vs = vs(X,Y,Z),
bdd_new(X+(Y*Z),Vs,BDD0),
bdd_new(xor(BDD0,-(nand(X,BDD0) + nor(Y,BDD0)) ), Vs, BDD).
~~~~~
This is useful to construct complex BDDs quickly, but does not mean
CUDD will generate better/faster code.
2.
*/
#include <stdio.h>
#include "YapInterface.h"
#include "config.h"
#include "cudd_config.h"
#if HAVE_STRING_H
#include <string.h>
#endif
#if HAVE_CUDDINT_H
#include "cuddInt.h"
#elif HAVE_CUDD_CUDDINT_H
#include "cudd/cuddInt.h"
#endif
static YAP_Functor FunctorDollarVar, FunctorCudd, FunctorAnd, FunctorAnd4,
FunctorOr, FunctorOr4, FunctorLAnd, FunctorLOr, FunctorNot, FunctorMinus1,
FunctorXor, FunctorNand, FunctorNor, FunctorTimes, FunctorImplies,
FunctorPlus, FunctorMinus, FunctorTimes4, FunctorPlus4, FunctorOutAdd,
FunctorOutPos, FunctorOutNeg;
static YAP_Term TermMinusOne, TermZero, TermPlusOne, TermTrue, TermFalse;
void init_cudd(void);
static DdNode *cudd_and(DdManager *manager, DdNode *bdd1, DdNode *bdd2) {
DdNode *tmp;
tmp = Cudd_bddAnd(manager, bdd1, bdd2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *cudd_nand(DdManager *manager, DdNode *bdd1, DdNode *bdd2) {
DdNode *tmp;
tmp = Cudd_bddNand(manager, bdd1, bdd2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *cudd_or(DdManager *manager, DdNode *bdd1, DdNode *bdd2) {
DdNode *tmp;
tmp = Cudd_bddOr(manager, bdd1, bdd2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *cudd_nor(DdManager *manager, DdNode *bdd1, DdNode *bdd2) {
DdNode *tmp;
tmp = Cudd_bddNor(manager, bdd1, bdd2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *cudd_xor(DdManager *manager, DdNode *bdd1, DdNode *bdd2) {
DdNode *tmp;
tmp = Cudd_bddXor(manager, bdd1, bdd2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *term_to_cudd(DdManager *manager, YAP_Term t) {
if (YAP_IsApplTerm(t)) {
YAP_Functor f = YAP_FunctorOfTerm(t);
if (f == FunctorDollarVar) {
int i = YAP_IntOfTerm(YAP_ArgOfTerm(1, t));
DdNode *var = Cudd_bddIthVar(manager, i);
if (!var)
return NULL;
Cudd_Ref(var);
return var;
} else if (f == FunctorAnd || f == FunctorLAnd || f == FunctorTimes) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_and(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorAnd4) {
YAP_Term t1 = YAP_ArgOfTerm(2, t);
if (YAP_IsVarTerm(t1)) {
YAP_Int refs = YAP_IntOfTerm(YAP_ArgOfTerm(1, t)), i;
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(3, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(4, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_and(manager, x1, x2);
for (i = 0; i < refs; i++) {
Cudd_Ref(tmp);
}
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
YAP_Unify(t1, YAP_MkIntTerm((YAP_Int)tmp));
return tmp;
} else {
return (DdNode *)YAP_IntOfTerm(t1);
}
} else if (f == FunctorCudd) {
YAP_Term t1 = YAP_ArgOfTerm(1, t);
DdNode *tmp = (DdNode *)YAP_IntOfTerm(t1);
Cudd_Ref(tmp);
return tmp;
} else if (f == FunctorOr || f == FunctorLOr || f == FunctorPlus) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_or(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorXor) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_xor(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorOr4) {
YAP_Term t1 = YAP_ArgOfTerm(2, t);
if (YAP_IsVarTerm(t1)) {
YAP_Int refs = YAP_IntOfTerm(YAP_ArgOfTerm(1, t)), i;
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(3, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(4, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_or(manager, x1, x2);
for (i = 0; i < refs; i++) {
Cudd_Ref(tmp);
}
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
YAP_Unify(t1, YAP_MkIntTerm((YAP_Int)tmp));
return tmp;
} else {
return (DdNode *)YAP_IntOfTerm(t1);
}
} else if (f == FunctorNor) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp;
if (!x1 || !x2)
return NULL;
tmp = cudd_nor(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorNand) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_cudd(manager, YAP_ArgOfTerm(2, t));
if (!x1 || !x2)
return NULL;
DdNode *tmp = cudd_nand(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorNot || FunctorMinus1) {
DdNode *x1 = term_to_cudd(manager, YAP_ArgOfTerm(1, t));
if (!x1)
return NULL;
return Cudd_Not(x1);
} else {
YAP_Error(DOMAIN_ERROR_OUT_OF_RANGE, t, "unsupported operator in CUDD");
return NULL;
}
} else if (YAP_IsIntTerm(t)) {
YAP_Int i = YAP_IntOfTerm(t);
if (i == 0)
return Cudd_ReadLogicZero(manager);
else if (i == 1)
return Cudd_ReadOne(manager);
else {
YAP_Error(DOMAIN_ERROR_OUT_OF_RANGE, t, "unsupported number in CUDD");
return NULL;
}
} else if (YAP_IsFloatTerm(t)) {
YAP_Int i = YAP_FloatOfTerm(t);
if (i == 0.0)
return Cudd_ReadLogicZero(manager);
else if (i == 1.0)
return Cudd_ReadOne(manager);
else {
YAP_Error(DOMAIN_ERROR_OUT_OF_RANGE, t, "unsupported number in CUDD");
return NULL;
}
} else if (YAP_IsAtomTerm(t)) {
if (t == TermFalse)
return Cudd_ReadLogicZero(manager);
else if (t == TermTrue)
return Cudd_ReadOne(manager);
else {
YAP_Error(DOMAIN_ERROR_OUT_OF_RANGE, t, "unsupported atom %s in CUDD",
YAP_AtomName(YAP_AtomOfTerm(t)));
return NULL;
}
} else if (YAP_IsVarTerm(t)) {
YAP_Error(INSTANTIATION_ERROR, t, "unsupported unbound term in CUDD");
return NULL;
}
YAP_Error(DOMAIN_ERROR_OUT_OF_RANGE, t, "unsupported number in CUDD");
return NULL;
}
static YAP_Bool p_term_to_cudd(void) {
DdManager *manager;
DdNode *t;
if (YAP_IsVarTerm(YAP_ARG2)) {
manager = Cudd_Init(0, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);
// Cudd_AutodynEnable(manager, CUDD_REORDER_SIFT);
if (!YAP_Unify(YAP_ARG2, YAP_MkIntTerm((YAP_Int)manager)))
return FALSE;
} else {
manager = (DdManager *)YAP_IntOfTerm(YAP_ARG2);
}
t = term_to_cudd(manager, YAP_ARG1);
if (!t)
return FALSE;
return YAP_Unify(YAP_ARG3, YAP_MkIntTerm((YAP_Int)t));
}
static DdNode *add_times(DdManager *manager, DdNode *x1, DdNode *x2) {
DdNode *tmp;
tmp = Cudd_addApply(manager, Cudd_addTimes, x2, x1);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *add_implies(DdManager *manager, DdNode *x1, DdNode *x2) {
DdNode *tmp;
tmp = Cudd_addConst(manager, Cudd_addLeq(manager, x1, x2));
Cudd_Ref(tmp);
return tmp;
}
static DdNode *add_plus(DdManager *manager, DdNode *x1, DdNode *x2) {
DdNode *tmp;
tmp = Cudd_addApply(manager, Cudd_addPlus, x2, x1);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *add_minus(DdManager *manager, DdNode *x1, DdNode *x2) {
DdNode *tmp;
tmp = Cudd_addApply(manager, Cudd_addMinus, x1, x2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *add_lor(DdManager *manager, DdNode *x1, DdNode *x2) {
DdNode *tmp;
tmp = Cudd_addApply(manager, Cudd_addOr, x1, x2);
Cudd_Ref(tmp);
return tmp;
}
static DdNode *term_to_add(DdManager *manager, YAP_Term t) {
if (YAP_IsApplTerm(t)) {
YAP_Functor f = YAP_FunctorOfTerm(t);
if (f == FunctorDollarVar) {
int i = YAP_IntOfTerm(YAP_ArgOfTerm(1, t));
DdNode *var = Cudd_addIthVar(manager, i);
return var;
} else if (f == FunctorTimes) {
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp = add_times(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorTimes4) {
YAP_Term t1 = YAP_ArgOfTerm(2, t);
if (YAP_IsVarTerm(t1)) {
YAP_Int refs = YAP_IntOfTerm(YAP_ArgOfTerm(1, t)), i;
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(3, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(4, t));
DdNode *tmp = add_times(manager, x1, x2);
for (i = 0; i < refs; i++) {
Cudd_Ref(tmp);
}
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
YAP_Unify(t1, YAP_MkIntTerm((YAP_Int)tmp));
return tmp;
} else {
return (DdNode *)YAP_IntOfTerm(t1);
}
} else if (f == FunctorPlus) {
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp = add_plus(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorLOr || f == FunctorOr) {
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp = add_lor(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorMinus) {
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp = add_minus(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorImplies) {
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(1, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(2, t));
DdNode *tmp = add_implies(manager, x1, x2);
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
return tmp;
} else if (f == FunctorTimes4) {
YAP_Term t1 = YAP_ArgOfTerm(2, t);
if (YAP_IsVarTerm(t1)) {
YAP_Int refs = YAP_IntOfTerm(YAP_ArgOfTerm(1, t)), i;
DdNode *x1 = term_to_add(manager, YAP_ArgOfTerm(3, t));
DdNode *x2 = term_to_add(manager, YAP_ArgOfTerm(4, t));
DdNode *tmp = add_plus(manager, x1, x2);
for (i = 0; i < refs; i++) {
Cudd_Ref(tmp);
}
Cudd_RecursiveDeref(manager, x1);
Cudd_RecursiveDeref(manager, x2);
YAP_Unify(t1, YAP_MkIntTerm((YAP_Int)tmp));
return tmp;
} else {
return (DdNode *)YAP_IntOfTerm(t1);
}
}
} else if (YAP_IsIntTerm(t)) {
YAP_Int i = YAP_IntOfTerm(t);
DdNode *tmp = Cudd_addConst(manager, i);
Cudd_Ref(tmp);
return tmp;
} else if (YAP_IsFloatTerm(t)) {
double d = YAP_FloatOfTerm(t);
DdNode *tmp = Cudd_addConst(manager, d);
Cudd_Ref(tmp);
return tmp;
}
return NULL;
}
static YAP_Bool p_term_to_add(void) {
DdManager *manager = Cudd_Init(0, 0, CUDD_UNIQUE_SLOTS, CUDD_CACHE_SLOTS, 0);
int sz = YAP_IntOfTerm(YAP_ARG2), i;
DdNode *t;
for (i = sz - 1; i >= 0; i--) {
Cudd_addIthVar(manager, i);
}
t = term_to_add(manager, YAP_ARG1);
return YAP_Unify(YAP_ARG3, YAP_MkIntTerm((YAP_Int)manager)) &&
YAP_Unify(YAP_ARG4, YAP_MkIntTerm((YAP_Int)t));
}
static YAP_Bool complement(int i) { return i == 0 ? 1 : 0; }
static YAP_Bool var(DdManager *manager, DdNode *n, YAP_Int *vals) {
return (int)vals[Cudd_ReadPerm(manager, Cudd_NodeReadIndex(n))];
}
static YAP_Bool cudd_eval(DdManager *manager, DdNode *n, YAP_Int *vals) {
if (Cudd_IsConstant(n)) {
// fprintf(stderr,"v=%f\n",Cudd_V(n));
return Cudd_V(n);
} else {
// fprintf(stderr,"%x %d->%d %d\n",n->index,var(manager, n,
// vals),(Cudd_IsComplement(Cudd_E(n))!=0));
if (var(manager, n, vals) == 1)
return cudd_eval(manager, Cudd_T(n), vals);
else {
DdNode *r = Cudd_E(n);
if (Cudd_IsComplement(r)) {
return complement(cudd_eval(manager, Cudd_Regular(r), vals));
} else {
return cudd_eval(manager, r, vals);
}
}
}
}
static YAP_Bool cudd_eval_top(DdManager *manager, DdNode *n, YAP_Int *vals) {
if (Cudd_IsComplement(n)) {
return complement(cudd_eval(manager, Cudd_Regular(n), vals));
} else {
return cudd_eval(manager, n, vals);
}
}
static YAP_Bool p_eval_cudd(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n = (DdNode *)YAP_IntOfTerm(YAP_ARG2);
size_t sz = YAP_ArityOfFunctor(YAP_FunctorOfTerm(YAP_ARG3));
int val;
YAP_Int *ar;
YAP_Term t = YAP_ARG3;
YAP_Int i;
if (sz <= 0)
return FALSE;
ar = (YAP_Int *)malloc(sz * sizeof(YAP_Int));
if (!ar)
return FALSE;
for (i = 0; i < sz; i++) {
YAP_Term tj = YAP_ArgOfTerm(i + 1, t);
if (!YAP_IsIntTerm(tj))
return FALSE;
ar[i] = YAP_IntOfTerm(tj);
}
val = cudd_eval_top(manager, n, ar);
free(ar);
return YAP_Unify(YAP_ARG4, YAP_MkIntTerm(val));
}
static double add_eval(DdManager *manager, DdNode *n, YAP_Int *vals) {
if (Cudd_IsConstant(n)) {
return Cudd_V(n);
} else {
if (var(manager, n, vals) == 1)
return add_eval(manager, Cudd_T(n), vals);
else {
return add_eval(manager, Cudd_E(n), vals);
}
}
}
static YAP_Bool p_eval_add(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n = (DdNode *)YAP_IntOfTerm(YAP_ARG2);
size_t sz = YAP_ArityOfFunctor(YAP_FunctorOfTerm(YAP_ARG3));
double val;
YAP_Int *ar;
YAP_Term t = YAP_ARG3;
YAP_Int i;
if (sz <= 0)
return FALSE;
ar = (YAP_Int *)malloc(sz * sizeof(YAP_Int));
if (!ar)
return FALSE;
for (i = 0; i < sz; i++) {
YAP_Term tj = YAP_ArgOfTerm(i + 1, t);
if (!YAP_IsIntTerm(tj))
return FALSE;
ar[i] = YAP_IntOfTerm(tj);
}
val = add_eval(manager, n, ar);
free(ar);
return YAP_Unify(YAP_ARG4, YAP_MkFloatTerm(val));
}
typedef struct {
DdNode *key;
YAP_Term val;
} hash_table_entry;
static void insert(hash_table_entry *p, DdNode *key, YAP_Term val, size_t sz) {
size_t el = (((YAP_Term)key) / sizeof(DdNode *)) % sz;
while (p[el].key) {
el = (el + 1) % sz;
}
p[el].key = key;
p[el].val = val;
}
static YAP_Term lookup(hash_table_entry *p, DdNode *key, size_t sz) {
size_t el = (((YAP_Term)key) / sizeof(DdNode *)) % sz;
while (p[el].key != key) {
el = (el + 1) % sz;
}
return p[el].val;
}
static YAP_Term build_prolog_cudd(DdManager *manager, DdNode *n, YAP_Term *ar,
hash_table_entry *hash, YAP_Term t0,
size_t sz) {
if (Cudd_IsConstant(n)) {
YAP_Term t = YAP_MkIntTerm(Cudd_V(n));
insert(hash, n, t, sz);
return t0;
} else {
// fprintf(stderr,"%x %d->%d %d\n",n->index,
// Cudd_ReadPerm(manager,Cudd_NodeReadIndex(n)),var(manager, n,
// vals),Cudd_IsComplement(Cudd_E(n)));
YAP_Term t[4], nt;
YAP_Functor f;
// fprintf(stderr,"refs=%d\n", n->ref);
t[0] = YAP_MkVarTerm();
t[1] = ar[Cudd_ReadPerm(manager, Cudd_NodeReadIndex(n))];
t[2] = lookup(hash, Cudd_T(n), sz);
t[3] = lookup(hash, Cudd_Regular(Cudd_E(n)), sz);
if (Cudd_IsComplement(Cudd_E(n))) {
f = FunctorOutNeg;
} else {
f = FunctorOutPos;
}
nt = YAP_MkApplTerm(f, 4, t);
insert(hash, n, t[0], sz);
return YAP_MkPairTerm(nt, t0);
}
}
static inline int max(int a, int b) { return a < b ? b : a; }
static YAP_Int get_vars(YAP_Term t3) {
if (YAP_IsAtomTerm(t3))
return 0;
return YAP_ArityOfFunctor(YAP_FunctorOfTerm(t3));
}
static YAP_Bool p_cudd_reorder(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
return Cudd_ReduceHeap(manager, CUDD_REORDER_EXACT, 1);
}
static YAP_Bool p_cudd_to_term(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2), *node;
YAP_Term t, t3 = YAP_ARG3, td;
YAP_Int i, vars = get_vars(t3);
int nodes = max(0, Cudd_ReadNodeCount(manager)) + vars + 1;
size_t sz = nodes * 4;
DdGen *dgen = Cudd_FirstNode(manager, n0, &node);
hash_table_entry *hash =
(hash_table_entry *)calloc(sz, sizeof(hash_table_entry));
YAP_Term *ar;
if (!dgen || !hash)
return FALSE;
ar = (YAP_Term *)malloc(vars * sizeof(YAP_Term));
if (!ar)
return FALSE;
restart:
t = YAP_TermNil();
for (i = 0; i < vars; i++) {
ar[i] = YAP_ArgOfTerm(i + 1, t3);
}
while (node) {
/* ensure we have enough memory */
if (YAP_RequiresExtraStack(0)) {
Cudd_GenFree(dgen);
t3 = YAP_ARG3;
dgen = Cudd_FirstNode(manager, n0, &node);
bzero(hash, sizeof(hash_table_entry) * sz);
goto restart;
}
t = build_prolog_cudd(manager, node, ar, hash, t, sz);
if (!Cudd_NextNode(dgen, &node))
break;
}
if (node != n0 && Cudd_IsComplement(n0)) {
td = YAP_MkIntTerm(-1);
} else {
td = YAP_MkIntTerm(1);
}
Cudd_GenFree(dgen);
free(hash);
free(ar);
return YAP_Unify(YAP_ARG4, td) && YAP_Unify(YAP_ARG5, t);
}
static YAP_Term build_prolog_add(DdManager *manager, DdNode *n, YAP_Term *ar,
hash_table_entry *hash, YAP_Term t0,
size_t sz) {
if (Cudd_IsConstant(n)) {
YAP_Term t = YAP_MkFloatTerm(Cudd_V(n));
insert(hash, n, t, sz);
return t0;
} else {
YAP_Term t[4], nt;
YAP_Functor f;
// fprintf(stderr,"refs=%d\n", n->ref);
t[0] = YAP_MkVarTerm();
t[1] = ar[Cudd_ReadPerm(manager, Cudd_NodeReadIndex(n))];
t[2] = lookup(hash, Cudd_T(n), sz);
t[3] = lookup(hash, Cudd_E(n), sz);
f = FunctorOutAdd;
nt = YAP_MkApplTerm(f, 4, t);
insert(hash, n, t[0], sz);
return YAP_MkPairTerm(nt, t0);
}
}
static YAP_Bool p_add_to_term(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2), *node;
YAP_Term t, t3 = YAP_ARG3;
YAP_Int i, vars = get_vars(t3);
int nodes = max(0, Cudd_ReadNodeCount(manager)) + vars + 1;
size_t sz = nodes * 4;
DdGen *dgen = Cudd_FirstNode(manager, n0, &node);
hash_table_entry *hash =
(hash_table_entry *)calloc(sz, sizeof(hash_table_entry));
YAP_Term *ar;
if (!dgen)
return FALSE;
ar = (YAP_Term *)malloc(vars * sizeof(YAP_Term));
if (!ar)
return FALSE;
restart:
t = YAP_TermNil();
for (i = 0; i < vars; i++) {
ar[i] = YAP_ArgOfTerm(i + 1, t3);
}
while (node) {
/* ensure we have enough memory */
if (YAP_RequiresExtraStack(0)) {
Cudd_GenFree(dgen);
t3 = YAP_ARG3;
dgen = Cudd_FirstNode(manager, n0, &node);
bzero(hash, sizeof(hash_table_entry) * sz);
goto restart;
}
t = build_prolog_add(manager, node, ar, hash, t, sz);
if (!Cudd_NextNode(dgen, &node))
break;
}
Cudd_GenFree(dgen);
free(hash);
free(ar);
return YAP_Unify(YAP_ARG4, t);
}
static YAP_Bool p_cudd_size(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2), *node;
YAP_Int i = 0;
DdGen *dgen = Cudd_FirstNode(manager, n0, &node);
if (!dgen)
return FALSE;
while (node) {
i++;
if (!Cudd_NextNode(dgen, &node))
break;
}
Cudd_GenFree(dgen);
return YAP_Unify(YAP_ARG3, YAP_MkIntTerm(i));
}
typedef struct {
DdNode *key;
double val;
} hash_table_entry_dbl;
static void insert2(hash_table_entry_dbl *p, DdNode *key, double val,
size_t sz) {
size_t el = (((YAP_Term)key) / sizeof(DdNode *)) % sz;
while (p[el].key) {
el = (el + 1) % sz;
}
p[el].key = key;
p[el].val = val;
}
static double lookup2(hash_table_entry_dbl *p, DdNode *key, size_t sz) {
size_t el = (((YAP_Term)key) / sizeof(DdNode *)) % sz;
while (p[el].key != key) {
el = (el + 1) % sz;
}
return p[el].val;
}
static double build_sp_cudd(DdManager *manager, DdNode *n, double *ar,
hash_table_entry_dbl *hash, size_t sz) {
if (Cudd_IsConstant(n)) {
insert2(hash, n, Cudd_V(n), sz);
return Cudd_V(n);
} else {
// fprintf(stderr,"%x %d->%d %d\n",n->index,
// Cudd_ReadPerm(manager,Cudd_NodeReadIndex(n)),var(manager, n,
// vals),Cudd_IsComplement(Cudd_E(n)));
double pl, pr, p, prob;
prob = ar[Cudd_ReadPerm(manager, Cudd_NodeReadIndex(n))];
pl = lookup2(hash, Cudd_T(n), sz);
pr = lookup2(hash, Cudd_Regular(Cudd_E(n)), sz);
if (Cudd_IsComplement(Cudd_E(n))) {
p = prob * pl + (1 - prob) * (1 - pr);
} else {
p = prob * pl + (1 - prob) * pr;
}
insert2(hash, n, p, sz);
return p;
}
}
static YAP_Bool p_cudd_to_p(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2), *node;
YAP_Term t3 = YAP_ARG3;
double p = 0.0;
YAP_Int vars = YAP_ListLength(t3);
int nodes = max(Cudd_ReadNodeCount(manager), 0) + vars + 1;
size_t sz = nodes * 4;
DdGen *dgen = Cudd_FirstNode(manager, n0, &node);
hash_table_entry_dbl *hash =
(hash_table_entry_dbl *)calloc(sz, sizeof(hash_table_entry_dbl));
double *ar;
if (!dgen)
return FALSE;
ar = (double *)malloc(vars * sizeof(double));
if (!ar)
return FALSE;
if (YAP_ListToFloats(t3, ar, vars) < 0)
return FALSE;
while (node) {
p = build_sp_cudd(manager, node, ar, hash, sz);
if (!Cudd_NextNode(dgen, &node))
break;
}
if (node != n0 && Cudd_IsComplement(n0)) {
p = 1 - p;
}
Cudd_GenFree(dgen);
free(hash);
free(ar);
return YAP_Unify(YAP_ARG4, YAP_MkFloatTerm(p));
}
static YAP_Bool p_cudd_print(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2);
const char *s = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG3));
FILE *f;
if (!strcmp(s, "user_output"))
f = stdout;
else if (!strcmp(s, "user_error"))
f = stderr;
else if (!strcmp(s, "user"))
f = stdout;
else
f = fopen(s, "w");
Cudd_DumpDot(manager, 1, &n0, NULL, NULL, f);
if (f != stdout && f != stderr)
fclose(f);
return TRUE;
}
static YAP_Bool p_cudd_print_with_names(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2);
const char *s = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG3));
char ** namesp;
YAP_Term names = YAP_ARG4;
FILE *f;
YAP_Int len;
YAP_Int i = 0;
if (!strcmp(s, "user_output"))
f = stdout;
else if (!strcmp(s, "user_error"))
f = stderr;
else if (!strcmp(s, "user"))
f = stdout;
else
f = fopen(s, "w");
if ((len = YAP_ListLength(names)) < 0)
return FALSE;
if ((namesp = malloc(sizeof(const char *) * len)) == NULL)
return FALSE;
while (YAP_IsPairTerm(names)) {
YAP_Term hd = YAP_HeadOfTerm(names);
char *f;
if (YAP_IsAtomTerm(hd)) {
const char *s = YAP_AtomName(YAP_AtomOfTerm(hd));
char *ns = malloc(strlen(s) + 1);
strncpy(ns, s, strlen(s) + 1);
f = ns;
} else {
size_t sz = 256;
char *s = malloc(sz + 256);
while (!YAP_WriteBuffer(hd, s, sz - 1, 0)) {
sz += 1024;
s = realloc(s, sz);
}
f = s;
}
names = YAP_TailOfTerm(names);
namesp[i++] = f;
}
Cudd_DumpDot(manager, 1, &n0, (const char * const*)namesp, NULL, f);
if (f != stdout && f != stderr)
fclose(f);
while (i > 0) {
i--;
free((void *)namesp[i]);
}
free((void *)namesp);
return TRUE;
}
static YAP_Bool p_cudd_die(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
//Cudd_FreeTree(manager);
//cuddFreeTable(manager);
Cudd_CheckZeroRef(manager);
Cudd_Quit(manager);
return TRUE;
}
static YAP_Bool p_cudd_release_node(void) {
DdManager *manager = (DdManager *)YAP_IntOfTerm(YAP_ARG1);
DdNode *n0 = (DdNode *)YAP_IntOfTerm(YAP_ARG2);
Cudd_RecursiveDeref(manager, n0);
return TRUE;
}
void init_cudd(void) {
FunctorDollarVar = YAP_MkFunctor(YAP_LookupAtom("$VAR"), 1);
FunctorAnd = YAP_MkFunctor(YAP_LookupAtom("/\\"), 2);
FunctorOr = YAP_MkFunctor(YAP_LookupAtom("\\/"), 2);
FunctorLAnd = YAP_MkFunctor(YAP_LookupAtom("and"), 2);
FunctorLOr = YAP_MkFunctor(YAP_LookupAtom("or"), 2);
FunctorAnd4 = YAP_MkFunctor(YAP_LookupAtom("and"), 4);
FunctorOr4 = YAP_MkFunctor(YAP_LookupAtom("or"), 4);
FunctorXor = YAP_MkFunctor(YAP_LookupAtom("xor"), 2);
FunctorNor = YAP_MkFunctor(YAP_LookupAtom("nor"), 2);
FunctorNand = YAP_MkFunctor(YAP_LookupAtom("nand"), 2);
FunctorTimes = YAP_MkFunctor(YAP_LookupAtom("*"), 2);
FunctorPlus = YAP_MkFunctor(YAP_LookupAtom("+"), 2);
FunctorMinus = YAP_MkFunctor(YAP_LookupAtom("-"), 2);
FunctorTimes4 = YAP_MkFunctor(YAP_LookupAtom("*"), 4);
FunctorPlus4 = YAP_MkFunctor(YAP_LookupAtom("+"), 4);
FunctorImplies = YAP_MkFunctor(YAP_LookupAtom("->"), 2);
FunctorNot = YAP_MkFunctor(YAP_LookupAtom("not"), 1);
FunctorMinus1 = YAP_MkFunctor(YAP_LookupAtom("-"), 1);
FunctorOutPos = YAP_MkFunctor(YAP_LookupAtom("pp"), 4);
FunctorOutNeg = YAP_MkFunctor(YAP_LookupAtom("pn"), 4);
FunctorOutAdd = YAP_MkFunctor(YAP_LookupAtom("add"), 4);
FunctorCudd = YAP_MkFunctor(YAP_LookupAtom("cudd"), 1);
TermMinusOne = YAP_MkIntTerm(-1);
TermPlusOne = YAP_MkIntTerm(+1);
TermZero = YAP_MkIntTerm(0);
TermFalse = YAP_MkAtomTerm(YAP_LookupAtom("false"));
TermTrue = YAP_MkAtomTerm(YAP_LookupAtom("true"));
YAP_UserCPredicate("term_to_cudd", p_term_to_cudd, 3);
YAP_UserCPredicate("term_to_add", p_term_to_add, 4);
YAP_UserCPredicate("cudd_eval", p_eval_cudd, 4);
YAP_UserCPredicate("add_eval", p_eval_add, 4);
YAP_UserCPredicate("cudd_to_term", p_cudd_to_term, 5);
YAP_UserCPredicate("add_to_term", p_add_to_term, 4);
YAP_UserCPredicate("cudd_to_probability_sum_product", p_cudd_to_p, 4);
YAP_UserCPredicate("cudd_size", p_cudd_size, 3);
YAP_UserCPredicate("cudd_die", p_cudd_die, 1);
YAP_UserCPredicate("cudd_reorder", p_cudd_reorder, 2);
YAP_UserCPredicate("cudd_release_node", p_cudd_release_node, 2);
YAP_UserCPredicate("cudd_print", p_cudd_print, 3);
YAP_UserCPredicate("cudd_print", p_cudd_print_with_names, 4);
}
/**
*@}
*/