This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/CLPBN/horus/LiftedCircuit.cpp
2012-12-09 22:13:58 +00:00

1144 lines
31 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <fstream>
#include "LiftedCircuit.h"
double
OrNode::weight (void) const
{
double lw = leftBranch_->weight();
double rw = rightBranch_->weight();
return Globals::logDomain ? Util::logSum (lw, rw) : lw + rw;
}
double
AndNode::weight (void) const
{
double lw = leftBranch_->weight();
double rw = rightBranch_->weight();
return Globals::logDomain ? lw + rw : lw * rw;
}
int SetOrNode::nrPos_ = -1;
int SetOrNode::nrNeg_ = -1;
double
SetOrNode::weight (void) const
{
double weightSum = LogAware::addIdenty();
for (unsigned i = 0; i < nrGroundings_ + 1; i++) {
nrPos_ = nrGroundings_ - i;
nrNeg_ = i;
if (Globals::logDomain) {
double nrCombs = Util::nrCombinations (nrGroundings_, i);
double w = follow_->weight();
weightSum = Util::logSum (weightSum, std::log (nrCombs) + w);
} else {
double w = follow_->weight();
weightSum += Util::nrCombinations (nrGroundings_, i) * w;
}
}
nrPos_ = -1;
nrNeg_ = -1;
return weightSum;
}
double
SetAndNode::weight (void) const
{
double w = follow_->weight();
return Globals::logDomain
? w * nrGroundings_
: std::pow (w, nrGroundings_);
}
double
IncExcNode::weight (void) const
{
double w = 0.0;
if (Globals::logDomain) {
w = Util::logSum (plus1Branch_->weight(), plus2Branch_->weight());
w = std::log (std::exp (w) - std::exp (minusBranch_->weight()));
} else {
w = plus1Branch_->weight() + plus2Branch_->weight();
w -= minusBranch_->weight();
}
return w;
}
double
LeafNode::weight (void) const
{
assert (clause_->isUnit());
if (clause_->posCountedLogVars().empty() == false
|| clause_->negCountedLogVars().empty() == false) {
if (SetOrNode::isSet() == false) {
// return a NaN if we have a SetOrNode
// ancester that is not set. This can only
// happen when calculating the weights
// for the edge labels in graphviz
return 0.0 / 0.0;
}
}
double weight = clause_->literals()[0].isPositive()
? lwcnf_.posWeight (clause_->literals().front().lid())
: lwcnf_.negWeight (clause_->literals().front().lid());
LogVarSet lvs = clause_->constr().logVarSet();
lvs -= clause_->ipgLogVars();
lvs -= clause_->posCountedLogVars();
lvs -= clause_->negCountedLogVars();
unsigned nrGroundings = 1;
if (lvs.empty() == false) {
nrGroundings = clause_->constr().projectedCopy (lvs).size();
}
if (clause_->posCountedLogVars().empty() == false) {
nrGroundings *= std::pow (SetOrNode::nrPositives(),
clause_->nrPosCountedLogVars());
}
if (clause_->negCountedLogVars().empty() == false) {
nrGroundings *= std::pow (SetOrNode::nrNegatives(),
clause_->nrNegCountedLogVars());
}
return Globals::logDomain
? weight * nrGroundings
: std::pow (weight, nrGroundings);
}
double
SmoothNode::weight (void) const
{
Clauses cs = clauses();
double totalWeight = LogAware::multIdenty();
for (size_t i = 0; i < cs.size(); i++) {
double posWeight = lwcnf_.posWeight (cs[i]->literals()[0].lid());
double negWeight = lwcnf_.negWeight (cs[i]->literals()[0].lid());
LogVarSet lvs = cs[i]->constr().logVarSet();
lvs -= cs[i]->ipgLogVars();
lvs -= cs[i]->posCountedLogVars();
lvs -= cs[i]->negCountedLogVars();
unsigned nrGroundings = 1;
if (lvs.empty() == false) {
nrGroundings = cs[i]->constr().projectedCopy (lvs).size();
}
if (cs[i]->posCountedLogVars().empty() == false) {
nrGroundings *= std::pow (SetOrNode::nrPositives(),
cs[i]->nrPosCountedLogVars());
}
if (cs[i]->negCountedLogVars().empty() == false) {
nrGroundings *= std::pow (SetOrNode::nrNegatives(),
cs[i]->nrNegCountedLogVars());
}
if (Globals::logDomain) {
totalWeight += Util::logSum (posWeight, negWeight) * nrGroundings;
} else {
totalWeight *= std::pow (posWeight + negWeight, nrGroundings);
}
}
return totalWeight;
}
double
TrueNode::weight (void) const
{
return LogAware::multIdenty();
}
double
CompilationFailedNode::weight (void) const
{
// weighted model counting in compilation
// failed nodes should give NaN
return 0.0 / 0.0;
}
LiftedCircuit::LiftedCircuit (const LiftedWCNF* lwcnf)
: lwcnf_(lwcnf)
{
root_ = 0;
compilationSucceeded_ = true;
Clauses clauses = Clause::copyClauses (lwcnf->clauses());
compile (&root_, clauses);
if (Globals::verbosity > 1) {
smoothCircuit (root_);
exportToGraphViz("circuit.smooth.dot");
if (compilationSucceeded_) {
double wmc = LogAware::exp (getWeightedModelCount());
cout << "WEIGHTED MODEL COUNT: " << wmc << endl << endl;
}
}
}
bool
LiftedCircuit::isCompilationSucceeded (void) const
{
return compilationSucceeded_;
}
double
LiftedCircuit::getWeightedModelCount (void) const
{
assert (compilationSucceeded_);
return root_->weight();
}
void
LiftedCircuit::exportToGraphViz (const char* fileName)
{
ofstream out (fileName);
if (!out.is_open()) {
cerr << "error: cannot open file to write at " ;
cerr << "BayesBallGraph::exportToDotFile()" << endl;
abort();
}
out << "digraph {" << endl;
out << "ranksep=1" << endl;
exportToGraphViz (root_, out);
out << "}" << endl;
out.close();
}
void
LiftedCircuit::compile (
CircuitNode** follow,
Clauses& clauses)
{
if (compilationSucceeded_ == false
&& Globals::verbosity <= 1) {
return;
}
if (clauses.empty()) {
*follow = new TrueNode();
return;
}
if (clauses.size() == 1 && clauses[0]->isUnit()) {
*follow = new LeafNode (clauses[0], *lwcnf_);
return;
}
if (tryUnitPropagation (follow, clauses)) {
return;
}
if (tryIndependence (follow, clauses)) {
return;
}
if (tryShannonDecomp (follow, clauses)) {
return;
}
if (tryInclusionExclusion (follow, clauses)) {
return;
}
if (tryIndepPartialGrounding (follow, clauses)) {
return;
}
if (tryAtomCounting (follow, clauses)) {
return;
}
*follow = new CompilationFailedNode();
if (Globals::verbosity > 1) {
originClausesMap_[*follow] = clauses;
explanationMap_[*follow] = "" ;
}
compilationSucceeded_ = false;
}
bool
LiftedCircuit::tryUnitPropagation (
CircuitNode** follow,
Clauses& clauses)
{
if (Globals::verbosity > 1) {
backupClauses_ = Clause::copyClauses (clauses);
}
for (size_t i = 0; i < clauses.size(); i++) {
if (clauses[i]->isUnit()) {
Clauses propagClauses;
for (size_t j = 0; j < clauses.size(); j++) {
if (i != j) {
LiteralId lid = clauses[i]->literals()[0].lid();
LogVarTypes types = clauses[i]->logVarTypes (0);
if (clauses[i]->literals()[0].isPositive()) {
if (clauses[j]->containsPositiveLiteral (lid, types) == false) {
clauses[j]->removeNegativeLiterals (lid, types);
if (clauses[j]->nrLiterals() > 0) {
propagClauses.push_back (clauses[j]);
} else {
delete clauses[j];
}
} else {
delete clauses[j];
}
} else if (clauses[i]->literals()[0].isNegative()) {
if (clauses[j]->containsNegativeLiteral (lid, types) == false) {
clauses[j]->removePositiveLiterals (lid, types);
if (clauses[j]->nrLiterals() > 0) {
propagClauses.push_back (clauses[j]);
} else {
delete clauses[j];
}
} else {
delete clauses[j];
}
}
}
}
AndNode* andNode = new AndNode();
if (Globals::verbosity > 1) {
originClausesMap_[andNode] = backupClauses_;
stringstream explanation;
explanation << " UP on " << clauses[i]->literals()[0];
explanationMap_[andNode] = explanation.str();
}
Clauses unitClause = { clauses[i] };
compile (andNode->leftBranch(), unitClause);
compile (andNode->rightBranch(), propagClauses);
(*follow) = andNode;
return true;
}
}
return false;
}
bool
LiftedCircuit::tryIndependence (
CircuitNode** follow,
Clauses& clauses)
{
if (clauses.size() == 1) {
return false;
}
if (Globals::verbosity > 1) {
backupClauses_ = clauses;
}
Clauses depClauses = { clauses[0] };
Clauses indepClauses (clauses.begin() + 1, clauses.end());
bool finish = false;
while (finish == false) {
finish = true;
for (size_t i = 0; i < indepClauses.size(); i++) {
if (independentClause (*indepClauses[i], depClauses) == false) {
depClauses.push_back (indepClauses[i]);
indepClauses.erase (indepClauses.begin() + i);
finish = false;
break;
}
}
}
if (indepClauses.empty() == false) {
AndNode* andNode = new AndNode ();
if (Globals::verbosity > 1) {
originClausesMap_[andNode] = backupClauses_;
explanationMap_[andNode] = " Independence" ;
}
compile (andNode->leftBranch(), depClauses);
compile (andNode->rightBranch(), indepClauses);
(*follow) = andNode;
return true;
}
return false;
}
bool
LiftedCircuit::tryShannonDecomp (
CircuitNode** follow,
Clauses& clauses)
{
if (Globals::verbosity > 1) {
backupClauses_ = Clause::copyClauses (clauses);
}
for (size_t i = 0; i < clauses.size(); i++) {
const Literals& literals = clauses[i]->literals();
for (size_t j = 0; j < literals.size(); j++) {
if (literals[j].isGround (
clauses[i]->constr(), clauses[i]->ipgLogVars())) {
Clause* c1 = lwcnf_->createClause (literals[j].lid());
Clause* c2 = new Clause (*c1);
c2->literals().front().complement();
Clauses otherClauses = Clause::copyClauses (clauses);
clauses.push_back (c1);
otherClauses.push_back (c2);
OrNode* orNode = new OrNode();
if (Globals::verbosity > 1) {
originClausesMap_[orNode] = backupClauses_;
stringstream explanation;
explanation << " SD on " << literals[j];
explanationMap_[orNode] = explanation.str();
}
compile (orNode->leftBranch(), clauses);
compile (orNode->rightBranch(), otherClauses);
(*follow) = orNode;
return true;
}
}
}
return false;
}
bool
LiftedCircuit::tryInclusionExclusion (
CircuitNode** follow,
Clauses& clauses)
{
if (Globals::verbosity > 1) {
backupClauses_ = Clause::copyClauses (clauses);
}
for (size_t i = 0; i < clauses.size(); i++) {
Literals depLits = { clauses[i]->literals().front() };
Literals indepLits (clauses[i]->literals().begin() + 1,
clauses[i]->literals().end());
bool finish = false;
while (finish == false) {
finish = true;
for (size_t j = 0; j < indepLits.size(); j++) {
if (independentLiteral (indepLits[j], depLits) == false) {
depLits.push_back (indepLits[j]);
indepLits.erase (indepLits.begin() + j);
finish = false;
break;
}
}
}
if (indepLits.empty() == false) {
LogVarSet lvs1;
for (size_t j = 0; j < depLits.size(); j++) {
lvs1 |= depLits[j].logVarSet();
}
if (clauses[i]->constr().isCountNormalized (lvs1) == false) {
break;
}
LogVarSet lvs2;
for (size_t j = 0; j < indepLits.size(); j++) {
lvs2 |= indepLits[j].logVarSet();
}
if (clauses[i]->constr().isCountNormalized (lvs2) == false) {
break;
}
Clause* c1 = new Clause (clauses[i]->constr().projectedCopy (lvs1));
for (size_t j = 0; j < depLits.size(); j++) {
c1->addLiteral (depLits[j]);
}
Clause* c2 = new Clause (clauses[i]->constr().projectedCopy (lvs2));
for (size_t j = 0; j < indepLits.size(); j++) {
c2->addLiteral (indepLits[j]);
}
clauses.erase (clauses.begin() + i);
Clauses plus1Clauses = Clause::copyClauses (clauses);
Clauses plus2Clauses = Clause::copyClauses (clauses);
plus1Clauses.push_back (c1);
plus2Clauses.push_back (c2);
clauses.push_back (c1);
clauses.push_back (c2);
IncExcNode* ieNode = new IncExcNode();
if (Globals::verbosity > 1) {
originClausesMap_[ieNode] = backupClauses_;
stringstream explanation;
explanation << " IncExc on clause nº " << i + 1;
explanationMap_[ieNode] = explanation.str();
}
compile (ieNode->plus1Branch(), plus1Clauses);
compile (ieNode->plus2Branch(), plus2Clauses);
compile (ieNode->minusBranch(), clauses);
*follow = ieNode;
return true;
}
}
return false;
}
bool
LiftedCircuit::tryIndepPartialGrounding (
CircuitNode** follow,
Clauses& clauses)
{
// assumes that all literals have logical variables
// else, shannon decomp was possible
if (Globals::verbosity > 1) {
backupClauses_ = Clause::copyClauses (clauses);
}
LogVars rootLogVars;
LogVarSet lvs = clauses[0]->ipgCandidates();
for (size_t i = 0; i < lvs.size(); i++) {
rootLogVars.clear();
rootLogVars.push_back (lvs[i]);
ConstraintTree ct = clauses[0]->constr().projectedCopy ({lvs[i]});
if (tryIndepPartialGroundingAux (clauses, ct, rootLogVars)) {
for (size_t j = 0; j < clauses.size(); j++) {
clauses[j]->addIpgLogVar (rootLogVars[j]);
}
SetAndNode* setAndNode = new SetAndNode (ct.size());
if (Globals::verbosity > 1) {
originClausesMap_[setAndNode] = backupClauses_;
explanationMap_[setAndNode] = " IPG" ;
}
*follow = setAndNode;
compile (setAndNode->follow(), clauses);
return true;
}
}
return false;
}
bool
LiftedCircuit::tryIndepPartialGroundingAux (
Clauses& clauses,
ConstraintTree& ct,
LogVars& rootLogVars)
{
for (size_t i = 1; i < clauses.size(); i++) {
LogVarSet lvs = clauses[i]->ipgCandidates();
for (size_t j = 0; j < lvs.size(); j++) {
ConstraintTree ct2 = clauses[i]->constr().projectedCopy ({lvs[j]});
if (ct.tupleSet() == ct2.tupleSet()) {
rootLogVars.push_back (lvs[j]);
break;
}
}
if (rootLogVars.size() != i + 1) {
return false;
}
}
// verifies if the IPG logical vars appear in the same positions
unordered_map<LiteralId, size_t> positions;
for (size_t i = 0; i < clauses.size(); i++) {
const Literals& literals = clauses[i]->literals();
for (size_t j = 0; j < literals.size(); j++) {
size_t idx = literals[j].indexOfLogVar (rootLogVars[i]);
assert (idx != literals[j].nrLogVars());
unordered_map<LiteralId, size_t>::iterator it;
it = positions.find (literals[j].lid());
if (it != positions.end()) {
if (it->second != idx) {
return false;
}
} else {
positions[literals[j].lid()] = idx;
}
}
}
return true;
}
bool
LiftedCircuit::tryAtomCounting (
CircuitNode** follow,
Clauses& clauses)
{
for (size_t i = 0; i < clauses.size(); i++) {
if (clauses[i]->nrPosCountedLogVars() > 0
|| clauses[i]->nrNegCountedLogVars() > 0) {
// only allow one atom counting node per branch
return false;
}
}
if (Globals::verbosity > 1) {
backupClauses_ = Clause::copyClauses (clauses);
}
for (size_t i = 0; i < clauses.size(); i++) {
Literals literals = clauses[i]->literals();
for (size_t j = 0; j < literals.size(); j++) {
if (literals[j].nrLogVars() == 1
&& ! clauses[i]->isIpgLogVar (literals[j].logVars().front())
&& ! clauses[i]->isCountedLogVar (literals[j].logVars().front())) {
unsigned nrGroundings = clauses[i]->constr().projectedCopy (
literals[j].logVars()).size();
SetOrNode* setOrNode = new SetOrNode (nrGroundings);
if (Globals::verbosity > 1) {
originClausesMap_[setOrNode] = backupClauses_;
explanationMap_[setOrNode] = " AC" ;
}
Clause* c1 = new Clause (
clauses[i]->constr().projectedCopy (literals[j].logVars()));
Clause* c2 = new Clause (
clauses[i]->constr().projectedCopy (literals[j].logVars()));
c1->addLiteral (literals[j]);
c2->addLiteralComplemented (literals[j]);
c1->addPosCountedLogVar (literals[j].logVars().front());
c2->addNegCountedLogVar (literals[j].logVars().front());
clauses.push_back (c1);
clauses.push_back (c2);
shatterCountedLogVars (clauses);
compile (setOrNode->follow(), clauses);
*follow = setOrNode;
return true;
}
}
}
return false;
}
void
LiftedCircuit::shatterCountedLogVars (Clauses& clauses)
{
while (shatterCountedLogVarsAux (clauses)) ;
}
bool
LiftedCircuit::shatterCountedLogVarsAux (Clauses& clauses)
{
for (size_t i = 0; i < clauses.size() - 1; i++) {
for (size_t j = i + 1; j < clauses.size(); j++) {
bool splitedSome = shatterCountedLogVarsAux (clauses, i, j);
if (splitedSome) {
return true;
}
}
}
return false;
}
bool
LiftedCircuit::shatterCountedLogVarsAux (
Clauses& clauses,
size_t idx1,
size_t idx2)
{
Literals lits1 = clauses[idx1]->literals();
Literals lits2 = clauses[idx2]->literals();
for (size_t i = 0; i < lits1.size(); i++) {
for (size_t j = 0; j < lits2.size(); j++) {
if (lits1[i].lid() == lits2[j].lid()) {
LogVars lvs1 = lits1[i].logVars();
LogVars lvs2 = lits2[j].logVars();
for (size_t k = 0; k < lvs1.size(); k++) {
if (clauses[idx1]->isCountedLogVar (lvs1[k])
&& clauses[idx2]->isCountedLogVar (lvs2[k]) == false) {
clauses.push_back (new Clause (*clauses[idx2]));
clauses[idx2]->addPosCountedLogVar (lvs2[k]);
clauses.back()->addNegCountedLogVar (lvs2[k]);
return true;
}
if (clauses[idx2]->isCountedLogVar (lvs2[k])
&& clauses[idx1]->isCountedLogVar (lvs1[k]) == false) {
clauses.push_back (new Clause (*clauses[idx1]));
clauses[idx1]->addPosCountedLogVar (lvs1[k]);
clauses.back()->addNegCountedLogVar (lvs1[k]);
return true;
}
}
}
}
}
return false;
}
bool
LiftedCircuit::independentClause (
Clause& clause,
Clauses& otherClauses) const
{
for (size_t i = 0; i < otherClauses.size(); i++) {
if (Clause::independentClauses (clause, *otherClauses[i]) == false) {
return false;
}
}
return true;
}
bool
LiftedCircuit::independentLiteral (
const Literal& lit,
const Literals& otherLits) const
{
for (size_t i = 0; i < otherLits.size(); i++) {
if (lit.lid() == otherLits[i].lid()
|| (lit.logVarSet() & otherLits[i].logVarSet()).empty() == false) {
return false;
}
}
return true;
}
LitLvTypesSet
LiftedCircuit::smoothCircuit (CircuitNode* node)
{
assert (node != 0);
LitLvTypesSet propagLits;
switch (getCircuitNodeType (node)) {
case CircuitNodeType::OR_NODE: {
OrNode* casted = dynamic_cast<OrNode*>(node);
LitLvTypesSet lids1 = smoothCircuit (*casted->leftBranch());
LitLvTypesSet lids2 = smoothCircuit (*casted->rightBranch());
LitLvTypesSet missingLeft = lids2 - lids1;
LitLvTypesSet missingRight = lids1 - lids2;
createSmoothNode (missingLeft, casted->leftBranch());
createSmoothNode (missingRight, casted->rightBranch());
propagLits |= lids1;
propagLits |= lids2;
break;
}
case CircuitNodeType::AND_NODE: {
AndNode* casted = dynamic_cast<AndNode*>(node);
LitLvTypesSet lids1 = smoothCircuit (*casted->leftBranch());
LitLvTypesSet lids2 = smoothCircuit (*casted->rightBranch());
propagLits |= lids1;
propagLits |= lids2;
break;
}
case CircuitNodeType::SET_OR_NODE: {
SetOrNode* casted = dynamic_cast<SetOrNode*>(node);
propagLits = smoothCircuit (*casted->follow());
TinySet<pair<LiteralId,unsigned>> litSet;
for (size_t i = 0; i < propagLits.size(); i++) {
litSet.insert (make_pair (propagLits[i].lid(),
propagLits[i].logVarTypes().size()));
}
LitLvTypesSet missingLids;
for (size_t i = 0; i < litSet.size(); i++) {
vector<LogVarTypes> allTypes = getAllPossibleTypes (litSet[i].second);
for (size_t j = 0; j < allTypes.size(); j++) {
bool typeFound = false;
for (size_t k = 0; k < propagLits.size(); k++) {
if (litSet[i].first == propagLits[k].lid()
&& containsTypes (allTypes[j], propagLits[k].logVarTypes())) {
typeFound = true;
break;
}
}
if (typeFound == false) {
missingLids.insert (LitLvTypes (litSet[i].first, allTypes[j]));
}
}
}
createSmoothNode (missingLids, casted->follow());
for (size_t i = 0; i < propagLits.size(); i++) {
propagLits[i].setAllFullLogVars();
}
break;
}
case CircuitNodeType::SET_AND_NODE: {
SetAndNode* casted = dynamic_cast<SetAndNode*>(node);
propagLits = smoothCircuit (*casted->follow());
break;
}
case CircuitNodeType::INC_EXC_NODE: {
IncExcNode* casted = dynamic_cast<IncExcNode*>(node);
LitLvTypesSet lids1 = smoothCircuit (*casted->plus1Branch());
LitLvTypesSet lids2 = smoothCircuit (*casted->plus2Branch());
LitLvTypesSet missingPlus1 = lids2 - lids1;
LitLvTypesSet missingPlus2 = lids1 - lids2;
createSmoothNode (missingPlus1, casted->plus1Branch());
createSmoothNode (missingPlus2, casted->plus2Branch());
propagLits |= lids1;
propagLits |= lids2;
break;
}
case CircuitNodeType::LEAF_NODE: {
LeafNode* casted = dynamic_cast<LeafNode*>(node);
propagLits.insert (LitLvTypes (
casted->clause()->literals()[0].lid(),
casted->clause()->logVarTypes(0)));
}
default:
break;
}
return propagLits;
}
void
LiftedCircuit::createSmoothNode (
const LitLvTypesSet& missingLits,
CircuitNode** prev)
{
if (missingLits.empty() == false) {
if (Globals::verbosity > 1) {
unordered_map<CircuitNode*, Clauses>::iterator it;
it = originClausesMap_.find (*prev);
if (it != originClausesMap_.end()) {
backupClauses_ = it->second;
} else {
backupClauses_ = { ((dynamic_cast<LeafNode*>(*prev))->clause()) };
}
}
Clauses clauses;
for (size_t i = 0; i < missingLits.size(); i++) {
LiteralId lid = missingLits[i].lid();
const LogVarTypes& types = missingLits[i].logVarTypes();
Clause* c = lwcnf_->createClause (lid);
for (size_t j = 0; j < types.size(); j++) {
LogVar X = c->literals().front().logVars()[j];
if (types[j] == LogVarType::POS_LV) {
c->addPosCountedLogVar (X);
} else if (types[j] == LogVarType::NEG_LV) {
c->addNegCountedLogVar (X);
}
}
c->addLiteralComplemented (c->literals()[0]);
clauses.push_back (c);
}
SmoothNode* smoothNode = new SmoothNode (clauses, *lwcnf_);
*prev = new AndNode (smoothNode, *prev);
if (Globals::verbosity > 1) {
originClausesMap_[*prev] = backupClauses_;
explanationMap_[*prev] = " Smoothing" ;
}
}
}
vector<LogVarTypes>
LiftedCircuit::getAllPossibleTypes (unsigned nrLogVars) const
{
if (nrLogVars == 0) {
return {};
}
if (nrLogVars == 1) {
return {{LogVarType::POS_LV},{LogVarType::NEG_LV}};
}
vector<LogVarTypes> res;
Indexer indexer (vector<unsigned> (nrLogVars, 2));
while (indexer.valid()) {
LogVarTypes types;
for (size_t i = 0; i < nrLogVars; i++) {
if (indexer[i] == 0) {
types.push_back (LogVarType::POS_LV);
} else {
types.push_back (LogVarType::NEG_LV);
}
}
res.push_back (types);
++ indexer;
}
return res;
}
bool
LiftedCircuit::containsTypes (
const LogVarTypes& typesA,
const LogVarTypes& typesB) const
{
for (size_t i = 0; i < typesA.size(); i++) {
if (typesA[i] == LogVarType::FULL_LV) {
} else if (typesA[i] == LogVarType::POS_LV
&& typesB[i] == LogVarType::POS_LV) {
} else if (typesA[i] == LogVarType::NEG_LV
&& typesB[i] == LogVarType::NEG_LV) {
} else {
return false;
}
}
return true;
}
CircuitNodeType
LiftedCircuit::getCircuitNodeType (const CircuitNode* node) const
{
CircuitNodeType type;
if (dynamic_cast<const OrNode*>(node) != 0) {
type = CircuitNodeType::OR_NODE;
} else if (dynamic_cast<const AndNode*>(node) != 0) {
type = CircuitNodeType::AND_NODE;
} else if (dynamic_cast<const SetOrNode*>(node) != 0) {
type = CircuitNodeType::SET_OR_NODE;
} else if (dynamic_cast<const SetAndNode*>(node) != 0) {
type = CircuitNodeType::SET_AND_NODE;
} else if (dynamic_cast<const IncExcNode*>(node) != 0) {
type = CircuitNodeType::INC_EXC_NODE;
} else if (dynamic_cast<const LeafNode*>(node) != 0) {
type = CircuitNodeType::LEAF_NODE;
} else if (dynamic_cast<const SmoothNode*>(node) != 0) {
type = CircuitNodeType::SMOOTH_NODE;
} else if (dynamic_cast<const TrueNode*>(node) != 0) {
type = CircuitNodeType::TRUE_NODE;
} else if (dynamic_cast<const CompilationFailedNode*>(node) != 0) {
type = CircuitNodeType::COMPILATION_FAILED_NODE;
} else {
assert (false);
}
return type;
}
void
LiftedCircuit::exportToGraphViz (CircuitNode* node, ofstream& os)
{
assert (node != 0);
static unsigned nrAuxNodes = 0;
stringstream ss;
ss << "n" << nrAuxNodes;
string auxNode = ss.str();
nrAuxNodes ++;
string opStyle = "shape=circle,width=0.7,margin=\"0.0,0.0\"," ;
switch (getCircuitNodeType (node)) {
case OR_NODE: {
OrNode* casted = dynamic_cast<OrNode*>(node);
printClauses (casted, os);
os << auxNode << " [" << opStyle << "label=\"\"]" << endl;
os << escapeNode (node) << " -> " << auxNode;
os << " [label=\"" << getExplanationString (node) << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->leftBranch());
os << " [label=\" " << (*casted->leftBranch())->weight() << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->rightBranch());
os << " [label=\" " << (*casted->rightBranch())->weight() << "\"]" ;
os << endl;
exportToGraphViz (*casted->leftBranch(), os);
exportToGraphViz (*casted->rightBranch(), os);
break;
}
case AND_NODE: {
AndNode* casted = dynamic_cast<AndNode*>(node);
printClauses (casted, os);
os << auxNode << " [" << opStyle << "label=\"\"]" << endl;
os << escapeNode (node) << " -> " << auxNode;
os << " [label=\"" << getExplanationString (node) << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->leftBranch());
os << " [label=\" " << (*casted->leftBranch())->weight() << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->rightBranch()) << endl;
os << " [label=\" " << (*casted->rightBranch())->weight() << "\"]" ;
os << endl;
exportToGraphViz (*casted->leftBranch(), os);
exportToGraphViz (*casted->rightBranch(), os);
break;
}
case SET_OR_NODE: {
SetOrNode* casted = dynamic_cast<SetOrNode*>(node);
printClauses (casted, os);
os << auxNode << " [" << opStyle << "label=\"(X)\"]" << endl;
os << escapeNode (node) << " -> " << auxNode;
os << " [label=\"" << getExplanationString (node) << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->follow());
os << " [label=\" " << (*casted->follow())->weight() << "\"]" ;
os << endl;
exportToGraphViz (*casted->follow(), os);
break;
}
case SET_AND_NODE: {
SetAndNode* casted = dynamic_cast<SetAndNode*>(node);
printClauses (casted, os);
os << auxNode << " [" << opStyle << "label=\"∧(X)\"]" << endl;
os << escapeNode (node) << " -> " << auxNode;
os << " [label=\"" << getExplanationString (node) << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->follow());
os << " [label=\" " << (*casted->follow())->weight() << "\"]" ;
os << endl;
exportToGraphViz (*casted->follow(), os);
break;
}
case INC_EXC_NODE: {
IncExcNode* casted = dynamic_cast<IncExcNode*>(node);
printClauses (casted, os);
os << auxNode << " [" << opStyle << "label=\"+ - +\"]" ;
os << endl;
os << escapeNode (node) << " -> " << auxNode;
os << " [label=\"" << getExplanationString (node) << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->plus1Branch());
os << " [label=\" " << (*casted->plus1Branch())->weight() << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->minusBranch()) << endl;
os << " [label=\" " << (*casted->minusBranch())->weight() << "\"]" ;
os << endl;
os << auxNode << " -> " ;
os << escapeNode (*casted->plus2Branch());
os << " [label=\" " << (*casted->plus2Branch())->weight() << "\"]" ;
os << endl;
exportToGraphViz (*casted->plus1Branch(), os);
exportToGraphViz (*casted->plus2Branch(), os);
exportToGraphViz (*casted->minusBranch(), os);
break;
}
case LEAF_NODE: {
printClauses (node, os, "style=filled,fillcolor=palegreen,");
break;
}
case SMOOTH_NODE: {
printClauses (node, os, "style=filled,fillcolor=lightblue,");
break;
}
case TRUE_NODE: {
os << escapeNode (node);
os << " [shape=box,label=\"\"]" ;
os << endl;
break;
}
case COMPILATION_FAILED_NODE: {
printClauses (node, os, "style=filled,fillcolor=salmon,");
break;
}
default:
assert (false);
}
}
string
LiftedCircuit::escapeNode (const CircuitNode* node) const
{
stringstream ss;
ss << "\"" << node << "\"" ;
return ss.str();
}
string
LiftedCircuit::getExplanationString (CircuitNode* node)
{
return Util::contains (explanationMap_, node)
? explanationMap_[node]
: "" ;
}
void
LiftedCircuit::printClauses (
CircuitNode* node,
ofstream& os,
string extraOptions)
{
Clauses clauses;
if (Util::contains (originClausesMap_, node)) {
clauses = originClausesMap_[node];
} else if (getCircuitNodeType (node) == CircuitNodeType::LEAF_NODE) {
clauses = { (dynamic_cast<LeafNode*>(node))->clause() } ;
} else if (getCircuitNodeType (node) == CircuitNodeType::SMOOTH_NODE) {
clauses = (dynamic_cast<SmoothNode*>(node))->clauses();
}
assert (clauses.empty() == false);
os << escapeNode (node);
os << " [shape=box," << extraOptions << "label=\"" ;
for (size_t i = 0; i < clauses.size(); i++) {
if (i != 0) os << "\\n" ;
os << *clauses[i];
}
os << "\"]" ;
os << endl;
}