382 lines
10 KiB
Prolog
382 lines
10 KiB
Prolog
|
|
|
|
:- module(clpbn, [{}/1,
|
|
clpbn_flag/2,
|
|
set_clpbn_flag/2,
|
|
clpbn_flag/3,
|
|
clpbn_key/2,
|
|
clpbn_init_solver/4,
|
|
clpbn_run_solver/3,
|
|
clpbn_init_solver/5,
|
|
clpbn_run_solver/4]).
|
|
|
|
:- use_module(library(atts)).
|
|
:- use_module(library(lists)).
|
|
:- use_module(library(terms)).
|
|
|
|
:- op( 500, xfy, with).
|
|
|
|
%
|
|
% avoid the overhead of using goal_expansion/2.
|
|
%
|
|
:- multifile
|
|
user:term_expansion/2.
|
|
|
|
:- dynamic
|
|
user:term_expansion/2.
|
|
|
|
:- attribute key/1, dist/2, evidence/1, starter/0.
|
|
|
|
|
|
:- use_module('clpbn/vel',
|
|
[vel/3,
|
|
check_if_vel_done/1,
|
|
init_vel_solver/4,
|
|
run_vel_solver/3
|
|
]).
|
|
|
|
:- use_module('clpbn/jt',
|
|
[jt/3
|
|
]).
|
|
|
|
:- use_module('clpbn/bnt',
|
|
[do_bnt/3,
|
|
check_if_bnt_done/1
|
|
]).
|
|
|
|
:- use_module('clpbn/gibbs',
|
|
[gibbs/3,
|
|
check_if_gibbs_done/1,
|
|
init_gibbs_solver/4,
|
|
run_gibbs_solver/3
|
|
]).
|
|
|
|
:- use_module('clpbn/graphs',
|
|
[
|
|
clpbn2graph/1
|
|
]).
|
|
|
|
:- use_module('clpbn/dists',
|
|
[
|
|
dist/4,
|
|
get_dist/4,
|
|
get_evidence_position/3,
|
|
get_evidence_from_position/3
|
|
]).
|
|
|
|
:- use_module('clpbn/evidence',
|
|
[
|
|
store_evidence/1,
|
|
incorporate_evidence/2,
|
|
check_stored_evidence/2,
|
|
add_evidence/2
|
|
]).
|
|
|
|
:- use_module('clpbn/utils',
|
|
[
|
|
sort_vars_by_key/3
|
|
]).
|
|
|
|
:- dynamic solver/1,output/1,use/1,suppress_attribute_display/1, parameter_softening/1, em_solver/1.
|
|
|
|
solver(jt).
|
|
em_solver(vel).
|
|
|
|
%output(xbif(user_error)).
|
|
%output(gviz(user_error)).
|
|
output(no).
|
|
suppress_attribute_display(false).
|
|
parameter_softening(laplace).
|
|
|
|
clpbn_flag(Flag,Option) :-
|
|
clpbn_flag(Flag, Option, Option).
|
|
|
|
set_clpbn_flag(Flag,Option) :-
|
|
clpbn_flag(Flag, _, Option).
|
|
|
|
clpbn_flag(output,Before,After) :-
|
|
retract(output(Before)),
|
|
assert(output(After)).
|
|
clpbn_flag(solver,Before,After) :-
|
|
retract(solver(Before)),
|
|
assert(solver(After)).
|
|
clpbn_flag(em_solver,Before,After) :-
|
|
retract(em_solver(Before)),
|
|
assert(em_solver(After)).
|
|
clpbn_flag(bnt_solver,Before,After) :-
|
|
retract(bnt:bnt_solver(Before)),
|
|
assert(bnt:bnt_solver(After)).
|
|
clpbn_flag(bnt_path,Before,After) :-
|
|
retract(bnt:bnt_path(Before)),
|
|
assert(bnt:bnt_path(After)).
|
|
clpbn_flag(bnt_model,Before,After) :-
|
|
retract(bnt:bnt_model(Before)),
|
|
assert(bnt:bnt_model(After)).
|
|
clpbn_flag(suppress_attribute_display,Before,After) :-
|
|
retract(suppress_attribute_display(Before)),
|
|
assert(suppress_attribute_display(After)).
|
|
clpbn_flag(parameter_softening,Before,After) :-
|
|
retract(parameter_softening(Before)),
|
|
assert(parameter_softening(After)).
|
|
|
|
|
|
{Var = Key with Dist} :-
|
|
put_atts(El,[key(Key),dist(DistInfo,Parents)]),
|
|
dist(Dist, DistInfo, Key, Parents),
|
|
add_evidence(Var,Key,DistInfo,El).
|
|
|
|
check_constraint(Constraint, _, _, Constraint) :- var(Constraint), !.
|
|
check_constraint((A->D), _, _, (A->D)) :- var(A), !.
|
|
check_constraint((([A|B].L)->D), Vars, NVars, (([A|B].NL)->D)) :- !,
|
|
check_cpt_input_vars(L, Vars, NVars, NL).
|
|
check_constraint(Dist, _, _, Dist).
|
|
|
|
check_cpt_input_vars([], _, _, []).
|
|
check_cpt_input_vars([V|L], Vars, NVars, [NV|NL]) :-
|
|
replace_var(Vars, V, NVars, NV),
|
|
check_cpt_input_vars(L, Vars, NVars, NL).
|
|
|
|
replace_var([], V, [], V).
|
|
replace_var([V|_], V0, [NV|_], NV) :- V == V0, !.
|
|
replace_var([_|Vars], V, [_|NVars], NV) :-
|
|
replace_var(Vars, V, NVars, NV).
|
|
|
|
add_evidence(V,Key,Distinfo,NV) :-
|
|
nonvar(V), !,
|
|
get_evidence_position(V, Distinfo, Pos),
|
|
check_stored_evidence(Key, Pos),
|
|
clpbn:put_atts(NV,evidence(Pos)).
|
|
add_evidence(V,K,_,V) :-
|
|
add_evidence(K,V).
|
|
|
|
clpbn_marginalise(V, Dist) :-
|
|
attributes:all_attvars(AVars),
|
|
project_attributes([V], AVars),
|
|
vel:get_atts(V, posterior(_,_,Dist,_)).
|
|
|
|
%
|
|
% called by top-level
|
|
% or by call_residue/2
|
|
%
|
|
project_attributes(GVars, AVars) :-
|
|
suppress_attribute_display(false),
|
|
AVars = [_|_],
|
|
solver(Solver),
|
|
( GVars = [_|_] ; Solver = graphs), !,
|
|
clpbn_vars(AVars, DiffVars, AllVars),
|
|
get_clpbn_vars(GVars,CLPBNGVars0),
|
|
simplify_query_vars(CLPBNGVars0, CLPBNGVars),
|
|
(
|
|
Solver = graphs
|
|
->
|
|
write_out(Solver, [[]], AllVars, DiffVars)
|
|
;
|
|
write_out(Solver, [CLPBNGVars], AllVars, DiffVars)
|
|
).
|
|
project_attributes(_, _).
|
|
|
|
clpbn_vars(AVars, DiffVars, AllVars) :-
|
|
sort_vars_by_key(AVars,SortedAVars,DiffVars),
|
|
incorporate_evidence(SortedAVars, AllVars).
|
|
|
|
get_clpbn_vars([],[]).
|
|
get_clpbn_vars([V|GVars],[V|CLPBNGVars]) :-
|
|
get_atts(V, [key(_)]), !,
|
|
get_clpbn_vars(GVars,CLPBNGVars).
|
|
get_clpbn_vars([_|GVars],CLPBNGVars) :-
|
|
get_clpbn_vars(GVars,CLPBNGVars).
|
|
|
|
simplify_query_vars(LVs0, LVs) :-
|
|
sort(LVs0,LVs1),
|
|
get_rid_of_ev_vars(LVs1,LVs).
|
|
|
|
%
|
|
% some variables might already have evidence in the data-base.
|
|
%
|
|
get_rid_of_ev_vars([],[]).
|
|
get_rid_of_ev_vars([V|LVs0],LVs) :-
|
|
clpbn:get_atts(V, [dist(Id,_),evidence(Pos)]), !,
|
|
get_evidence_from_position(Ev, Id, Pos),
|
|
clpbn_display:put_atts(V, [posterior([],Ev,[],[])]), !,
|
|
get_rid_of_ev_vars(LVs0,LVs).
|
|
get_rid_of_ev_vars([V|LVs0],[V|LVs]) :-
|
|
get_rid_of_ev_vars(LVs0,LVs).
|
|
|
|
|
|
% do nothing if we don't have query variables to compute.
|
|
write_out(graphs, _, AVars, _) :-
|
|
clpbn2graph(AVars).
|
|
write_out(vel, GVars, AVars, DiffVars) :-
|
|
vel(GVars, AVars, DiffVars).
|
|
write_out(jt, GVars, AVars, DiffVars) :-
|
|
jt(GVars, AVars, DiffVars).
|
|
write_out(gibbs, GVars, AVars, DiffVars) :-
|
|
gibbs(GVars, AVars, DiffVars).
|
|
write_out(bnt, GVars, AVars, DiffVars) :-
|
|
do_bnt(GVars, AVars, DiffVars).
|
|
|
|
get_bnode(Var, Goal) :-
|
|
get_atts(Var, [key(Key),dist(Dist,Parents)]),
|
|
get_dist(Dist,_,Domain,CPT),
|
|
(Parents = [] -> X = tab(Domain,CPT) ; X = tab(Domain,CPT,Parents)),
|
|
dist_goal(X, Key, Goal0),
|
|
include_evidence(Var, Goal0, Key, Goali),
|
|
include_starter(Var, Goali, Key, Goal).
|
|
|
|
include_evidence(Var, Goal0, Key, ((Key:-Ev),Goal0)) :-
|
|
get_atts(Var, [evidence(Ev)]), !.
|
|
include_evidence(_, Goal0, _, Goal0).
|
|
|
|
include_starter(Var, Goal0, Key, ((:-Key),Goal0)) :-
|
|
get_atts(Var, [starter]), !.
|
|
include_starter(_, Goal0, _, Goal0).
|
|
|
|
dist_goal(Dist, Key, (Key=NDist)) :-
|
|
term_variables(Dist, DVars),
|
|
process_vars(DVars, DKeys),
|
|
my_copy_term(Dist,DVars, NDist,DKeys).
|
|
|
|
my_copy_term(V, DVars, Key, DKeys) :-
|
|
find_var(DVars, V, Key, DKeys).
|
|
my_copy_term(A, _, A, _) :- atomic(A), !.
|
|
my_copy_term(T, Vs, NT, Ks) :-
|
|
T =.. [Na|As],
|
|
my_copy_terms(As, Vs, NAs, Ks),
|
|
NT =.. [Na|NAs].
|
|
|
|
my_copy_terms([], _, [], _).
|
|
my_copy_terms([A|As], Vs, [NA|NAs], Ks) :-
|
|
my_copy_term(A, Vs, NA, Ks),
|
|
my_copy_terms(As, Vs, NAs, Ks).
|
|
|
|
find_var([V1|_], V, Key, [Key|_]) :- V1 == V, !.
|
|
find_var([_|DVars], V, Key, [_|DKeys]) :-
|
|
find_var(DVars, V, Key, DKeys).
|
|
|
|
process_vars([], []).
|
|
process_vars([V|Vs], [K|Ks]) :-
|
|
process_var(V, K),
|
|
process_vars(Vs, Ks).
|
|
|
|
process_var(V, K) :- get_atts(V, [key(K)]), !.
|
|
% oops: this variable has no attributes.
|
|
process_var(V, _) :- throw(error(instantiation_error,clpbn(attribute_goal(V)))).
|
|
|
|
%
|
|
% unify a CLPBN variable with something.
|
|
%
|
|
verify_attributes(Var, T, Goals) :-
|
|
get_atts(Var, [key(Key),dist(Dist,Parents)]), !,
|
|
/* oops, someone trying to bind a clpbn constrained variable */
|
|
Goals = [],
|
|
bind_clpbn(T, Var, Key, Dist, Parents).
|
|
verify_attributes(_, _, []).
|
|
|
|
|
|
bind_clpbn(T, Var, Key, Dist, Parents) :- var(T),
|
|
get_atts(T, [key(Key1),dist(Dist1,Parents1)]), !,
|
|
bind_clpbns(Key, Dist, Parents, Key1, Dist1, Parents1),
|
|
(
|
|
get_atts(T, [evidence(Ev1)]) ->
|
|
bind_evidence_from_extra_var(Ev1,Var)
|
|
;
|
|
get_atts(Var, [evidence(Ev)]) ->
|
|
bind_evidence_from_extra_var(Ev,T)
|
|
;
|
|
true).
|
|
bind_clpbn(_, Var, _, _, _, _) :-
|
|
use(bnt),
|
|
check_if_bnt_done(Var), !.
|
|
bind_clpbn(_, Var, _, _, _, _) :-
|
|
use(vel),
|
|
check_if_vel_done(Var), !.
|
|
bind_clpbn(_, Var, _, _, _, _) :-
|
|
use(jt),
|
|
check_if_vel_done(Var), !.
|
|
bind_clpbn(T, Var, Key0, _, _, _) :-
|
|
get_atts(Var, [key(Key)]), !,
|
|
(
|
|
Key = Key0 -> true
|
|
;
|
|
add_evidence(Var,T)
|
|
).
|
|
|
|
fresh_attvar(Var, NVar) :-
|
|
get_atts(Var, LAtts),
|
|
put_atts(NVar, LAtts).
|
|
|
|
% I will now allow two CLPBN variables to be bound together.
|
|
%bind_clpbns(Key, Dist, Parents, Key, Dist, Parents).
|
|
bind_clpbns(Key, Dist, Parents, Key1, Dist1, Parents1) :-
|
|
Key == Key1, !,
|
|
get_dist(Dist,Type,Domain,Table),
|
|
get_dist(Dist1,Type1,Domain1,Table1),
|
|
( Dist == Dist1,
|
|
same_parents(Parents,Parents1)
|
|
->
|
|
true
|
|
;
|
|
throw(error(domain_error(bayesian_domain),bind_clpbns(var(Key, Type, Domain, Table, Parents),var(Key1, Type1, Domain1, Table1, Parents1))))
|
|
).
|
|
bind_clpbns(Key, _, _, _, Key1, _, _, _) :-
|
|
Key\=Key1, !, fail.
|
|
bind_clpbns(_, _, _, _, _, _, _, _) :-
|
|
format(user_error, 'unification of two bayesian vars not supported~n', []).
|
|
|
|
same_parents([],[]).
|
|
same_parents([P|Parents],[P1|Parents1]) :-
|
|
same_node(P,P1),
|
|
same_parents(Parents,Parents1).
|
|
|
|
same_node(P,P1) :- P == P1, !.
|
|
same_node(P,P1) :-
|
|
get_atts( P,[key(K)]),
|
|
get_atts(P1,[key(K)]),
|
|
P = P1.
|
|
|
|
|
|
bind_evidence_from_extra_var(Ev1,Var) :-
|
|
get_atts(Var, [evidence(Ev0)]),!,Ev0 = Ev1.
|
|
bind_evidence_from_extra_var(Ev1,Var) :-
|
|
put_atts(Var, [evidence(Ev1)]).
|
|
|
|
user:term_expansion((A :- {}), ( :- true )) :- !, % evidence
|
|
prolog_load_context(module, M),
|
|
store_evidence(M:A).
|
|
|
|
clpbn_key(Var,Key) :-
|
|
get_atts(Var, [key(Key)]).
|
|
|
|
%
|
|
% This is a routine to start a solver, called by the learning procedures (ie, em).
|
|
% LVs is a list of lists of variables one is interested in eventually marginalising out
|
|
% Vs0 gives the original graph
|
|
% AllDiffs gives variables that are not fully constrainted, ie, we don't fully know
|
|
% the key. In this case, we assume different instances will be bound to different
|
|
% values at the end of the day.
|
|
%
|
|
clpbn_init_solver(LVs, Vs0, VarsWithUnboundKeys, State) :-
|
|
solver(Solver),
|
|
clpbn_init_solver(Solver, LVs, Vs0, VarsWithUnboundKeys, State).
|
|
|
|
clpbn_init_solver(gibbs, LVs, Vs0, VarsWithUnboundKeys, State) :-
|
|
init_gibbs_solver(LVs, Vs0, VarsWithUnboundKeys, State).
|
|
clpbn_init_solver(vel, LVs, Vs0, VarsWithUnboundKeys, State) :-
|
|
init_vel_solver(LVs, Vs0, VarsWithUnboundKeys, State).
|
|
|
|
%
|
|
% LVs is the list of lists of variables to marginalise
|
|
% Vs is the full graph
|
|
% Ps are the probabilities on LVs.
|
|
%
|
|
%
|
|
clpbn_run_solver(LVs, LPs, State) :-
|
|
solver(Solver, State),
|
|
clpbn_run_solver(Solver, LVs, LPs, State).
|
|
|
|
clpbn_run_solver(gibbs, LVs, LPs, State) :-
|
|
run_gibbs_solver(LVs, LPs, State).
|
|
clpbn_run_solver(vel, LVs, LPs, State) :-
|
|
run_vel_solver(LVs, LPs, State).
|
|
|