This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/sysbits.c
Vítor Santos Costa ea44e780b6 fix path
2013-11-08 12:43:07 +00:00

3268 lines
75 KiB
C
Executable File

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: sysbits.c *
* Last rev: 4/03/88 *
* mods: *
* comments: very much machine dependent routines *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
/*
* In this routine we shall try to include the inevitably machine dependant
* routines. These include, for the moment : Time, A rudimentary form of
* signal handling, OS calls,
*
* Vitor Santos Costa, February 1987
*
*/
/* windows.h does not like absmi.h, this
should fix it for now */
#include "absmi.h"
#include "yapio.h"
#include "alloc.h"
#include <math.h>
#if STDC_HEADERS
#include <stdlib.h>
#endif
#if HAVE_WINDOWS_H
#include <windows.h>
#endif
#if HAVE_SYS_TIME_H && !_MSC_VER
#include <sys/time.h>
#endif
#if HAVE_UNISTD_H
#include <unistd.h>
#endif
#if HAVE_SYS_WAIT_H && !defined(__MINGW32__) && !_MSC_VER
#include <sys/wait.h>
#endif
#if HAVE_STRING_H
#include <string.h>
#endif
#if !HAVE_STRNCAT
#define strncat(X,Y,Z) strcat(X,Y)
#endif
#if !HAVE_STRNCPY
#define strncpy(X,Y,Z) strcpy(X,Y)
#endif
#if HAVE_GETPWNAM
#include <pwd.h>
#endif
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#if _MSC_VER || defined(__MINGW32__)
#include <windows.h>
/* required for DLL compatibility */
#if HAVE_DIRECT_H
#include <direct.h>
#endif
#include <io.h>
#else
#if HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif
#endif
/* CYGWIN seems to include this automatically */
#if HAVE_FENV_H && !defined(__CYGWIN__)
#include <fenv.h>
#endif
#if HAVE_READLINE_READLINE_H
#include <readline/readline.h>
#endif
static void InitTime(int);
static void InitWTime(void);
static Int p_sh( USES_REGS1 );
static Int p_shell( USES_REGS1 );
static Int p_system( USES_REGS1 );
static Int p_mv( USES_REGS1 );
static Int p_dir_sp( USES_REGS1 );
static void InitRandom(void);
static Int p_srandom( USES_REGS1 );
static Int p_alarm( USES_REGS1 );
static Int p_getenv( USES_REGS1 );
static Int p_putenv( USES_REGS1 );
static void set_fpu_exceptions(int);
#ifdef MACYAP
static int chdir(char *);
/* #define signal skel_signal */
#endif /* MACYAP */
void exit(int);
#ifdef _WIN32
void
Yap_WinError(char *yap_error)
{
char msg[256];
/* Error, we could not read time */
FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, GetLastError(),
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), msg, 256,
NULL);
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s at %s", msg, yap_error);
}
#endif /* _WIN32 */
#define is_valid_env_char(C) ( ((C) >= 'a' && (C) <= 'z') || ((C) >= 'A' && \
(C) <= 'Z') || (C) == '_' )
static int
is_directory(char *FileName)
{
#ifdef _WIN32
DWORD dwAtts = GetFileAttributes(FileName);
if (dwAtts == INVALID_FILE_ATTRIBUTES)
return FALSE;
return (dwAtts & FILE_ATTRIBUTE_DIRECTORY);
#elif HAVE_LSTAT
struct stat buf;
if (lstat(FileName, &buf) == -1) {
/* return an error number */
return FALSE;
}
return S_ISDIR(buf.st_mode);
#else
return FALSE;
#endif
}
static int
dir_separator (int ch)
{
#ifdef MAC
return (ch == ':');
#elif ATARI || _MSC_VER
return (ch == '\\');
#elif defined(__MINGW32__) || defined(__CYGWIN__)
return (ch == '\\' || ch == '/');
#else
return (ch == '/');
#endif
}
int
Yap_dir_separator (int ch)
{
return dir_separator (ch);
}
#if _MSC_VER || defined(__MINGW32__)
#include <psapi.h>
char *libdir = NULL;
#endif
void
Yap_InitSysPath(void) {
CACHE_REGS
int len;
#if _MSC_VER || defined(__MINGW32__)
int dir_done = FALSE;
int commons_done = FALSE;
{
char *dir;
if ((dir = Yap_RegistryGetString("library"))) {
Yap_PutValue(AtomSystemLibraryDir,
MkAtomTerm(Yap_LookupAtom(dir)));
dir_done = TRUE;
}
if ((dir = Yap_RegistryGetString("prolog_commons"))) {
Yap_PutValue(AtomPrologCommonsDir,
MkAtomTerm(Yap_LookupAtom(dir)));
commons_done = TRUE;
}
}
if (dir_done && commons_done)
return;
#endif
strncpy(LOCAL_FileNameBuf, YAP_SHAREDIR, YAP_FILENAME_MAX);
#if _MSC_VER || defined(__MINGW32__)
{
DWORD fatts;
int buflen;
char *pt;
if ((fatts = GetFileAttributes(LOCAL_FileNameBuf)) == 0xFFFFFFFFL ||
!(fatts & FILE_ATTRIBUTE_DIRECTORY)) {
/* couldn't find it where it was supposed to be,
let's try using the executable */
if (!GetModuleFileNameEx( GetCurrentProcess(), NULL, LOCAL_FileNameBuf, YAP_FILENAME_MAX)) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name");
/* do nothing */
return;
}
buflen = strlen(LOCAL_FileNameBuf);
pt = LOCAL_FileNameBuf+buflen;
while (*--pt != '\\') {
/* skip executable */
if (pt == LOCAL_FileNameBuf) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name");
/* do nothing */
return;
}
}
while (*--pt != '\\') {
/* skip parent directory "bin\\" */
if (pt == LOCAL_FileNameBuf) {
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "could not find executable name");
/* do nothing */
}
}
/* now, this is a possible location for the ROOT_DIR, let's look for a share directory here */
pt[1] = '\0';
/* grosse */
strncat(LOCAL_FileNameBuf,"lib\\Yap",YAP_FILENAME_MAX);
libdir = Yap_AllocCodeSpace(strlen(LOCAL_FileNameBuf)+1);
strncpy(libdir, LOCAL_FileNameBuf, strlen(LOCAL_FileNameBuf)+1);
pt[1] = '\0';
strncat(LOCAL_FileNameBuf,"share",YAP_FILENAME_MAX);
}
}
strncat(LOCAL_FileNameBuf,"\\", YAP_FILENAME_MAX);
#else
strncat(LOCAL_FileNameBuf,"/", YAP_FILENAME_MAX);
#endif
len = strlen(LOCAL_FileNameBuf);
strncat(LOCAL_FileNameBuf, "Yap", YAP_FILENAME_MAX);
#if _MSC_VER || defined(__MINGW32__)
if (!dir_done)
#endif
{
Yap_PutValue(AtomSystemLibraryDir,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
#if _MSC_VER || defined(__MINGW32__)
if (!commons_done)
#endif
{
LOCAL_FileNameBuf[len] = '\0';
strncat(LOCAL_FileNameBuf, "PrologCommons", YAP_FILENAME_MAX);
Yap_PutValue(AtomPrologCommonsDir,
MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
}
static Int
p_dir_sp ( USES_REGS1 )
{
#ifdef MAC
Term t = MkIntTerm(':');
Term t2 = MkIntTerm('/');
#elif ATARI || _MSC_VER || defined(__MINGW32__)
Term t = MkIntTerm('\\');
Term t2 = MkIntTerm('/');
#else
Term t = MkIntTerm('/');
Term t2 = MkIntTerm('/');
#endif
return Yap_unify_constant(ARG1,t) || Yap_unify_constant(ARG1,t2) ;
}
void
Yap_InitPageSize(void)
{
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
Yap_page_size = si.dwPageSize;
#elif HAVE_UNISTD_H
#if defined(__FreeBSD__) || defined(__DragonFly__)
Yap_page_size = getpagesize();
#elif defined(_AIX)
Yap_page_size = sysconf(_SC_PAGE_SIZE);
#elif !defined(_SC_PAGESIZE)
Yap_page_size = getpagesize();
#else
Yap_page_size = sysconf(_SC_PAGESIZE);
#endif
#else
bla bla
#endif
}
#ifdef SIMICS
#ifdef HAVE_GETRUSAGE
#undef HAVE_GETRUSAGE
#endif
#ifdef HAVE_TIMES
#undef HAVE_TIMES
#endif
#endif /* SIMICS */
#ifdef _WIN32
#if HAVE_GETRUSAGE
#undef HAVE_GETRUSAGE
#endif
#endif
#if HAVE_GETRUSAGE
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#if HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif
#if THREADS
#define StartOfTimes (*(LOCAL_ThreadHandle.start_of_timesp))
#define last_time (*(LOCAL_ThreadHandle.last_timep))
#define StartOfTimes_sys (*(LOCAL_ThreadHandle.start_of_times_sysp))
#define last_time_sys (*(LOCAL_ThreadHandle.last_time_sysp))
#else
/* since the point YAP was started */
static struct timeval StartOfTimes;
/* since last call to runtime */
static struct timeval last_time;
/* same for system time */
static struct timeval last_time_sys;
static struct timeval StartOfTimes_sys;
#endif
/* store user time in this variable */
static void
InitTime (int wid)
{
struct rusage rusage;
#if THREADS
REMOTE_ThreadHandle(wid).start_of_timesp = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).last_timep = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).start_of_times_sysp = (struct timeval *)malloc(sizeof(struct timeval));
REMOTE_ThreadHandle(wid).last_time_sysp = (struct timeval *)malloc(sizeof(struct timeval));
getrusage(RUSAGE_SELF, &rusage);
(*REMOTE_ThreadHandle(wid).last_timep).tv_sec =
(*REMOTE_ThreadHandle(wid).start_of_timesp).tv_sec =
rusage.ru_utime.tv_sec;
(*REMOTE_ThreadHandle(wid).last_timep).tv_usec =
(*REMOTE_ThreadHandle(wid).start_of_timesp).tv_usec =
rusage.ru_utime.tv_usec;
(*REMOTE_ThreadHandle(wid).last_time_sysp).tv_sec =
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).tv_sec =
rusage.ru_stime.tv_sec;
(*REMOTE_ThreadHandle(wid).last_time_sysp).tv_usec =
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).tv_usec =
rusage.ru_stime.tv_usec;
#else
getrusage(RUSAGE_SELF, &rusage);
last_time.tv_sec =
StartOfTimes.tv_sec =
rusage.ru_utime.tv_sec;
last_time.tv_usec =
StartOfTimes.tv_usec =
rusage.ru_utime.tv_usec;
last_time_sys.tv_sec =
StartOfTimes_sys.tv_sec =
rusage.ru_stime.tv_sec;
last_time_sys.tv_usec =
StartOfTimes_sys.tv_usec =
rusage.ru_stime.tv_usec;
#endif
}
UInt
Yap_cputime ( void )
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
return((rusage.ru_utime.tv_sec - StartOfTimes.tv_sec)) * 1000 +
((rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
*now = (rusage.ru_utime.tv_sec - StartOfTimes.tv_sec) * 1000 +
(rusage.ru_utime.tv_usec - StartOfTimes.tv_usec) / 1000;
*interval = (rusage.ru_utime.tv_sec - last_time.tv_sec) * 1000 +
(rusage.ru_utime.tv_usec - last_time.tv_usec) / 1000;
last_time.tv_usec = rusage.ru_utime.tv_usec;
last_time.tv_sec = rusage.ru_utime.tv_sec;
}
void Yap_systime_interval(Int *now,Int *interval)
{
CACHE_REGS
struct rusage rusage;
getrusage(RUSAGE_SELF, &rusage);
*now = (rusage.ru_stime.tv_sec - StartOfTimes_sys.tv_sec) * 1000 +
(rusage.ru_stime.tv_usec - StartOfTimes_sys.tv_usec) / 1000;
*interval = (rusage.ru_stime.tv_sec - last_time_sys.tv_sec) * 1000 +
(rusage.ru_stime.tv_usec - last_time_sys.tv_usec) / 1000;
last_time_sys.tv_usec = rusage.ru_stime.tv_usec;
last_time_sys.tv_sec = rusage.ru_stime.tv_sec;
}
#elif defined(_WIN32)
#ifdef __GNUC__
/* This is stolen from the Linux kernel.
The problem is that mingw32 does not seem to have acces to div */
#ifndef do_div
#define do_div(n,base) ({ \
unsigned long __upper, __low, __high, __mod; \
asm("":"=a" (__low), "=d" (__high):"A" (n)); \
__upper = __high; \
if (__high) { \
__upper = __high % (base); \
__high = __high / (base); \
} \
asm("divl %2":"=a" (__low), "=d" (__mod):"rm" (base), "0" (__low), "1" (__upper)); \
asm("":"=A" (n):"a" (__low),"d" (__high)); \
__mod; \
})
#endif
#endif
#include <time.h>
static FILETIME StartOfTimes, last_time;
static FILETIME StartOfTimes_sys, last_time_sys;
static clock_t TimesStartOfTimes, Times_last_time;
/* store user time in this variable */
static void
InitTime (int wid)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
/* WIN98 */
clock_t t;
t = clock ();
Times_last_time = TimesStartOfTimes = t;
} else {
#if THREADS
REMOTE_ThreadHandle(wid).start_of_timesp = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).last_timep = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).start_of_times_sysp = (struct _FILETIME *)malloc(sizeof(FILETIME));
REMOTE_ThreadHandle(wid).last_time_sysp = (struct _FILETIME *)malloc(sizeof(FILETIME));
(*REMOTE_ThreadHandle(wid).last_timep).dwLowDateTime =
UserTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).last_timep).dwHighDateTime =
UserTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).start_of_timesp).dwLowDateTime =
UserTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).start_of_timesp).dwHighDateTime =
UserTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).last_time_sysp).dwLowDateTime =
KernelTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).last_time_sysp).dwHighDateTime =
KernelTime.dwHighDateTime;
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).dwLowDateTime =
KernelTime.dwLowDateTime;
(*REMOTE_ThreadHandle(wid).start_of_times_sysp).dwHighDateTime =
KernelTime.dwHighDateTime;
#else
last_time.dwLowDateTime =
UserTime.dwLowDateTime;
last_time.dwHighDateTime =
UserTime.dwHighDateTime;
StartOfTimes.dwLowDateTime =
UserTime.dwLowDateTime;
StartOfTimes.dwHighDateTime =
UserTime.dwHighDateTime;
last_time_sys.dwLowDateTime =
KernelTime.dwLowDateTime;
last_time_sys.dwHighDateTime =
KernelTime.dwHighDateTime;
StartOfTimes_sys.dwLowDateTime =
KernelTime.dwLowDateTime;
StartOfTimes_sys.dwHighDateTime =
KernelTime.dwHighDateTime;
#endif
}
}
#ifdef __GNUC__
static unsigned long long int
sub_utime(FILETIME t1, FILETIME t2)
{
ULARGE_INTEGER u[2];
memcpy((void *)u,(void *)&t1,sizeof(FILETIME));
memcpy((void *)(u+1),(void *)&t2,sizeof(FILETIME));
return
u[0].QuadPart - u[1].QuadPart;
}
#endif
UInt
Yap_cputime ( void )
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
clock_t t;
t = clock ();
return(((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC);
} else {
#ifdef __GNUC__
unsigned long long int t =
sub_utime(UserTime,StartOfTimes);
do_div(t,10000);
return((Int)t);
#endif
#ifdef _MSC_VER
__int64 t = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes;
return((Int)(t/10000));
#endif
}
}
void Yap_cputime_interval(Int *now,Int *interval)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
clock_t t;
t = clock ();
*now = ((t - TimesStartOfTimes)*1000) / CLOCKS_PER_SEC;
*interval = (t - Times_last_time) * 1000 / CLOCKS_PER_SEC;
Times_last_time = t;
} else {
#ifdef __GNUC__
unsigned long long int t1 =
sub_utime(UserTime, StartOfTimes);
unsigned long long int t2 =
sub_utime(UserTime, last_time);
do_div(t1,10000);
*now = (Int)t1;
do_div(t2,10000);
*interval = (Int)t2;
#endif
#ifdef _MSC_VER
__int64 t1 = *(__int64 *)&UserTime - *(__int64 *)&StartOfTimes;
__int64 t2 = *(__int64 *)&UserTime - *(__int64 *)&last_time;
*now = (Int)(t1/10000);
*interval = (Int)(t2/10000);
#endif
last_time.dwLowDateTime = UserTime.dwLowDateTime;
last_time.dwHighDateTime = UserTime.dwHighDateTime;
}
}
void Yap_systime_interval(Int *now,Int *interval)
{
HANDLE hProcess = GetCurrentProcess();
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
if (!GetProcessTimes(hProcess, &CreationTime, &ExitTime, &KernelTime, &UserTime)) {
*now = *interval = 0; /* not available */
} else {
#ifdef __GNUC__
unsigned long long int t1 =
sub_utime(KernelTime, StartOfTimes_sys);
unsigned long long int t2 =
sub_utime(KernelTime, last_time_sys);
do_div(t1,10000);
*now = (Int)t1;
do_div(t2,10000);
*interval = (Int)t2;
#endif
#ifdef _MSC_VER
__int64 t1 = *(__int64 *)&KernelTime - *(__int64 *)&StartOfTimes_sys;
__int64 t2 = *(__int64 *)&KernelTime - *(__int64 *)&last_time_sys;
*now = (Int)(t1/10000);
*interval = (Int)(t2/10000);
#endif
last_time_sys.dwLowDateTime = KernelTime.dwLowDateTime;
last_time_sys.dwHighDateTime = KernelTime.dwHighDateTime;
}
}
#elif HAVE_TIMES
#if defined(_WIN32)
#include <time.h>
#define TicksPerSec CLOCKS_PER_SEC
#else
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#endif
#if defined(__sun__) && (defined(__svr4__) || defined(__SVR4))
#if HAVE_LIMITS_H
#include <limits.h>
#endif
#define TicksPerSec CLK_TCK
#endif
#if defined(__alpha) || defined(__FreeBSD__) || defined(__linux__) || defined(__DragonFly__)
#if HAVE_TIME_H
#include <time.h>
#endif
#define TicksPerSec sysconf(_SC_CLK_TCK)
#endif
#if !TMS_IN_SYS_TIME
#if HAVE_SYS_TIMES_H
#include <sys/times.h>
#endif
#endif
static clock_t StartOfTimes, last_time;
static clock_t StartOfTimes_sys, last_time_sys;
/* store user time in this variable */
static void
InitTime (void)
{
struct tms t;
times (&t);
(*REMOTE_ThreadHandle(wid).last_timep) = StartOfTimes = t.tms_utime;
last_time_sys = StartOfTimes_sys = t.tms_stime;
}
UInt
Yap_cputime (void)
{
struct tms t;
times(&t);
return((t.tms_utime - StartOfTimes)*1000 / TicksPerSec);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
struct tms t;
times (&t);
*now = ((t.tms_utime - StartOfTimes)*1000) / TicksPerSec;
*interval = (t.tms_utime - last_time) * 1000 / TicksPerSec;
last_time = t.tms_utime;
}
void Yap_systime_interval(Int *now,Int *interval)
{
struct tms t;
times (&t);
*now = ((t.tms_stime - StartOfTimes_sys)*1000) / TicksPerSec;
*interval = (t.tms_stime - last_time_sys) * 1000 / TicksPerSec;
last_time_sys = t.tms_stime;
}
#else /* HAVE_TIMES */
#ifdef SIMICS
#include <sys/time.h>
/* since the point YAP was started */
static struct timeval StartOfTimes;
/* since last call to runtime */
static struct timeval last_time;
/* store user time in this variable */
static void
InitTime (int wid)
{
struct timeval tp;
gettimeofday(&tp,NULL);
(*REMOTE_ThreadHandle(wid).last_timep).tv_sec = (*REMOTE_ThreadHandle.start_of_timesp(wid)).tv_sec = tp.tv_sec;
(*REMOTE_ThreadHandle(wid).last_timep).tv_usec = (*REMOTE_ThreadHandle.start_of_timesp(wid)).tv_usec = tp.tv_usec;
}
UInt
Yap_cputime (void)
{
struct timeval tp;
gettimeofday(&tp,NULL);
if (StartOfTimes.tv_usec > tp.tv_usec)
return((tp.tv_sec - StartOfTimes.tv_sec - 1) * 1000 +
(StartOfTimes.tv_usec - tp.tv_usec) /1000);
else
return((tp.tv_sec - StartOfTimes.tv_sec)) * 1000 +
((tp.tv_usec - StartOfTimes.tv_usec) / 1000);
}
void Yap_cputime_interval(Int *now,Int *interval)
{
struct timeval tp;
gettimeofday(&tp,NULL);
*now = (tp.tv_sec - StartOfTimes.tv_sec) * 1000 +
(tp.tv_usec - StartOfTimes.tv_usec) / 1000;
*interval = (tp.tv_sec - last_time.tv_sec) * 1000 +
(tp.tv_usec - last_time.tv_usec) / 1000;
last_time.tv_usec = tp.tv_usec;
last_time.tv_sec = tp.tv_sec;
}
void Yap_systime_interval(Int *now,Int *interval)
{
*now = *interval = 0; /* not available */
}
#endif /* SIMICS */
#ifdef COMMENTED_OUT
/* This code is not working properly. I left it here to help future ports */
#ifdef MPW
#include <files.h>
#include <Events.h>
#define TicksPerSec 60.0
static double
real_cputime ()
{
return (((double) TickCount ()) / TicksPerSec);
}
#endif /* MPW */
#ifdef LATTICE
#include "osbind.h"
static long *ptime;
gettime ()
{
*ptime = *(long *) 0x462;
}
static double
real_cputime ()
{
long thetime;
ptime = &thetime;
xbios (38, gettime);
return (((double) thetime) / (Getrez () == 2 ? 70 : 60));
}
#endif /* LATTICE */
#ifdef M_WILLIAMS
#include <osbind.h>
#include <xbios.h>
static long *ptime;
static long
readtime ()
{
return (*((long *) 0x4ba));
}
static double
real_cputime ()
{
long time;
time = Supexec (readtime);
return (time / 200.0);
}
#endif /* M_WILLIAMS */
#ifdef LIGHT
#undef FALSE
#undef TRUE
#include <FileMgr.h>
#define TicksPerSec 60.0
static double
real_cputime ()
{
return (((double) TickCount ()) / TicksPerSec);
}
#endif /* LIGHT */
#endif /* COMMENTED_OUT */
#endif /* HAVE_GETRUSAGE */
#if HAVE_GETHRTIME
#if HAVE_TIME_H
#include <time.h>
#endif
/* since the point YAP was started */
static hrtime_t StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(hrtime_t *)ALIGN_YAPTYPE(LastWtimePtr,hrtime_t))
static void
InitWTime (void)
{
StartOfWTimes = gethrtime();
}
static void
InitLastWtime(void) {
/* ask for twice the space in order to guarantee alignment */
LastWtimePtr = (void *)Yap_AllocCodeSpace(2*sizeof(hrtime_t));
LastWtime = StartOfWTimes;
}
Int
Yap_walltime (void)
{
hrtime_t tp = gethrtime();
/* return time in milliseconds */
return((Int)((tp-StartOfWTimes)/((hrtime_t)1000000)));
}
void Yap_walltime_interval(Int *now,Int *interval)
{
hrtime_t tp = gethrtime();
/* return time in milliseconds */
*now = (Int)((tp-StartOfWTimes)/((hrtime_t)1000000));
*interval = (Int)((tp-LastWtime)/((hrtime_t)1000000));
LastWtime = tp;
}
#elif HAVE_GETTIMEOFDAY
/* since the point YAP was started */
static struct timeval StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(struct timeval *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
gettimeofday(&StartOfWTimes,NULL);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeval));
LastWtime.tv_usec = StartOfWTimes.tv_usec;
LastWtime.tv_sec = StartOfWTimes.tv_sec;
}
Int
Yap_walltime (void)
{
struct timeval tp;
gettimeofday(&tp,NULL);
if (StartOfWTimes.tv_usec > tp.tv_usec)
return((tp.tv_sec - StartOfWTimes.tv_sec - 1) * 1000 +
(StartOfWTimes.tv_usec - tp.tv_usec) /1000);
else
return((tp.tv_sec - StartOfWTimes.tv_sec)) * 1000 +
((tp.tv_usec - LastWtime.tv_usec) / 1000);
}
void Yap_walltime_interval(Int *now,Int *interval)
{
struct timeval tp;
gettimeofday(&tp,NULL);
*now = (tp.tv_sec - StartOfWTimes.tv_sec) * 1000 +
(tp.tv_usec - StartOfWTimes.tv_usec) / 1000;
*interval = (tp.tv_sec - LastWtime.tv_sec) * 1000 +
(tp.tv_usec - LastWtime.tv_usec) / 1000;
LastWtime.tv_usec = tp.tv_usec;
LastWtime.tv_sec = tp.tv_sec;
}
#elif defined(_WIN32)
#include <sys/timeb.h>
#include <time.h>
/* since the point YAP was started */
static struct _timeb StartOfWTimes;
/* since last call to walltime */
#define LastWtime (*(struct timeb *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
_ftime(&StartOfWTimes);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(struct timeb));
LastWtime.time = StartOfWTimes.time;
LastWtime.millitm = StartOfWTimes.millitm;
}
Int
Yap_walltime (void)
{
struct _timeb tp;
_ftime(&tp);
if (StartOfWTimes.millitm > tp.millitm)
return((tp.time - StartOfWTimes.time - 1) * 1000 +
(StartOfWTimes.millitm - tp.millitm));
else
return((tp.time - StartOfWTimes.time)) * 1000 +
((tp.millitm - LastWtime.millitm) / 1000);
}
void Yap_walltime_interval(Int *now,Int *interval)
{
struct _timeb tp;
_ftime(&tp);
*now = (tp.time - StartOfWTimes.time) * 1000 +
(tp.millitm - StartOfWTimes.millitm);
*interval = (tp.time - LastWtime.time) * 1000 +
(tp.millitm - LastWtime.millitm) ;
LastWtime.millitm = tp.millitm;
LastWtime.time = tp.time;
}
#elif HAVE_TIMES
static clock_t StartOfWTimes;
#define LastWtime (*(clock_t *)LastWtimePtr)
/* store user time in this variable */
static void
InitWTime (void)
{
StartOfWTimes = times(NULL);
}
static void
InitLastWtime(void) {
LastWtimePtr = (void *)Yap_AllocCodeSpace(sizeof(clock_t));
LastWtime = StartOfWTimes;
}
Int
Yap_walltime (void)
{
clock_t t;
t = times(NULL);
return ((t - StartOfWTimes)*1000 / TicksPerSec));
}
void Yap_walltime_interval(Int *now,Int *interval)
{
clock_t t;
t = times(NULL);
*now = ((t - StartOfWTimes)*1000) / TicksPerSec;
*interval = (t - LastWtime) * 1000 / TicksPerSec;
}
#endif /* HAVE_TIMES */
#if HAVE_TIME_H
#include <time.h>
#endif
unsigned int current_seed;
static void
InitRandom (void)
{
current_seed = (unsigned int) time (NULL);
#if HAVE_RANDOM
srandom (current_seed);
#elif HAVE_RAND
srand (current_seed);
#endif
}
extern int rand(void);
double
Yap_random (void)
{
#if HAVE_RANDOM
/* extern long random (); */
return (((double) random ()) / 0x7fffffffL /* 2**31-1 */);
#elif HAVE_RAND
return (((double) (rand ()) / RAND_MAX));
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"random not available in this configuration");
return (0.0);
#endif
}
static Int
p_srandom ( USES_REGS1 )
{
register Term t0 = Deref (ARG1);
if (IsVarTerm (t0)) {
return(Yap_unify(ARG1,MkIntegerTerm((Int)current_seed)));
}
if(!IsNumTerm (t0))
return (FALSE);
if (IsIntTerm (t0))
current_seed = (unsigned int) IntOfTerm (t0);
else if (IsFloatTerm (t0))
current_seed = (unsigned int) FloatOfTerm (t0);
else
current_seed = (unsigned int) LongIntOfTerm (t0);
#if HAVE_RANDOM
srandom(current_seed);
#elif HAVE_RAND
srand(current_seed);
#endif
return (TRUE);
}
#if HAVE_SIGNAL
#include <signal.h>
#ifdef MPW
#define signal sigset
#endif
#ifdef MSH
#define SIGFPE SIGDIV
#endif
static void InitSignals(void);
#define PLSIG_PREPARED 0x01 /* signal is prepared */
#define PLSIG_THROW 0x02 /* throw signal(num, name) */
#define PLSIG_SYNC 0x04 /* call synchronously */
#define PLSIG_NOFRAME 0x08 /* Do not create a Prolog frame */
#define SIG_PROLOG_OFFSET 32 /* Start of Prolog signals */
#define SIG_EXCEPTION (SIG_PROLOG_OFFSET+0)
#ifdef O_ATOMGC
#define SIG_ATOM_GC (SIG_PROLOG_OFFSET+1)
#endif
#define SIG_GC (SIG_PROLOG_OFFSET+2)
#ifdef O_PLMT
#define SIG_THREAD_SIGNAL (SIG_PROLOG_OFFSET+3)
#endif
#define SIG_FREECLAUSES (SIG_PROLOG_OFFSET+4)
#define SIG_PLABORT (SIG_PROLOG_OFFSET+5)
static struct signame
{ int sig;
const char *name;
int flags;
} signames[] =
{
#ifdef SIGHUP
{ SIGHUP, "hup", 0},
#endif
{ SIGINT, "int", 0},
#ifdef SIGQUIT
{ SIGQUIT, "quit", 0},
#endif
{ SIGILL, "ill", 0},
{ SIGABRT, "abrt", 0},
{ SIGFPE, "fpe", PLSIG_THROW},
#ifdef SIGKILL
{ SIGKILL, "kill", 0},
#endif
{ SIGSEGV, "segv", 0},
#ifdef SIGPIPE
{ SIGPIPE, "pipe", 0},
#endif
#ifdef SIGALRM
{ SIGALRM, "alrm", PLSIG_THROW},
#endif
{ SIGTERM, "term", 0},
#ifdef SIGUSR1
{ SIGUSR1, "usr1", 0},
#endif
#ifdef SIGUSR2
{ SIGUSR2, "usr2", 0},
#endif
#ifdef SIGCHLD
{ SIGCHLD, "chld", 0},
#endif
#ifdef SIGCONT
{ SIGCONT, "cont", 0},
#endif
#ifdef SIGSTOP
{ SIGSTOP, "stop", 0},
#endif
#ifdef SIGTSTP
{ SIGTSTP, "tstp", 0},
#endif
#ifdef SIGTTIN
{ SIGTTIN, "ttin", 0},
#endif
#ifdef SIGTTOU
{ SIGTTOU, "ttou", 0},
#endif
#ifdef SIGTRAP
{ SIGTRAP, "trap", 0},
#endif
#ifdef SIGBUS
{ SIGBUS, "bus", 0},
#endif
#ifdef SIGSTKFLT
{ SIGSTKFLT, "stkflt", 0},
#endif
#ifdef SIGURG
{ SIGURG, "urg", 0},
#endif
#ifdef SIGIO
{ SIGIO, "io", 0},
#endif
#ifdef SIGPOLL
{ SIGPOLL, "poll", 0},
#endif
#ifdef SIGXCPU
{ SIGXCPU, "xcpu", PLSIG_THROW},
#endif
#ifdef SIGXFSZ
{ SIGXFSZ, "xfsz", PLSIG_THROW},
#endif
#ifdef SIGVTALRM
{ SIGVTALRM, "vtalrm", PLSIG_THROW},
#endif
#ifdef SIGPROF
{ SIGPROF, "prof", 0},
#endif
#ifdef SIGPWR
{ SIGPWR, "pwr", 0},
#endif
{ SIG_EXCEPTION, "prolog:exception", 0 },
#ifdef SIG_ATOM_GC
{ SIG_ATOM_GC, "prolog:atom_gc", 0 },
#endif
{ SIG_GC, "prolog:gc", 0 },
#ifdef SIG_THREAD_SIGNAL
{ SIG_THREAD_SIGNAL, "prolog:thread_signal", 0 },
#endif
{ -1, NULL, 0}
};
/* SWI emulation */
int
Yap_signal_index(const char *name)
{ struct signame *sn = signames;
char tmp[12];
if ( strncmp(name, "SIG", 3) == 0 && strlen(name) < 12 )
{ char *p = (char *)name+3, *q = tmp;
while ((*q++ = tolower(*p++))) {};
name = tmp;
}
for( ; sn->name; sn++ )
{ if ( !strcmp(sn->name, name) )
return sn->sig;
}
return -1;
}
#if (defined(__svr4__) || defined(__SVR4))
#if HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#if HAVE_SYS_UCONTEXT_H
#include <sys/ucontext.h>
#endif
static void HandleSIGSEGV(int, siginfo_t *, ucontext_t *);
static void HandleMatherr, (int, siginfo_t *, ucontext_t *);
static void my_signal_info(int, void (*)(int, siginfo_t *, ucontext_t *));
static void my_signal(int, void (*)(int, siginfo_t *, ucontext_t *));
/* This routine believes there is a continuous space starting from the
HeapBase and ending on TrailTop */
static void
HandleSIGSEGV(int sig, siginfo_t *sip, ucontext_t *uap)
{
#if !USE_SYSTEM_MALLOC
if (
sip->si_code != SI_NOINFO &&
sip->si_code == SEGV_MAPERR &&
(void *)(sip->si_addr) > (void *)(Yap_HeapBase) &&
(void *)(sip->si_addr) < (void *)(LOCAL_TrailTop+K64)) {
Yap_growtrail(K64, TRUE);
} else
#endif
{
Yap_Error(FATAL_ERROR, TermNil,
"likely bug in YAP, segmentation violation at %p", sip->si_addr);
}
}
static void
HandleMatherr(int sig, siginfo_t *sip, ucontext_t *uap)
{
CACHE_REGS
yap_error_number error_no;
/* reset the registers so that we don't have trash in abstract machine */
switch(sip->si_code) {
case FPE_INTDIV:
error_no = EVALUATION_ERROR_ZERO_DIVISOR;
break;
case FPE_INTOVF:
error_no = EVALUATION_ERROR_INT_OVERFLOW;
break;
case FPE_FLTDIV:
error_no = EVALUATION_ERROR_ZERO_DIVISOR;
break;
case FPE_FLTOVF:
error_no = EVALUATION_ERROR_FLOAT_OVERFLOW;
break;
case FPE_FLTUND:
error_no = EVALUATION_ERROR_FLOAT_UNDERFLOW;
break;
case FPE_FLTRES:
case FPE_FLTINV:
case FPE_FLTSUB:
default:
error_no = EVALUATION_ERROR_UNDEFINED;
}
set_fpu_exceptions(0);
Yap_Error(error_no, TermNil, "");
}
#if HAVE_SIGSEGV && !defined(THREADS)
static void
my_signal_info(int sig, void (*handler)(int, siginfo_t *, ucontext_t *))
{
struct sigaction sigact;
sigact.sa_handler = handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = SA_SIGINFO;
sigaction(sig,&sigact,NULL);
}
#endif
static void
my_signal(int sig, void (*handler)(int, siginfo_t *, ucontext_t *))
{
struct sigaction sigact;
sigact.sa_handler=handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(sig,&sigact,NULL);
}
#elif defined(__linux__)
static RETSIGTYPE HandleMatherr(int);
#if HAVE_SIGSEGV && !defined(THREADS)
static RETSIGTYPE HandleSIGSEGV(int,siginfo_t *,void *);
static void my_signal_info(int, void (*)(int,siginfo_t *,void *));
#endif
static void my_signal(int, void (*)(int));
/******** Handling floating point errors *******************/
/* old code, used to work with matherror(), deprecated now:
char err_msg[256];
switch (x->type)
{
case DOMAIN:
case SING:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s", x->name);
return(0);
case OVERFLOW:
Yap_Error(EVALUATION_ERROR_FLOAT_OVERFLOW, TermNil, "%s", x->name);
return(0);
case UNDERFLOW:
Yap_Error(EVALUATION_ERROR_FLOAT_UNDERFLOW, TermNil, "%s", x->name);
return(0);
case PLOSS:
case TLOSS:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s(%g) = %g", x->name,
x->arg1, x->retval);
return(0);
default:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, NULL);
return(0);
}
*/
static RETSIGTYPE
HandleMatherr(int sig)
{
CACHE_REGS
#if HAVE_FETESTEXCEPT
/* This should work in Linux, but it doesn't seem to. */
int raised = fetestexcept(FE_ALL_EXCEPT);
if (raised & FE_OVERFLOW) {
LOCAL_matherror = EVALUATION_ERROR_FLOAT_OVERFLOW;
} else if (raised & (FE_INVALID|FE_INEXACT)) {
LOCAL_matherror = EVALUATION_ERROR_UNDEFINED;
} else if (raised & FE_DIVBYZERO) {
LOCAL_matherror = EVALUATION_ERROR_ZERO_DIVISOR;
} else if (raised & FE_UNDERFLOW) {
LOCAL_matherror = EVALUATION_ERROR_FLOAT_UNDERFLOW;
} else
#endif
LOCAL_matherror = EVALUATION_ERROR_UNDEFINED;
/* something very bad happened on the way to the forum */
set_fpu_exceptions(FALSE);
Yap_Error(LOCAL_matherror , TermNil, "");
}
#if HAVE_SIGSEGV && !defined(THREADS)
static void
my_signal_info(int sig, void (*handler)(int,siginfo_t *,void *))
{
struct sigaction sigact;
sigact.sa_sigaction = handler;
sigemptyset(&sigact.sa_mask);
#if HAVE_SIGINFO
sigact.sa_flags = SA_SIGINFO;
#else
sigact.sa_flags = 0;
#endif
sigaction(sig,&sigact,NULL);
}
static void
SearchForTrailFault(siginfo_t *siginfo)
{
void *ptr = siginfo->si_addr;
/* If the TRAIL is very close to the top of mmaped allocked space,
then we can try increasing the TR space and restarting the
instruction. In the worst case, the system will
crash again
*/
#if OS_HANDLES_TR_OVERFLOW && !USE_SYSTEM_MALLOC
if ((ptr > (void *)LOCAL_TrailTop-1024 &&
TR < (tr_fr_ptr) LOCAL_TrailTop+(64*1024))) {
if (!Yap_growtrail(64*1024, TRUE)) {
Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP failed to reserve %ld bytes in growtrail", K64);
}
/* just in case, make sure the OS keeps the signal handler. */
/* my_signal_info(SIGSEGV, HandleSIGSEGV); */
} else
#endif /* OS_HANDLES_TR_OVERFLOW */
{
Yap_Error(FATAL_ERROR, TermNil,
"tried to access illegal address %p!!!!", ptr);
}
}
static RETSIGTYPE
HandleSIGSEGV(int sig, siginfo_t *siginfo, void *context)
{
if (LOCAL_PrologMode & ExtendStackMode) {
Yap_Error(FATAL_ERROR, TermNil, "OS memory allocation crashed at address %p, bailing out\n",LOCAL_TrailTop);
}
SearchForTrailFault(siginfo);
}
#endif
static void
my_signal(int sig, void (*handler)(int))
{
struct sigaction sigact;
sigact.sa_handler=handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(sig,&sigact,NULL);
}
#else /* if not (defined(__svr4__) || defined(__SVR4)) */
static RETSIGTYPE HandleMatherr(int);
static RETSIGTYPE HandleSIGSEGV(int);
static void my_signal_info(int, void (*)(int));
static void my_signal(int, void (*)(int));
/******** Handling floating point errors *******************/
/* old code, used to work with matherror(), deprecated now:
char err_msg[256];
switch (x->type)
{
case DOMAIN:
case SING:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s", x->name);
return(0);
case OVERFLOW:
Yap_Error(EVALUATION_ERROR_FLOAT_OVERFLOW, TermNil, "%s", x->name);
return(0);
case UNDERFLOW:
Yap_Error(EVALUATION_ERROR_FLOAT_UNDERFLOW, TermNil, "%s", x->name);
return(0);
case PLOSS:
case TLOSS:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, "%s(%g) = %g", x->name,
x->arg1, x->retval);
return(0);
default:
Yap_Error(EVALUATION_ERROR_UNDEFINED, TermNil, NULL);
return(0);
}
*/
#if HAVE_FENV_H
#include <fenv.h>
#endif
static RETSIGTYPE
HandleMatherr(int sig)
{
CACHE_REGS
#if HAVE_FETESTEXCEPT
/* This should work in Linux, but it doesn't seem to. */
int raised = fetestexcept(FE_ALL_EXCEPT);
if (raised & FE_OVERFLOW) {
LOCAL_matherror = EVALUATION_ERROR_FLOAT_OVERFLOW;
} else if (raised & (FE_INVALID|FE_INEXACT)) {
LOCAL_matherror = EVALUATION_ERROR_UNDEFINED;
} else if (raised & FE_DIVBYZERO) {
LOCAL_matherror = EVALUATION_ERROR_ZERO_DIVISOR;
} else if (raised & FE_UNDERFLOW) {
LOCAL_matherror = EVALUATION_ERROR_FLOAT_UNDERFLOW;
} else
#endif
LOCAL_matherror = EVALUATION_ERROR_UNDEFINED;
/* something very bad happened on the way to the forum */
set_fpu_exceptions(FALSE);
Yap_Error(LOCAL_matherror , TermNil, "");
}
static void
SearchForTrailFault(void)
{
/* If the TRAIL is very close to the top of mmaped allocked space,
then we can try increasing the TR space and restarting the
instruction. In the worst case, the system will
crash again
*/
#ifdef DEBUG
/* fprintf(stderr,"Catching a sigsegv at %p with %p\n", TR, TrailTop); */
#endif
#if OS_HANDLES_TR_OVERFLOW && !USE_SYSTEM_MALLOC
if ((TR > (tr_fr_ptr)LOCAL_TrailTop-1024 &&
TR < (tr_fr_ptr)LOCAL_TrailTop+(64*1024))|| Yap_DBTrailOverflow()) {
long trsize = K64;
while ((CELL)TR > (CELL)LOCAL_TrailTop+trsize) {
trsize += K64;
}
if (!Yap_growtrail(trsize, TRUE)) {
Yap_Error(OUT_OF_TRAIL_ERROR, TermNil, "YAP failed to reserve %ld bytes in growtrail", K64);
}
/* just in case, make sure the OS keeps the signal handler. */
/* my_signal_info(SIGSEGV, HandleSIGSEGV); */
} else
#endif /* OS_HANDLES_TR_OVERFLOW */
Yap_Error(INTERNAL_ERROR, TermNil,
"likely bug in YAP, segmentation violation");
}
static RETSIGTYPE
HandleSIGSEGV(int sig)
{
CACHE_REGS
if (LOCAL_PrologMode & ExtendStackMode) {
Yap_Error(FATAL_ERROR, TermNil, "OS memory allocation crashed at address %p, bailing out\n",LOCAL_TrailTop);
}
SearchForTrailFault();
}
#if HAVE_SIGACTION
static void
my_signal_info(int sig, void (*handler)(int))
{
struct sigaction sigact;
sigact.sa_handler = handler;
sigemptyset(&sigact.sa_mask);
#if HAVE_SIGINFO
sigact.sa_flags = SA_SIGINFO;
#else
sigact.sa_flags = 0;
#endif
sigaction(sig,&sigact,NULL);
}
static void
my_signal(int sig, void (*handler)(int))
{
struct sigaction sigact;
sigact.sa_handler=handler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(sig,&sigact,NULL);
}
#else
static void
my_signal(int sig, void (*handler)(int))
{
signal(sig, handler);
}
static void
my_signal_info(sig, handler)
int sig;
void (*handler)(int);
{
if(signal(sig, handler) == SIG_ERR)
exit(1);
}
#endif /* __linux__ */
#endif /* (defined(__svr4__) || defined(__SVR4)) */
static int
InteractSIGINT(int ch) {
CACHE_REGS
switch (ch) {
case 'a':
/* abort computation */
if (LOCAL_PrologMode & (GCMode|ConsoleGetcMode|CritMode)) {
LOCAL_PrologMode |= AbortMode;
return -1;
} else {
Yap_Error(PURE_ABORT, TermNil, "abort from console");
}
LOCAL_PrologMode &= ~AsyncIntMode;
Yap_RestartYap( 1 );
return -1;
case 'b':
/* continue */
Yap_signal (YAP_BREAK_SIGNAL);
return 1;
case 'c':
/* continue */
return 1;
case 'd':
Yap_signal (YAP_DEBUG_SIGNAL);
/* enter debug mode */
return 1;
case 'e':
/* exit */
Yap_exit(0);
return -1;
case 'g':
/* exit */
Yap_signal (YAP_STACK_DUMP_SIGNAL);
return -1;
case 't':
/* start tracing */
Yap_signal (YAP_TRACE_SIGNAL);
return 1;
#ifdef LOW_LEVEL_TRACER
case 'T':
toggle_low_level_trace();
return 1;
#endif
case 's':
/* show some statistics */
Yap_signal (YAP_STATISTICS_SIGNAL);
return 1;
case EOF:
return(0);
break;
case 'h':
case '?':
default:
/* show an helpful message */
fprintf(GLOBAL_stderr, "Please press one of:\n");
fprintf(GLOBAL_stderr, " a for abort\n c for continue\n d for debug\n");
fprintf(GLOBAL_stderr, " e for exit\n g for stack dump\n s for statistics\n t for trace\n");
fprintf(GLOBAL_stderr, " b for break\n");
return(0);
}
}
/*
This function talks to the user about a signal. We assume we are in
the context of the main Prolog thread (trivial in Unix, but hard in WIN32)
*/
static int
ProcessSIGINT(void)
{
CACHE_REGS
int ch, out;
LOCAL_PrologMode |= AsyncIntMode;
do {
ch = Yap_GetCharForSIGINT();
} while (!(out = InteractSIGINT(ch)));
LOCAL_PrologMode &= ~AsyncIntMode;
LOCAL_PrologMode &= ~InterruptMode;
return(out);
}
#if !_MSC_VER && !defined(__MINGW32__)
#if HAVE_SIGNAL
static int snoozing = FALSE;
#endif
/* This function is called from the signal handler to process signals.
We assume we are within the context of the signal handler, whatever
that might be
*/
static RETSIGTYPE
#if (defined(__svr4__) || defined(__SVR4))
HandleSIGINT (int sig, siginfo_t *x, ucontext_t *y)
#else
HandleSIGINT (int sig)
#endif
{
CACHE_REGS
/* fprintf(stderr,"mode = %x\n",LOCAL_PrologMode); */
my_signal(SIGINT, HandleSIGINT);
/* do this before we act */
#if HAVE_ISATTY
if (!isatty(0)) {
Yap_Error(INTERRUPT_ERROR,MkIntTerm(SIGINT),NULL);
return;
}
#endif
if (LOCAL_InterruptsDisabled) {
return;
}
if (LOCAL_PrologMode & ConsoleGetcMode) {
LOCAL_PrologMode |= InterruptMode;
return;
}
#ifdef HAVE_SETBUF
/* make sure we are not waiting for the end of line */
YP_setbuf (stdin, NULL);
#endif
if (snoozing) {
snoozing = FALSE;
return;
}
ProcessSIGINT();
}
#endif
#if !defined(_WIN32)
/* this routine is called if the system activated the alarm */
static RETSIGTYPE
#if (defined(__svr4__) || defined(__SVR4))
HandleALRM (int s, siginfo_t *x, ucontext_t *y)
#else
HandleALRM(int s)
#endif
{
my_signal (SIGALRM, HandleALRM);
/* force the system to creep */
Yap_signal (YAP_ALARM_SIGNAL);
/* now, say what is going on */
Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue));
}
#endif
#if !defined(_WIN32)
/* this routine is called if the system activated the alarm */
static RETSIGTYPE
#if (defined(__svr4__) || defined(__SVR4))
HandleVTALRM (int s, siginfo_t *x, ucontext_t *y)
#else
HandleVTALRM(int s)
#endif
{
my_signal (SIGVTALRM, HandleVTALRM);
/* force the system to creep */
Yap_signal (YAP_VTALARM_SIGNAL);
/* now, say what is going on */
Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue));
}
#endif
/*
* This function is called after a normal interrupt had been caught.
* It allows 6 possibilities: abort, continue, trace, debug, help, exit.
*/
#if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT)
static RETSIGTYPE
#if (defined(__svr4__) || defined(__SVR4))
ReceiveSignal (int s, siginfo_t *x, ucontext_t *y)
#else
ReceiveSignal (int s)
#endif
{
switch (s)
{
#ifndef MPW
case SIGFPE:
set_fpu_exceptions(FALSE);
Yap_Error (SYSTEM_ERROR, TermNil, "floating point exception ]");
break;
#endif
#if !defined(LIGHT) && !defined(_WIN32)
/* These signals are not handled by WIN32 and not the Macintosh */
case SIGQUIT:
case SIGKILL:
Yap_Error(INTERRUPT_ERROR,MkIntTerm(s),NULL);
#endif
#ifdef SIGUSR1
case SIGUSR1:
/* force the system to creep */
Yap_signal (YAP_USR1_SIGNAL);
break;
#endif /* defined(SIGUSR1) */
#ifdef SIGUSR2
case SIGUSR2:
/* force the system to creep */
Yap_signal (YAP_USR2_SIGNAL);
break;
#endif /* defined(SIGUSR2) */
#ifdef SIGPIPE
case SIGPIPE:
/* force the system to creep */
Yap_signal (YAP_PIPE_SIGNAL);
break;
#endif /* defined(SIGPIPE) */
#ifdef SIGHUP
case SIGHUP:
/* force the system to creep */
/* Just ignore SUGHUP Yap_signal (YAP_HUP_SIGNAL); */
break;
#endif /* defined(SIGHUP) */
default:
fprintf(GLOBAL_stderr, "\n[ Unexpected signal ]\n");
exit (EXIT_FAILURE);
}
}
#endif
#if (_MSC_VER || defined(__MINGW32__))
static BOOL WINAPI
MSCHandleSignal(DWORD dwCtrlType) {
CACHE_REGS
if (LOCAL_InterruptsDisabled) {
return FALSE;
}
switch(dwCtrlType) {
case CTRL_C_EVENT:
case CTRL_BREAK_EVENT:
Yap_signal(YAP_ALARM_SIGNAL);
LOCAL_PrologMode |= InterruptMode;
return(TRUE);
default:
return(FALSE);
}
}
#endif
/* SIGINT can cause problems, if caught before full initialization */
static void
InitSignals (void)
{
if (GLOBAL_PrologShouldHandleInterrupts) {
#if !defined(LIGHT) && !_MSC_VER && !defined(__MINGW32__) && !defined(LIGHT)
my_signal (SIGQUIT, ReceiveSignal);
my_signal (SIGKILL, ReceiveSignal);
my_signal (SIGUSR1, ReceiveSignal);
my_signal (SIGUSR2, ReceiveSignal);
my_signal (SIGHUP, ReceiveSignal);
my_signal (SIGALRM, HandleALRM);
my_signal (SIGVTALRM, HandleVTALRM);
#endif
#ifdef SIGPIPE
my_signal (SIGPIPE, ReceiveSignal);
#endif
#if _MSC_VER || defined(__MINGW32__)
signal (SIGINT, SIG_IGN);
SetConsoleCtrlHandler(MSCHandleSignal,TRUE);
#else
my_signal (SIGINT, HandleSIGINT);
#endif
#ifndef MPW
my_signal (SIGFPE, HandleMatherr);
#endif
#if HAVE_SIGSEGV && !defined(THREADS)
my_signal_info (SIGSEGV, HandleSIGSEGV);
#endif
#ifdef YAPOR_COW
signal(SIGCHLD, SIG_IGN); /* avoid ghosts */
#endif
} else {
#if OS_HANDLES_TR_OVERFLOW
#if HAVE_SIGSEGV && !defined(THREADS)
my_signal_info (SIGSEGV, HandleSIGSEGV);
#endif
#endif
}
}
#endif /* HAVE_SIGNAL */
/* TrueFileName -> Finds the true name of a file */
#ifdef __MINGW32__
#include <ctype.h>
#endif
static int
volume_header(char *file)
{
#if _MSC_VER || defined(__MINGW32__)
char *ch = file;
int c;
while ((c = ch[0]) != '\0') {
if (isalnum(c)) ch++;
else return(c == ':');
}
#endif
return(FALSE);
}
int
Yap_volume_header(char *file)
{
return volume_header(file);
}
int Yap_getcwd(const char *buf, int len)
{
CACHE_REGS
#if __simplescalar__
/* does not implement getcwd */
strncpy(Yap_buf,GLOBAL_pwd,len);
#elif HAVE_GETCWD
if (getcwd ((char *)buf, len) == NULL) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "%s in getcwd/1", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "error %d in getcwd/1", errno);
#endif
return FALSE;
}
#else
if (getwd (buf) == NULL) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "%s in getcwd/1", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "in getcwd/1");
#endif
return FALSE;
}
#endif
return TRUE;
}
/******
TODO: rewrite to use wordexp
****/
static int
TrueFileName (char *source, char *root, char *result, int in_lib, int expand_root)
{
CACHE_REGS
char *work;
char ares1[YAP_FILENAME_MAX];
result[0] = '\0';
#if defined(__MINGW32__) || _MSC_VER
/* step 0: replace / by \ */
strncpy(ares1, source, YAP_FILENAME_MAX);
{
char *p = ares1, ch = p[0];
while (ch != '\0') {
if (ch == '/') p[0] = '\\';
p++;
ch = p[0];
}
}
source = ares1;
#endif
/* step 1: eating home information */
if (source[0] == '~') {
if (dir_separator(source[1]) || source[1] == '\0')
{
char *s;
source++;
#if defined(_WIN32)
s = getenv("HOMEDRIVE");
if (s != NULL)
strncpy (result, getenv ("HOMEDRIVE"), YAP_FILENAME_MAX);
s = getenv("HOMEPATH");
if (s != NULL)
strncpy (result, s, YAP_FILENAME_MAX);
#else
s = getenv ("HOME");
if (s != NULL)
strncpy (result, s, YAP_FILENAME_MAX);
#endif
} else {
#if HAVE_GETPWNAM
struct passwd *user_passwd;
char *res0 = result;
source++;
while (!dir_separator((*res0 = *source)) && *res0 != '\0')
res0++, source++;
*res0++ = '\0';
if ((user_passwd = getpwnam (result)) == NULL) {
return FALSE;
}
strncpy (result, user_passwd->pw_dir, YAP_FILENAME_MAX);
#else
return FALSE;
#endif
}
strncat (result, source, YAP_FILENAME_MAX);
} else if (source[0] == '$') {
/* follow SICStus expansion rules */
int ch;
char *s;
char *res0 = source+1;
while ((ch = *res0) && is_valid_env_char (ch)) {
res0++;
}
*res0 = '\0';
if (!(s = (char *) getenv (source+1))) {
return FALSE;
}
*res0 = ch;
strncpy (result, s, YAP_FILENAME_MAX);
strncat (result, res0, YAP_FILENAME_MAX);
} else {
strncpy (result, source, YAP_FILENAME_MAX);
}
/* step 3: get the full file name */
if (expand_root && !dir_separator(result[0]) && !volume_header(result)) {
if (!Yap_getcwd(ares1, YAP_FILENAME_MAX))
return FALSE;
#if _MSC_VER || defined(__MINGW32__)
strncat (ares1, "\\", YAP_FILENAME_MAX-1);
#else
strncat (ares1, "/", YAP_FILENAME_MAX-1);
#endif
if (root) {
if (!dir_separator(root[0]) && !volume_header(root)) {
strncat(ares1, root, YAP_FILENAME_MAX-1);
} else {
strncpy(ares1, root, YAP_FILENAME_MAX-1);
}
#if _MSC_VER || defined(__MINGW32__)
strncat (ares1, "\\", YAP_FILENAME_MAX-1);
#else
strncat (ares1, "/", YAP_FILENAME_MAX-1);
#endif
}
strncat (ares1, result, YAP_FILENAME_MAX-1);
if (in_lib) {
int tmpf;
if ((tmpf = open(ares1, O_RDONLY)) < 0) {
/* not in current directory, let us try the library */
if (Yap_LibDir != NULL) {
strncpy(LOCAL_FileNameBuf, Yap_LibDir, YAP_FILENAME_MAX);
#if HAVE_GETENV
} else {
char *yap_env = getenv("YAPLIBDIR");
if (yap_env != NULL) {
strncpy(ares1, yap_env, YAP_FILENAME_MAX);
#endif
} else {
#if _MSC_VER || defined(__MINGW32__)
if (libdir)
strncpy(ares1, libdir, YAP_FILENAME_MAX);
else
#endif
strncpy(ares1, YAP_LIBDIR, YAP_FILENAME_MAX);
}
#if HAVE_GETENV
}
#endif
#if _MSC_VER || defined(__MINGW32__)
strncat(ares1,"\\", YAP_FILENAME_MAX-1);
#else
strncat(ares1,"/", YAP_FILENAME_MAX-1);
#endif
strncat(ares1,result, YAP_FILENAME_MAX-1);
if ((tmpf = open(ares1, O_RDONLY)) >= 0) {
close(tmpf);
strncpy (result, ares1, YAP_FILENAME_MAX);
}
} else {
strncpy (result, ares1, YAP_FILENAME_MAX);
close(tmpf);
}
} else {
strncpy (result, ares1, YAP_FILENAME_MAX);
}
}
/* step 4: simplifying the file name */
work = result;
while (*work != '\0')
{
char *new_work, *next_work;
if (*work++ != '.')
continue;
if (*work != '.')
{
if (!dir_separator(*work) || !dir_separator(work[-2]))
continue;
next_work = work + 1;
new_work = --work;
}
else
{
if (!dir_separator(work[1]) || !dir_separator(work[-2]))
continue;
next_work = work + 2;
work -= 2;
if (work == result)
return (FALSE);
while (!dir_separator(*--work) && work != result);
if (work == result && !dir_separator(work[0]))
return (FALSE);
new_work = ++work;
}
while ((*new_work++ = *next_work++)!=0);
}
if (work != result && dir_separator(work[-1])) {
/* should only do this on result being a directory */
int ch0 = work[-1];
work--;
work[0] = '\0';
if (!is_directory(result)) {
/* put it back: */
work[0] = ch0;
work++;
}
}
return TRUE;
}
int
Yap_TrueFileName (char *source, char *result, int in_lib)
{
return TrueFileName (source, NULL, result, in_lib, TRUE);
}
static Int
p_true_file_name ( USES_REGS1 )
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, NULL, LOCAL_FileNameBuf, FALSE, TRUE);
return Yap_unify(ARG2, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
static Int
p_expand_file_name ( USES_REGS1 )
{
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, NULL, LOCAL_FileNameBuf, FALSE, FALSE);
return Yap_unify(ARG2, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
static Int
p_true_file_name3 ( USES_REGS1 )
{
Term t = Deref(ARG1), t2 = Deref(ARG2);
char *root = NULL;
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR,t,"argument to true_file_name unbound");
return FALSE;
}
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t,"argument to true_file_name");
return FALSE;
}
if (!IsVarTerm(t2)) {
if (!IsAtomTerm(t)) {
Yap_Error(TYPE_ERROR_ATOM,t2,"argument to true_file_name");
return FALSE;
}
root = RepAtom(AtomOfTerm(t2))->StrOfAE;
}
TrueFileName (RepAtom(AtomOfTerm(t))->StrOfAE, root, LOCAL_FileNameBuf, FALSE, FALSE);
return Yap_unify(ARG3, MkAtomTerm(Yap_LookupAtom(LOCAL_FileNameBuf)));
}
/* Executes $SHELL under Prolog */
static Int
p_sh ( USES_REGS1 )
{ /* sh */
#ifdef HAVE_SYSTEM
char *shell;
shell = (char *) getenv ("SHELL");
if (shell == NULL)
shell = "/bin/sh";
if (system (shell) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "%s in sh/0", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil, "in sh/0");
#endif
return FALSE;
}
return TRUE;
#else
#ifdef MSH
register char *shell;
shell = "msh -i";
system (shell);
return (TRUE);
#else
Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this configuration");
return(FALSE);
#endif /* MSH */
#endif
}
static Int
p_shell ( USES_REGS1 )
{ /* '$shell'(+SystCommand) */
#if _MSC_VER || defined(__MINGW32__)
Yap_Error(SYSTEM_ERROR,TermNil,"shell not available in this configuration");
return FALSE;
#else
#if HAVE_SYSTEM
char *shell;
register int bourne = FALSE;
Term t1 = Deref (ARG1);
shell = (char *) getenv ("SHELL");
if (!strcmp (shell, "/bin/sh"))
bourne = TRUE;
if (shell == NIL)
bourne = TRUE;
/* Yap_CloseStreams(TRUE); */
if (bourne)
return system(RepAtom(AtomOfTerm(t1))->StrOfAE) == 0;
else {
int status = -1;
int child = fork ();
if (child == 0) { /* let the children go */
if (!execl (shell, shell, "-c", RepAtom(AtomOfTerm(t1))->StrOfAE , NULL)) {
exit(-1);
}
exit(TRUE);
}
{ /* put the father on wait */
int result = child < 0 ||
/* vsc:I am not sure this is used, Stevens say wait returns an integer.
#if NO_UNION_WAIT
*/
wait ((&status)) != child ||
/*
#else
wait ((union wait *) (&status)) != child ||
#endif
*/
status == 0;
return result;
}
}
#else /* HAVE_SYSTEM */
#ifdef MSH
register char *shell;
shell = "msh -i";
/* Yap_CloseStreams(); */
system (shell);
return TRUE;
#else
Yap_Error (SYSTEM_ERROR,TermNil,"shell not available in this configuration");
return FALSE;
#endif
#endif /* HAVE_SYSTEM */
#endif /* _MSC_VER */
}
static Int
p_system ( USES_REGS1 )
{ /* '$system'(+SystCommand) */
#ifdef HAVE_SYSTEM
Term t1 = Deref (ARG1);
char *s;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR,t1,"argument to system/1 unbound");
return FALSE;
} else if (IsAtomTerm(t1)) {
s = RepAtom(AtomOfTerm(t1))->StrOfAE;
} else {
if (!Yap_GetName (LOCAL_FileNameBuf, YAP_FILENAME_MAX, t1)) {
Yap_Error(TYPE_ERROR_ATOM,t1,"argument to system/1");
return FALSE;
}
s = LOCAL_FileNameBuf;
}
/* Yap_CloseStreams(TRUE); */
#if _MSC_VER
_flushall();
#endif
if (system (s)) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR,t1,"%s in system(%s)", strerror(errno), s);
#else
Yap_Error(OPERATING_SYSTEM_ERROR,t1,"in system(%s)", s);
#endif
return FALSE;
}
return TRUE;
#else
#ifdef MSH
register char *shell;
shell = "msh -i";
/* Yap_CloseStreams(); */
system (shell);
return (TRUE);
#undef command
#else
Yap_Error(SYSTEM_ERROR,TermNil,"sh not available in this machine");
return(FALSE);
#endif
#endif /* HAVE_SYSTEM */
}
/* Rename a file */
static Int
p_mv ( USES_REGS1 )
{ /* rename(+OldName,+NewName) */
#if HAVE_LINK
int r;
char oldname[YAP_FILENAME_MAX], newname[YAP_FILENAME_MAX];
Term t1 = Deref (ARG1);
Term t2 = Deref (ARG2);
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1, "first argument to rename/2 unbound");
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1, "first argument to rename/2 not atom");
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "second argument to rename/2 unbound");
} else if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2, "second argument to rename/2 not atom");
}
TrueFileName (RepAtom(AtomOfTerm(t1))->StrOfAE, NULL, oldname, FALSE, TRUE);
TrueFileName (RepAtom(AtomOfTerm(t2))->StrOfAE, NULL, newname, FALSE, TRUE);
if ((r = link (oldname, newname)) == 0 && (r = unlink (oldname)) != 0)
unlink (newname);
if (r != 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR,t2,"%s in rename(%s,%s)", strerror(errno),oldname,newname);
#else
Yap_Error(OPERATING_SYSTEM_ERROR,t2,"in rename(%s,%s)",oldname,newname);
#endif
return FALSE;
}
return TRUE;
#else
Yap_Error(SYSTEM_ERROR,TermNil,"rename/2 not available in this machine");
return (FALSE);
#endif
}
#ifdef MAC
void
Yap_SetTextFile (name)
char *name;
{
#ifdef MACC
SetFileType (name, 'TEXT');
SetFileSignature (name, 'EDIT');
#else
FInfo f;
FInfo *p = &f;
GetFInfo (name, 0, p);
p->fdType = 'TEXT';
#ifdef MPW
if (mpwshell)
p->fdCreator = 'MPS\0';
#endif
#ifndef LIGHT
else
p->fdCreator = 'EDIT';
#endif
SetFInfo (name, 0, p);
#endif
}
#endif
/* return YAP's environment */
static Int p_getenv( USES_REGS1 )
{
#if HAVE_GETENV
Term t1 = Deref(ARG1), to;
char *s, *so;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"first arg of getenv/2");
return(FALSE);
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1,
"first arg of getenv/2");
return(FALSE);
} else s = RepAtom(AtomOfTerm(t1))->StrOfAE;
if ((so = getenv(s)) == NULL)
return(FALSE);
to = MkAtomTerm(Yap_LookupAtom(so));
return(Yap_unify_constant(ARG2,to));
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"getenv not available in this configuration");
return (FALSE);
#endif
}
/* set a variable in YAP's environment */
static Int p_putenv( USES_REGS1 )
{
#if HAVE_PUTENV
Term t1 = Deref(ARG1), t2 = Deref(ARG2);
char *s, *s2, *p0, *p;
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"first arg to putenv/2");
return(FALSE);
} else if (!IsAtomTerm(t1)) {
Yap_Error(TYPE_ERROR_ATOM, t1,
"first arg to putenv/2");
return(FALSE);
} else s = RepAtom(AtomOfTerm(t1))->StrOfAE;
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t1,
"second arg to putenv/2");
return(FALSE);
} else if (!IsAtomTerm(t2)) {
Yap_Error(TYPE_ERROR_ATOM, t2,
"second arg to putenv/2");
return(FALSE);
} else s2 = RepAtom(AtomOfTerm(t2))->StrOfAE;
while (!(p0 = p = Yap_AllocAtomSpace(strlen(s)+strlen(s2)+3))) {
if (!Yap_growheap(FALSE, MinHeapGap, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, LOCAL_ErrorMessage);
return FALSE;
}
}
while ((*p++ = *s++) != '\0');
p[-1] = '=';
while ((*p++ = *s2++) != '\0');
if (putenv(p0) == 0)
return TRUE;
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil,
"in putenv(%s)", strerror(errno), p0);
#else
Yap_Error(OPERATING_SYSTEM_ERROR, TermNil,
"in putenv(%s)", p0);
#endif
return FALSE;
#else
Yap_Error(SYSTEM_ERROR, TermNil,
"putenv not available in this configuration");
return FALSE;
#endif
}
/* wrapper for alarm system call */
#if _MSC_VER || defined(__MINGW32__)
static DWORD WINAPI
DoTimerThread(LPVOID targ)
{
Int *time = (Int *)targ;
HANDLE htimer;
LARGE_INTEGER liDueTime;
htimer = CreateWaitableTimer(NULL, FALSE, NULL);
liDueTime.QuadPart = -10000000;
liDueTime.QuadPart *= time[0];
/* add time in usecs */
liDueTime.QuadPart -= time[1]*10;
/* Copy the relative time into a LARGE_INTEGER. */
if (SetWaitableTimer(htimer, &liDueTime,0,NULL,NULL,0) == 0) {
return(FALSE);
}
if (WaitForSingleObject(htimer, INFINITE) != WAIT_OBJECT_0)
fprintf(stderr,"WaitForSingleObject failed (%ld)\n", GetLastError());
Yap_signal (YAP_ALARM_SIGNAL);
/* now, say what is going on */
Yap_PutValue(AtomAlarm, MkAtomTerm(AtomTrue));
ExitThread(1);
#if _MSC_VER
return(0L);
#endif
}
#endif
static Int
p_alarm( USES_REGS1 )
{
Term t = Deref(ARG1);
Term t2 = Deref(ARG2);
Int i1, i2;
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2");
return(FALSE);
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2");
return(FALSE);
}
i1 = IntegerOfTerm(t);
i2 = IntegerOfTerm(t2);
if (i1 == 0 && i2 == 0) {
LOCK(LOCAL_SignalLock);
if (LOCAL_ActiveSignals & YAP_ALARM_SIGNAL) {
LOCAL_ActiveSignals &= ~YAP_ALARM_SIGNAL;
if (!LOCAL_ActiveSignals) {
CreepFlag = CalculateStackGap();
}
}
UNLOCK(LOCAL_SignalLock);
}
#if _MSC_VER || defined(__MINGW32__)
{
Term tout;
Int time[2];
time[0] = i1;
time[1] = i2;
if (time[0] != 0 && time[1] != 0) {
DWORD dwThreadId;
HANDLE hThread;
hThread = CreateThread(
NULL, /* no security attributes */
0, /* use default stack size */
DoTimerThread, /* thread function */
(LPVOID)time, /* argument to thread function */
0, /* use default creation flags */
&dwThreadId); /* returns the thread identifier */
/* Check the return value for success. */
if (hThread == NULL) {
Yap_WinError("trying to use alarm");
}
}
tout = MkIntegerTerm(0);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0));
}
#elif HAVE_SETITIMER && !SUPPORT_CONDOR
{
struct itimerval new, old;
new.it_interval.tv_sec = 0;
new.it_interval.tv_usec = 0;
new.it_value.tv_sec = i1;
new.it_value.tv_usec = i2;
if (setitimer(ITIMER_REAL, &new, &old) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno);
#endif
return FALSE;
}
return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) &&
Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec));
}
#elif HAVE_ALARM && !SUPPORT_CONDOR
{
Int left;
Term tout;
left = alarm(i1);
tout = MkIntegerTerm(left);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0)) ;
}
#else
/* not actually trying to set the alarm */
if (IntegerOfTerm(t) == 0)
return TRUE;
Yap_Error(SYSTEM_ERROR, TermNil,
"alarm not available in this configuration");
return FALSE;
#endif
}
static Int
p_virtual_alarm( USES_REGS1 )
{
Term t = Deref(ARG1);
Term t2 = Deref(ARG2);
if (IsVarTerm(t)) {
Yap_Error(INSTANTIATION_ERROR, t, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t)) {
Yap_Error(TYPE_ERROR_INTEGER, t, "alarm/2");
return(FALSE);
}
if (IsVarTerm(t2)) {
Yap_Error(INSTANTIATION_ERROR, t2, "alarm/2");
return(FALSE);
}
if (!IsIntegerTerm(t2)) {
Yap_Error(TYPE_ERROR_INTEGER, t2, "alarm/2");
return(FALSE);
}
#if _MSC_VER || defined(__MINGW32__)
{
Term tout;
Int time[2];
time[0] = IntegerOfTerm(t);
time[1] = IntegerOfTerm(t2);
if (time[0] != 0 && time[1] != 0) {
DWORD dwThreadId;
HANDLE hThread;
hThread = CreateThread(
NULL, /* no security attributes */
0, /* use default stack size */
DoTimerThread, /* thread function */
(LPVOID)time, /* argument to thread function */
0, /* use default creation flags */
&dwThreadId); /* returns the thread identifier */
/* Check the return value for success. */
if (hThread == NULL) {
Yap_WinError("trying to use alarm");
}
}
tout = MkIntegerTerm(0);
return Yap_unify(ARG3,tout) && Yap_unify(ARG4,MkIntTerm(0));
}
#elif HAVE_SETITIMER && !SUPPORT_CONDOR
{
struct itimerval new, old;
new.it_interval.tv_sec = 0;
new.it_interval.tv_usec = 0;
new.it_value.tv_sec = IntegerOfTerm(t);
new.it_value.tv_usec = IntegerOfTerm(t2);
if (setitimer(ITIMER_VIRTUAL, &new, &old) < 0) {
#if HAVE_STRERROR
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer: %s", strerror(errno));
#else
Yap_Error(OPERATING_SYSTEM_ERROR, ARG1, "setitimer %d", errno);
#endif
return FALSE;
}
return Yap_unify(ARG3,MkIntegerTerm(old.it_value.tv_sec)) &&
Yap_unify(ARG4,MkIntegerTerm(old.it_value.tv_usec));
}
#else
/* not actually trying to set the alarm */
if (IntegerOfTerm(t) == 0)
return TRUE;
Yap_Error(SYSTEM_ERROR, TermNil,
"virtual_alarm not available in this configuration");
return FALSE;
#endif
}
#if HAVE_FPU_CONTROL_H
#include <fpu_control.h>
#endif
/* by default Linux with glibc is IEEE compliant anyway..., but we will pretend it is not. */
static void
set_fpu_exceptions(int flag)
{
if (flag) {
#if defined(__hpux)
# if HAVE_FESETTRAPENABLE
/* From HP-UX 11.0 onwards: */
fesettrapenable(FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW);
# else
/*
Up until HP-UX 10.20:
FP_X_INV invalid operation exceptions
FP_X_DZ divide-by-zero exception
FP_X_OFL overflow exception
FP_X_UFL underflow exception
FP_X_IMP imprecise (inexact result)
FP_X_CLEAR simply zero to clear all flags
*/
fpsetmask(FP_X_INV|FP_X_DZ|FP_X_OFL|FP_X_UFL);
# endif
#endif /* __hpux */
#if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__)
/* I shall ignore denormalization and precision errors */
int v = _FPU_IEEE & ~(_FPU_MASK_IM|_FPU_MASK_ZM|_FPU_MASK_OM|_FPU_MASK_UM);
_FPU_SETCW(v);
#endif
#if HAVE_FETESTEXCEPT
feclearexcept(FE_ALL_EXCEPT);
#endif
my_signal (SIGFPE, HandleMatherr);
} else {
/* do IEEE arithmetic in the way the big boys do */
#if defined(__hpux)
# if HAVE_FESETTRAPENABLE
fesettrapenable(FE_ALL_EXCEPT);
# else
fpsetmask(FP_X_CLEAR);
# endif
#endif /* __hpux */
#if HAVE_FPU_CONTROL_H && i386 && defined(__GNUC__)
/* this will probably not work in older releases of Linux */
int v = _FPU_IEEE;
_FPU_SETCW(v);
#endif
my_signal (SIGFPE, SIG_IGN);
}
}
void
Yap_set_fpu_exceptions(int flag)
{
set_fpu_exceptions(flag);
}
static Int
p_set_fpu_exceptions( USES_REGS1 ) {
if (yap_flags[LANGUAGE_MODE_FLAG] == 1) {
set_fpu_exceptions(FALSE); /* can't make it work right */
} else {
set_fpu_exceptions(FALSE);
}
return(TRUE);
}
static Int
p_host_type( USES_REGS1 ) {
Term out = MkAtomTerm(Yap_LookupAtom(HOST_ALIAS));
return(Yap_unify(out,ARG1));
}
static Int
p_yap_home( USES_REGS1 ) {
Term out = MkAtomTerm(Yap_LookupAtom(YAP_ROOTDIR));
return(Yap_unify(out,ARG1));
}
static Int
p_env_separator( USES_REGS1 ) {
#if defined(_WIN32)
return Yap_unify(MkIntegerTerm(';'),ARG1);
#else
return Yap_unify(MkIntegerTerm(':'),ARG1);
#endif
}
/*
* This is responsable for the initialization of all machine dependant
* predicates
*/
void
Yap_InitSysbits (void)
{
#if __simplescalar__
{
char *pwd = getenv("PWD");
strncpy(GLOBAL_pwd,pwd,YAP_FILENAME_MAX);
}
#endif
InitWTime ();
InitRandom ();
/* let the caller control signals as it sees fit */
InitSignals ();
}
void
Yap_InitTime( int wid )
{
InitTime( wid );
}
void
Yap_ReInitWallTime (void)
{
InitWTime();
if (Yap_heap_regs->last_wtime != NULL)
Yap_FreeCodeSpace(Yap_heap_regs->last_wtime);
InitLastWtime();
}
static Int
p_unix( USES_REGS1 )
{
#ifdef unix
return TRUE;
#else
#ifdef __unix__
return TRUE;
#else
#ifdef __APPLE__
return TRUE;
#else
return FALSE;
#endif
#endif
#endif
}
static Int
p_win32( USES_REGS1 )
{
#ifdef _WIN32
return TRUE;
#else
#ifdef __CYGWIN__
return TRUE;
#else
return FALSE;
#endif
#endif
}
static Int
p_enable_interrupts( USES_REGS1 )
{
LOCK(LOCAL_SignalLock);
LOCAL_InterruptsDisabled--;
if (LOCAL_ActiveSignals && !LOCAL_InterruptsDisabled) {
CreepFlag = Unsigned(LCL0);
}
UNLOCK(LOCAL_SignalLock);
return TRUE;
}
static Int
p_disable_interrupts( USES_REGS1 )
{
LOCK(LOCAL_SignalLock);
LOCAL_InterruptsDisabled++;
if (LOCAL_ActiveSignals) {
CreepFlag = CalculateStackGap();
}
UNLOCK(LOCAL_SignalLock);
return TRUE;
}
static Int
p_ld_path( USES_REGS1 )
{
return Yap_unify(ARG1,MkAtomTerm(Yap_LookupAtom(YAP_LIBDIR)));
}
static Int
p_address_bits( USES_REGS1 )
{
#if SIZEOF_INT_P==4
return Yap_unify(ARG1,MkIntTerm(32));
#else
return Yap_unify(ARG1,MkIntTerm(64));
#endif
}
#ifdef _WIN32
/* This code is from SWI-Prolog by Jan Wielemaker */
#define wstreq(s,q) (wcscmp((s), (q)) == 0)
static HKEY
reg_open_key(const wchar_t *which, int create)
{ HKEY key = HKEY_CURRENT_USER;
DWORD disp;
LONG rval;
while(*which)
{ wchar_t buf[256];
wchar_t *s;
HKEY tmp;
for(s=buf; *which && !(*which == '/' || *which == '\\'); )
*s++ = *which++;
*s = '\0';
if ( *which )
which++;
if ( wstreq(buf, L"HKEY_CLASSES_ROOT") )
{ key = HKEY_CLASSES_ROOT;
continue;
} else if ( wstreq(buf, L"HKEY_CURRENT_USER") )
{ key = HKEY_CURRENT_USER;
continue;
} else if ( wstreq(buf, L"HKEY_LOCAL_MACHINE") )
{ key = HKEY_LOCAL_MACHINE;
continue;
} else if ( wstreq(buf, L"HKEY_USERS") )
{ key = HKEY_USERS;
continue;
}
if ( RegOpenKeyExW(key, buf, 0L, KEY_READ, &tmp) == ERROR_SUCCESS )
{ RegCloseKey(key);
key = tmp;
continue;
}
if ( !create )
return NULL;
rval = RegCreateKeyExW(key, buf, 0, L"", 0,
KEY_ALL_ACCESS, NULL, &tmp, &disp);
RegCloseKey(key);
if ( rval == ERROR_SUCCESS )
key = tmp;
else
return NULL;
}
return key;
}
#define MAXREGSTRLEN 1024
static void
recover_space(wchar_t *k, Atom At)
{
if (At->WStrOfAE != k)
Yap_FreeCodeSpace((char *)k);
}
static wchar_t *
WideStringFromAtom(Atom KeyAt USES_REGS)
{
if (IsWideAtom(KeyAt)) {
return KeyAt->WStrOfAE;
} else {
int len = strlen(KeyAt->StrOfAE);
int sz = sizeof(wchar_t)*(len+1);
char *chp = KeyAt->StrOfAE;
wchar_t *kptr, *k;
k = (wchar_t *)Yap_AllocCodeSpace(sz);
while (k == NULL) {
if (!Yap_growheap(FALSE, sz, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, MkIntegerTerm(sz), "generating key in win_registry_get_value/3");
return FALSE;
}
}
kptr = k;
while ((*kptr++ = *chp++));
return k;
}
}
static Int
p_win_registry_get_value( USES_REGS1 )
{
DWORD type;
BYTE data[MAXREGSTRLEN];
DWORD len = sizeof(data);
wchar_t *k, *name;
HKEY key;
Term Key = Deref(ARG1);
Term Name = Deref(ARG2);
Atom KeyAt, NameAt;
if (IsVarTerm(Key)) {
Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound");
return FALSE;
}
if (!IsAtomTerm(Key)) {
Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value");
return FALSE;
}
KeyAt = AtomOfTerm(Key);
if (IsVarTerm(Name)) {
Yap_Error(INSTANTIATION_ERROR,Key,"argument to win_registry_get_value unbound");
return FALSE;
}
if (!IsAtomTerm(Name)) {
Yap_Error(TYPE_ERROR_ATOM,Key,"argument to win_registry_get_value");
return FALSE;
}
NameAt = AtomOfTerm(Name);
k = WideStringFromAtom(KeyAt PASS_REGS);
if ( !(key=reg_open_key(k, FALSE)) ) {
Yap_Error(EXISTENCE_ERROR_KEY, Key, "argument to win_registry_get_value");
recover_space(k, KeyAt);
return FALSE;
}
name = WideStringFromAtom(NameAt PASS_REGS);
if ( RegQueryValueExW(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) {
RegCloseKey(key);
switch(type) {
case REG_SZ:
recover_space(k, KeyAt);
recover_space(name, NameAt);
((wchar_t *)data)[len] = '\0';
return Yap_unify(MkAtomTerm(Yap_LookupMaybeWideAtom((wchar_t *)data)),ARG3);
case REG_DWORD:
recover_space(k, KeyAt);
recover_space(name, NameAt);
{
DWORD *d = (DWORD *)data;
return Yap_unify(MkIntegerTerm((Int)d[0]),ARG3);
}
default:
recover_space(k, KeyAt);
recover_space(name, NameAt);
return FALSE;
}
}
recover_space(k, KeyAt);
recover_space(name, NameAt);
return FALSE;
}
char *
Yap_RegistryGetString(char *name)
{
DWORD type;
BYTE data[MAXREGSTRLEN];
DWORD len = sizeof(data);
HKEY key;
char *ptr;
int i;
#if SIZEOF_INT_P == 8
if ( !(key=reg_open_key(L"HKEY_LOCAL_MACHINE/SOFTWARE/YAP/Prolog64", FALSE)) ) {
return NULL;
}
#else
if ( !(key=reg_open_key(L"HKEY_LOCAL_MACHINE/SOFTWARE/YAP/Prolog", FALSE)) ) {
return NULL;
}
#endif
if ( RegQueryValueEx(key, name, NULL, &type, data, &len) == ERROR_SUCCESS ) {
RegCloseKey(key);
switch(type) {
case REG_SZ:
ptr = malloc(len+2);
if (!ptr)
return NULL;
for (i=0; i<= len; i++)
ptr[i] = data[i];
ptr[len+1] = '\0';
return ptr;
default:
return NULL;
}
}
return NULL;
}
#endif
void
Yap_InitSysPreds(void)
{
CACHE_REGS
Term cm = CurrentModule;
/* can only do after heap is initialised */
InitLastWtime();
Yap_InitCPred ("srandom", 1, p_srandom, SafePredFlag);
Yap_InitCPred ("sh", 0, p_sh, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$shell", 1, p_shell, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("system", 1, p_system, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("rename", 2, p_mv, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$yap_home", 1, p_yap_home, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$dir_separator", 1, p_dir_sp, SafePredFlag);
Yap_InitCPred ("$alarm", 4, p_alarm, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$getenv", 2, p_getenv, SafePredFlag);
Yap_InitCPred ("$putenv", 2, p_putenv, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$set_fpu_exceptions", 0, p_set_fpu_exceptions, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$host_type", 1, p_host_type, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("$env_separator", 1, p_env_separator, SafePredFlag);
Yap_InitCPred ("$unix", 0, p_unix, SafePredFlag);
Yap_InitCPred ("$win32", 0, p_win32, SafePredFlag);
Yap_InitCPred ("$ld_path", 1, p_ld_path, SafePredFlag);
Yap_InitCPred ("$address_bits", 1, p_address_bits, SafePredFlag);
Yap_InitCPred ("$expand_file_name", 2, p_expand_file_name, SyncPredFlag);
#ifdef _WIN32
Yap_InitCPred ("win_registry_get_value", 3, p_win_registry_get_value,0);
#endif
CurrentModule = HACKS_MODULE;
Yap_InitCPred ("virtual_alarm", 4, p_virtual_alarm, SafePredFlag|SyncPredFlag);
Yap_InitCPred ("enable_interrupts", 0, p_enable_interrupts, SafePredFlag);
Yap_InitCPred ("disable_interrupts", 0, p_disable_interrupts, SafePredFlag);
CurrentModule = OPERATING_SYSTEM_MODULE;
Yap_InitCPred ("true_file_name", 2, p_true_file_name, SyncPredFlag);
Yap_InitCPred ("true_file_name", 3, p_true_file_name3, SyncPredFlag);
CurrentModule = cm;
}
#ifdef VAX
/* avoid longjmp botch */
int vax_absmi_fp;
typedef struct
{
int eh;
int flgs;
int ap;
int fp;
int pc;
int dummy1;
int dummy2;
int dummy3;
int oldfp;
int dummy4;
int dummy5;
int dummy6;
int oldpc;
}
*VaxFramePtr;
VaxFixFrame (dummy)
{
int maxframes = 100;
VaxFramePtr fp = (VaxFramePtr) (((int *) &dummy) - 6);
while (--maxframes)
{
fp = (VaxFramePtr) fp->fp;
if (fp->flgs == 0)
{
if (fp->oldfp >= &REGS[6] && fp->oldfp < &REGS[REG_SIZE])
fp->oldfp = vax_absmi_fp;
return;
}
}
}
#endif
#if defined(_WIN32)
#include <windows.h>
int WINAPI win_yap(HANDLE, DWORD, LPVOID);
int WINAPI win_yap(HANDLE hinst, DWORD reason, LPVOID reserved)
{
switch (reason)
{
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
}
return 1;
}
#endif
#if (defined(YAPOR) || defined(THREADS)) && !defined(USE_PTHREAD_LOCKING)
#ifdef sparc
void rw_lock_voodoo(void);
void
rw_lock_voodoo(void) {
/* code taken from the Linux kernel, it handles shifting between locks */
/* Read/writer locks, as usual this is overly clever to make it as fast as possible. */
/* caches... */
__asm__ __volatile__(
"___rw_read_enter_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_read_enter\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_read_enter_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
"___rw_read_exit_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_read_exit\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_read_exit_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
"___rw_write_enter_spin_on_wlock:\n"
" orcc %g2, 0x0, %g0\n"
" be,a ___rw_write_enter\n"
" ldstub [%g1 + 3], %g2\n"
" b ___rw_write_enter_spin_on_wlock\n"
" ld [%g1], %g2\n"
"\n"
" .globl ___rw_read_enter\n"
"___rw_read_enter:\n"
" orcc %g2, 0x0, %g0\n"
" bne,a ___rw_read_enter_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
" ld [%g1], %g2\n"
" add %g2, 1, %g2\n"
" st %g2, [%g1]\n"
" retl\n"
" mov %g4, %o7\n"
" .globl ___rw_read_exit\n"
"___rw_read_exit:\n"
" orcc %g2, 0x0, %g0\n"
" bne,a ___rw_read_exit_spin_on_wlock\n"
" ldub [%g1 + 3], %g2\n"
" ld [%g1], %g2\n"
" sub %g2, 0x1ff, %g2\n"
" st %g2, [%g1]\n"
" retl\n"
" mov %g4, %o7\n"
" .globl ___rw_write_enter\n"
"___rw_write_enter:\n"
" orcc %g2, 0x0, %g0\n"
" bne ___rw_write_enter_spin_on_wlock\n"
" ld [%g1], %g2\n"
" andncc %g2, 0xff, %g0\n"
" bne,a ___rw_write_enter_spin_on_wlock\n"
" stb %g0, [%g1 + 3]\n"
" retl\n"
" mov %g4, %o7\n"
);
}
#endif /* sparc */
#endif /* YAPOR || THREADS */