527 lines
16 KiB
Prolog
527 lines
16 KiB
Prolog
|
|
:- module(jt, [jt/3,
|
|
init_jt_solver/4,
|
|
run_jt_solver/3]).
|
|
|
|
|
|
:- use_module(library(dgraphs),
|
|
[dgraph_new/1,
|
|
dgraph_add_edges/3,
|
|
dgraph_add_vertex/3,
|
|
dgraph_add_vertices/3,
|
|
dgraph_edges/2,
|
|
dgraph_vertices/2,
|
|
dgraph_transpose/2,
|
|
dgraph_to_ugraph/2,
|
|
ugraph_to_dgraph/2,
|
|
dgraph_neighbors/3
|
|
]).
|
|
|
|
:- use_module(library(undgraphs),
|
|
[undgraph_new/1,
|
|
undgraph_add_edge/4,
|
|
undgraph_add_edges/3,
|
|
undgraph_del_vertex/3,
|
|
undgraph_del_vertices/3,
|
|
undgraph_vertices/2,
|
|
undgraph_edges/2,
|
|
undgraph_neighbors/3,
|
|
undgraph_edge/3,
|
|
dgraph_to_undgraph/2
|
|
]).
|
|
|
|
:- use_module(library(wundgraphs),
|
|
[wundgraph_new/1,
|
|
wundgraph_max_tree/3,
|
|
wundgraph_add_edges/3,
|
|
wundgraph_add_vertices/3,
|
|
wundgraph_to_undgraph/2
|
|
]).
|
|
|
|
:- use_module(library(rbtrees),
|
|
[rb_new/1,
|
|
rb_insert/4,
|
|
rb_lookup/3]).
|
|
|
|
:- use_module(library(ordsets),
|
|
[ord_subset/2,
|
|
ord_insert/3,
|
|
ord_intersection/3,
|
|
ord_del_element/3,
|
|
ord_memberchk/2]).
|
|
|
|
:- use_module(library(lists),
|
|
[reverse/2]).
|
|
|
|
:- use_module(library(maplist)).
|
|
|
|
:- use_module(library('clpbn/aggregates'),
|
|
[check_for_agg_vars/2]).
|
|
|
|
:- use_module(library('clpbn/dists'),
|
|
[get_dist_domain_size/2,
|
|
get_dist_domain/2,
|
|
get_dist_matrix/5]).
|
|
|
|
:- use_module(library('clpbn/matrix_cpt_utils'),
|
|
[project_from_CPT/3,
|
|
reorder_CPT/5,
|
|
unit_CPT/2,
|
|
multiply_CPTs/4,
|
|
divide_CPTs/3,
|
|
normalise_CPT/2,
|
|
expand_CPT/4,
|
|
get_CPT_sizes/2,
|
|
reset_CPT_that_disagrees/5,
|
|
sum_out_from_CPT/4,
|
|
list_from_CPT/2]).
|
|
|
|
:- use_module(library('clpbn/display'), [
|
|
clpbn_bind_vals/3]).
|
|
|
|
:- use_module(library('clpbn/connected'),
|
|
[
|
|
init_influences/3,
|
|
influences/4
|
|
]).
|
|
|
|
|
|
jt([[]],_,_) :- !.
|
|
jt(LLVs,Vs0,AllDiffs) :-
|
|
init_jt_solver(LLVs, Vs0, AllDiffs, State),
|
|
maplist(run_jt_solver, LLVs, LLPs, State),
|
|
clpbn_bind_vals(LLVs,LLPs,AllDiffs).
|
|
|
|
|
|
init_jt_solver(LLVs, Vs0, _, State) :-
|
|
check_for_agg_vars(Vs0, Vs1),
|
|
init_influences(Vs1, G, RG),
|
|
maplist(init_jt_solver_for_question(G, RG), LLVs, State).
|
|
|
|
init_jt_solver_for_question(G, RG, LLVs, state(JTree, Evidence)) :-
|
|
influences(LLVs, G, RG, NVs0),
|
|
sort(NVs0, NVs),
|
|
get_graph(NVs, BayesNet, CPTs, Evidence),
|
|
build_jt(BayesNet, CPTs, JTree).
|
|
|
|
run_jt_solver(LVs, LPs, state(JTree, Evidence)) :-
|
|
% JTree is a dgraph
|
|
% now our tree has cpts
|
|
fill_with_cpts(JTree, NewTree),
|
|
% write_tree(0, NewTree),
|
|
propagate_evidence(Evidence, NewTree, EvTree),
|
|
message_passing(EvTree, MTree),
|
|
get_margin(MTree, LVs, LPs).
|
|
|
|
get_graph(LVs, BayesNet, CPTs, Evidence) :-
|
|
run_vars(LVs, Edges, Vertices, CPTs, Evidence),
|
|
dgraph_new(V0),
|
|
dgraph_add_edges(V0, Edges, V1),
|
|
dgraph_add_vertices(V1, Vertices, V2),
|
|
dgraph_to_ugraph(V2, BayesNet).
|
|
|
|
run_vars([], [], [], [], []).
|
|
run_vars([V|LVs], Edges, [V|Vs], [CPTVars-dist([V|Parents],Id)|CPTs], Ev) :-
|
|
clpbn:get_atts(V, [dist(Id,Parents)]),
|
|
add_evidence_from_vars(V, Ev, Ev0),
|
|
sort([V|Parents],CPTVars),
|
|
add_edges(Parents, V, Edges, Edges0),
|
|
run_vars(LVs, Edges0, Vs, CPTs, Ev0).
|
|
|
|
add_evidence_from_vars(V, [e(V,P)|Evs], Evs) :-
|
|
clpbn:get_atts(V, [evidence(P)]), !.
|
|
add_evidence_from_vars(_, Evs, Evs).
|
|
|
|
find_nth0([Id|_], Id, P, P) :- !.
|
|
find_nth0([_|D], Id, P0, P) :-
|
|
P1 is P0+1,
|
|
find_nth0(D, Id, P1, P).
|
|
|
|
add_edges([], _, Edges, Edges).
|
|
add_edges([P|Parents], V, [V-P|Edges], Edges0) :-
|
|
add_edges(Parents, V, Edges, Edges0).
|
|
|
|
build_jt(BayesNet, CPTs, Tree) :-
|
|
init_undgraph(BayesNet, Moral0),
|
|
moralised(BayesNet, Moral0, Markov),
|
|
undgraph_vertices(Markov, Vertices),
|
|
triangulate(Vertices, Markov, Markov, _, Cliques0),
|
|
cliques(Cliques0, EndCliques),
|
|
wundgraph_max_tree(EndCliques, J0Tree, _),
|
|
root(J0Tree, JTree),
|
|
populate(CPTs, JTree, Tree).
|
|
|
|
initial_graph(_,Parents, CPTs) :-
|
|
test_graph(0, Graph0, CPTs),
|
|
dgraph_new(V0),
|
|
dgraph_add_edges(V0, Graph0, V1),
|
|
% OK, this is a bit silly, I could have written the transposed graph
|
|
% from the very beginning.
|
|
dgraph_transpose(V1, V2),
|
|
dgraph_to_ugraph(V2, Parents).
|
|
|
|
|
|
problem_graph([], []).
|
|
problem_graph([V|BNet], GraphF) :-
|
|
clpbn:get_atts(V, [dist(_,_,Parents)]),
|
|
add_parents(Parents, V, Graph0, GraphF),
|
|
problem_graph(BNet, Graph0).
|
|
|
|
add_parents([], _, Graph, Graph).
|
|
add_parents([P|Parents], V, Graph0, [P-V|GraphF]) :-
|
|
add_parents(Parents, V, Graph0, GraphF).
|
|
|
|
|
|
% From David Page's lectures
|
|
test_graph(0,
|
|
[1-3,2-3,2-4,5-4,5-7,10-7,10-9,11-9,3-6,4-6,7-8,9-8,6-12,8-12],
|
|
[[1]-a,
|
|
[2]-b,
|
|
[1,2,3]-c,
|
|
[2,4,5]-d,
|
|
[5]-e,
|
|
[3,4,6]-f,
|
|
[5,7,10]-g,
|
|
[7,8,9]-h,
|
|
[9]-i,
|
|
[10]-j,
|
|
[11]-k,
|
|
[6,8,12]-l
|
|
]).
|
|
test_graph(1,[a-b,a-c,b-d,c-e,d-f,e-f],
|
|
[]).
|
|
|
|
|
|
init_undgraph(Parents, UndGraph) :-
|
|
ugraph_to_dgraph(Parents, DGraph),
|
|
dgraph_to_undgraph(DGraph, UndGraph).
|
|
|
|
get_par_keys([], []).
|
|
get_par_keys([P|Parents],[K|KPars]) :-
|
|
clpbn:get_atts(P, [key(K)]),
|
|
get_par_kets(Parents,KPars).
|
|
|
|
moralised([],Moral,Moral).
|
|
moralised([_-KPars|Ks],Moral0,MoralF) :-
|
|
add_moral_edges(KPars, Moral0, MoralI),
|
|
moralised(Ks,MoralI,MoralF).
|
|
|
|
add_moral_edges([], Moral, Moral).
|
|
add_moral_edges([_], Moral, Moral).
|
|
add_moral_edges([K1,K2|KPars], Moral0, MoralF) :-
|
|
undgraph_add_edge(Moral0, K1, K2, MoralI),
|
|
add_moral_edges([K1|KPars], MoralI, MoralJ),
|
|
add_moral_edges([K2|KPars],MoralJ,MoralF).
|
|
|
|
triangulate([], _, Triangulated, Triangulated, []) :- !.
|
|
triangulate(Vertices, S0, T0, Tf, Cliques) :-
|
|
choose(Vertices, S0, +inf, [], -1, BestVertex, _, Cliques0, Cliques, Edges),
|
|
ord_del_element(Vertices, BestVertex, NextVertices),
|
|
undgraph_add_edges(T0, Edges, T1),
|
|
undgraph_del_vertex(S0, BestVertex, Si),
|
|
undgraph_add_edges(Si, Edges, Si2),
|
|
triangulate(NextVertices, Si2, T1, Tf, Cliques0).
|
|
|
|
choose([], _, _, NewEdges, Best, Best, Clique, Cliques0, [Clique|Cliques0], NewEdges).
|
|
choose([V|Vertices], Graph, Score0, _, _, Best, _, Cliques0, Cliques, EdgesF) :-
|
|
undgraph_neighbors(V, Graph, Neighbors),
|
|
ord_insert(Neighbors, V, PossibleClique),
|
|
new_edges(Neighbors, Graph, NewEdges),
|
|
(
|
|
% simplicial edge
|
|
NewEdges == []
|
|
->
|
|
!,
|
|
Best = V,
|
|
NewEdges = EdgesF,
|
|
length(PossibleClique,L),
|
|
Cliques = [L-PossibleClique|Cliques0]
|
|
;
|
|
% cliquelength(PossibleClique,1,CL),
|
|
length(PossibleClique,CL),
|
|
CL < Score0, !,
|
|
choose(Vertices,Graph,CL,NewEdges, V, Best, CL-PossibleClique, Cliques0,Cliques,EdgesF)
|
|
).
|
|
choose([_|Vertices], Graph, Score0, Edges0, BestSoFar, Best, Clique, Cliques0, Cliques, EdgesF) :-
|
|
choose(Vertices,Graph,Score0,Edges0, BestSoFar, Best, Clique, Cliques0,Cliques,EdgesF).
|
|
|
|
new_edges([], _, []).
|
|
new_edges([N|Neighbors], Graph, NewEdgesF) :-
|
|
new_edges(Neighbors,N,Graph,NewEdges0, NewEdgesF),
|
|
new_edges(Neighbors, Graph, NewEdges0).
|
|
|
|
new_edges([],_,_,NewEdges, NewEdges).
|
|
new_edges([N1|Neighbors],N,Graph,NewEdges0, NewEdgesF) :-
|
|
undgraph_edge(N, N1, Graph), !,
|
|
new_edges(Neighbors,N,Graph,NewEdges0, NewEdgesF).
|
|
new_edges([N1|Neighbors],N,Graph,NewEdges0, [N-N1|NewEdgesF]) :-
|
|
new_edges(Neighbors,N,Graph,NewEdges0, NewEdgesF).
|
|
|
|
cliquelength([],CL,CL).
|
|
cliquelength([V|Vs],CL0,CL) :-
|
|
clpbn:get_atts(V, [dist(Id,_)]),
|
|
get_dist_domain_size(Id, Sz),
|
|
CL1 is CL0*Sz,
|
|
cliquelength(Vs,CL1,CL).
|
|
|
|
|
|
%
|
|
% This is simple stuff, I just have to remove cliques that
|
|
% are subset of the others.
|
|
%
|
|
cliques(CliqueList, CliquesF) :-
|
|
wundgraph_new(Cliques0),
|
|
% first step, order by size,
|
|
keysort(CliqueList,Sort),
|
|
reverse(Sort, Rev),
|
|
get_links(Rev, [], Vertices, [], Edges),
|
|
wundgraph_add_vertices(Cliques0, Vertices, CliquesI),
|
|
wundgraph_add_edges(CliquesI, Edges, CliquesF).
|
|
|
|
% stupid quadratic algorithm, needs to be improved.
|
|
get_links([], Vertices, Vertices, Edges, Edges).
|
|
get_links([Sz-Clique|Cliques], SoFar, Vertices, Edges0, Edges) :-
|
|
add_clique_edges(SoFar, Clique, Sz, Edges0, EdgesI), !,
|
|
get_links(Cliques, [Clique|SoFar], Vertices, EdgesI, Edges).
|
|
get_links([_|Cliques], SoFar, Vertices, Edges0, Edges) :-
|
|
get_links(Cliques, SoFar, Vertices, Edges0, Edges).
|
|
|
|
add_clique_edges([], _, _, Edges, Edges).
|
|
add_clique_edges([Clique1|Cliques], Clique, Sz, Edges0, EdgesF) :-
|
|
ord_intersection(Clique1, Clique, Int),
|
|
Int \== Clique,
|
|
(
|
|
Int = [] ->
|
|
add_clique_edges(Cliques, Clique, Sz, Edges0, EdgesF)
|
|
;
|
|
% we connect
|
|
length(Int, LSz),
|
|
add_clique_edges(Cliques, Clique, Sz, [Clique-(Clique1-LSz)|Edges0], EdgesF)
|
|
).
|
|
|
|
root(WTree, JTree) :-
|
|
wundgraph_to_undgraph(WTree, Tree),
|
|
remove_leaves(Tree, SmallerTree),
|
|
undgraph_vertices(SmallerTree, InnerVs),
|
|
pick_root(InnerVs, Root),
|
|
rb_new(M0),
|
|
build_tree(Root, M0, Tree, JTree, _).
|
|
|
|
remove_leaves(Tree, SmallerTree) :-
|
|
undgraph_vertices(Tree, Vertices),
|
|
Vertices = [_,_,_|_],
|
|
get_leaves(Vertices, Tree, Leaves),
|
|
Leaves = [_|_], !,
|
|
undgraph_del_vertices(Tree, Leaves, NTree),
|
|
remove_leaves(NTree, SmallerTree).
|
|
remove_leaves(Tree, Tree).
|
|
|
|
get_leaves([], _, []).
|
|
get_leaves([V|Vertices], Tree, [V|Leaves]) :-
|
|
undgraph_neighbors(V, Tree, [_]), !,
|
|
get_leaves(Vertices, Tree, Leaves).
|
|
get_leaves([_|Vertices], Tree, Leaves) :-
|
|
get_leaves(Vertices, Tree, Leaves).
|
|
|
|
pick_root([V|_],V).
|
|
|
|
direct_edges([], _, [], []) :- !.
|
|
direct_edges([], NewVs, RemEdges, Directed) :-
|
|
direct_edges(RemEdges, NewVs, [], Directed).
|
|
direct_edges([V1-V2|Edges], NewVs0, RemEdges, [V1-V2|Directed]) :-
|
|
ord_memberchk(V1, NewVs0), !,
|
|
ord_insert(NewVs0, V2, NewVs),
|
|
direct_edges(Edges, NewVs, RemEdges, Directed).
|
|
direct_edges([V1-V2|Edges], NewVs0, RemEdges, [V2-V1|Directed]) :-
|
|
ord_memberchk(V2, NewVs0), !,
|
|
ord_insert(NewVs0, V1, NewVs),
|
|
direct_edges(Edges, NewVs, RemEdges, Directed).
|
|
direct_edges([Edge|Edges], NewVs, RemEdges, Directed) :-
|
|
direct_edges(Edges, NewVs, [Edge|RemEdges], Directed).
|
|
|
|
|
|
populate(CPTs, JTree, NewJTree) :-
|
|
keysort(CPTs, KCPTs),
|
|
populate_cliques(JTree, KCPTs, NewJTree, []).
|
|
|
|
populate_cliques(tree(Clique,Kids), CPTs, tree(Clique-MyCPTs,NewKids), RemCPTs) :-
|
|
get_cpts(CPTs, Clique, MyCPTs, MoreCPTs),
|
|
populate_trees_with_cliques(Kids, MoreCPTs, NewKids, RemCPTs).
|
|
|
|
populate_trees_with_cliques([], MoreCPTs, [], MoreCPTs).
|
|
populate_trees_with_cliques([Node|Kids], MoreCPTs, [NewNode|NewKids], RemCPts) :-
|
|
populate_cliques(Node, MoreCPTs, NewNode, ExtraCPTs),
|
|
populate_trees_with_cliques(Kids, ExtraCPTs, NewKids, RemCPts).
|
|
|
|
|
|
get_cpts([], _, [], []).
|
|
get_cpts([CPT|CPts], [], [], [CPT|CPts]) :- !.
|
|
get_cpts([[I|MCPT]-Info|CPTs], [J|Clique], MyCPTs, MoreCPTs) :-
|
|
compare(C,I,J),
|
|
( C == < ->
|
|
% our CPT cannot be a part of the clique.
|
|
MoreCPTs = [[I|MCPT]-Info|LeftoverCPTs],
|
|
get_cpts(CPTs, [J|Clique], MyCPTs, LeftoverCPTs)
|
|
;
|
|
C == = ->
|
|
% our CPT cannot be a part of the clique.
|
|
get_cpt(MCPT, Clique, I, Info, MyCPTs, MyCPTs0, MoreCPTs, MoreCPTs0),
|
|
get_cpts(CPTs, [J|Clique], MyCPTs0, MoreCPTs0)
|
|
;
|
|
% the first element in our CPT may not be in a clique
|
|
get_cpts([[I|MCPT]-Info|CPTs], Clique, MyCPTs, MoreCPTs)
|
|
).
|
|
|
|
get_cpt(MCPT, Clique, I, Info, [[I|MCPT]-Info|MyCPTs], MyCPTs, MoreCPTs, MoreCPTs) :-
|
|
ord_subset(MCPT, Clique), !.
|
|
get_cpt(MCPT, _, I, Info, MyCPTs, MyCPTs, [[I|MCPT]-Info|MoreCPTs], MoreCPTs).
|
|
|
|
|
|
translate_edges([], [], []).
|
|
translate_edges([E1-E2|Edges], [(E1-A)-(E2-B)|NEdges], [E1-A,E2-B|Vs]) :-
|
|
translate_edges(Edges, NEdges, Vs).
|
|
|
|
match_vs(_,[]).
|
|
match_vs([K-A|Cls],[K1-B|KVs]) :-
|
|
compare(C, K, K1),
|
|
(C == = ->
|
|
A = B,
|
|
match_vs([K-A|Cls], KVs)
|
|
;
|
|
C = < ->
|
|
match_vs(Cls,[K1-B|KVs])
|
|
;
|
|
match_vs([K-A|Cls],KVs)
|
|
).
|
|
|
|
fill_with_cpts(tree(Clique-Dists,Leafs), tree(Clique-NewDists,NewLeafs)) :-
|
|
compile_cpts(Dists, Clique, NewDists),
|
|
fill_tree_with_cpts(Leafs, NewLeafs).
|
|
|
|
|
|
fill_tree_with_cpts([], []).
|
|
fill_tree_with_cpts([L|Leafs], [NL|NewLeafs]) :-
|
|
fill_with_cpts(L, NL),
|
|
fill_tree_with_cpts(Leafs, NewLeafs).
|
|
|
|
transform([], []).
|
|
transform([Clique-Dists|Nodes],[Clique-NewDist|NewNodes]) :-
|
|
compile_cpts(Dists, Clique, NewDist),
|
|
transform(Nodes, NewNodes).
|
|
|
|
compile_cpts([Vs-dist(OVs,Id)|Dists], Clique, TAB) :-
|
|
OVs = [_|Ps], !,
|
|
get_dist_matrix(Id, Ps, _, _, TAB0),
|
|
reorder_CPT(OVs, TAB0, Vs, TAB1, Sz1),
|
|
multiply_dists(Dists,Vs,TAB1,Sz1,Vars2,ITAB),
|
|
expand_CPT(ITAB,Vars2,Clique,TAB).
|
|
compile_cpts([], [V|Clique], TAB) :-
|
|
unit_CPT(V, CPT0),
|
|
expand_CPT(CPT0, [V], [V|Clique], TAB).
|
|
|
|
multiply_dists([],Vs,TAB,_,Vs,TAB).
|
|
multiply_dists([Vs-dist(OVs,Id)|Dists],MVs,TAB2,Sz2,FVars,FTAB) :-
|
|
OVs = [_|Ps],
|
|
get_dist_matrix(Id, Ps, _, _, TAB0),
|
|
reorder_CPT(OVs, TAB0, Vs, TAB1, Sz1),
|
|
multiply_CPTs(tab(TAB1,Vs,Sz1),tab(TAB2,MVs,Sz2),tab(TAB3,NVs,Sz),_),
|
|
multiply_dists(Dists,NVs,TAB3,Sz,FVars,FTAB).
|
|
|
|
build_tree(Root, Leafs, WTree, tree(Root,Leaves), NewLeafs) :-
|
|
rb_insert(Leafs, Root, [], Leafs0),
|
|
undgraph_neighbors(Root, WTree, Children),
|
|
build_trees(Children, Leafs0, WTree, Leaves, NewLeafs).
|
|
|
|
build_trees( [], Leafs, _, [], Leafs).
|
|
build_trees([V|Children], Leafs, WTree, NLeaves, NewLeafs) :-
|
|
% back pointer
|
|
rb_lookup(V, _, Leafs), !,
|
|
build_trees(Children, Leafs, WTree, NLeaves, NewLeafs).
|
|
build_trees([V|Children], Leafs, WTree, [VT|NLeaves], NewLeafs) :-
|
|
build_tree(V, Leafs, WTree, VT, Leafs1),
|
|
build_trees(Children, Leafs1, WTree, NLeaves, NewLeafs).
|
|
|
|
|
|
propagate_evidence([], NewTree, NewTree).
|
|
propagate_evidence([e(V,P)|Evs], Tree0, NewTree) :-
|
|
add_evidence_to_matrix(Tree0, V, P, Tree1), !,
|
|
propagate_evidence(Evs, Tree1, NewTree).
|
|
|
|
add_evidence_to_matrix(tree(Clique-Dist,Kids), V, P, tree(Clique-NDist,Kids)) :-
|
|
ord_memberchk(V, Clique), !,
|
|
reset_CPT_that_disagrees(Dist, Clique, V, P, NDist).
|
|
add_evidence_to_matrix(tree(C,Kids), V, P, tree(C,NKids)) :-
|
|
add_evidence_to_kids(Kids, V, P, NKids).
|
|
|
|
add_evidence_to_kids([K|Kids], V, P, [NK|Kids]) :-
|
|
add_evidence_to_matrix(K, V, P, NK), !.
|
|
add_evidence_to_kids([K|Kids], V, P, [K|NNKids]) :-
|
|
add_evidence_to_kids(Kids, V, P, NNKids).
|
|
|
|
message_passing(tree(Clique-Dist,Kids), tree(Clique-NDist,NKids)) :-
|
|
get_CPT_sizes(Dist, Sizes),
|
|
upward(Kids, Clique, tab(Dist, Clique, Sizes), IKids, ITab, 1),
|
|
ITab = tab(NDist, _, _),
|
|
nb_setval(cnt,0),
|
|
downward(IKids, Clique, ITab, NKids).
|
|
|
|
upward([], _, Dist, [], Dist, _).
|
|
upward([tree(Clique1-Dist1,DistKids)|Kids], Clique, Tab, [tree(Clique1-(NewDist1,EDist1),NDistKids)|NKids], NewTab, Lev) :-
|
|
get_CPT_sizes(Dist1, Sizes1),
|
|
Lev1 is Lev+1,
|
|
upward(DistKids, Clique1, tab(Dist1,Clique1,Sizes1), NDistKids, NewTab1, Lev1),
|
|
NewTab1 = tab(NewDist1,_,_),
|
|
ord_intersection(Clique1, Clique, Int),
|
|
sum_out_from_CPT(Int, NewDist1, Clique1, Tab1),
|
|
multiply_CPTs(Tab, Tab1, ITab, EDist1),
|
|
upward(Kids, Clique, ITab, NKids, NewTab, Lev).
|
|
|
|
downward([], _, _, []).
|
|
downward([tree(Clique1-(Dist1,Msg1),DistKids)|Kids], Clique, Tab, [tree(Clique1-NDist1,NDistKids)|NKids]) :-
|
|
get_CPT_sizes(Dist1, Sizes1),
|
|
ord_intersection(Clique1, Clique, Int),
|
|
Tab = tab(Dist,_,_),
|
|
divide_CPTs(Dist, Msg1, Div),
|
|
sum_out_from_CPT(Int, Div, Clique, STab),
|
|
multiply_CPTs(STab, tab(Dist1, Clique1, Sizes1), NewTab, _),
|
|
NewTab = tab(NDist1,_,_),
|
|
downward(DistKids, Clique1, NewTab, NDistKids),
|
|
downward(Kids, Clique, Tab, NKids).
|
|
|
|
|
|
get_margin(NewTree, LVs0, LPs) :-
|
|
sort(LVs0, LVs),
|
|
find_clique(NewTree, LVs, Clique, Dist),
|
|
sum_out_from_CPT(LVs, Dist, Clique, tab(TAB,_,_)),
|
|
reorder_CPT(LVs, TAB, LVs0, NTAB, _),
|
|
normalise_CPT(NTAB, Ps),
|
|
list_from_CPT(Ps, LPs).
|
|
|
|
find_clique(tree(Clique-Dist,_), LVs, Clique, Dist) :-
|
|
ord_subset(LVs, Clique), !.
|
|
find_clique(tree(_,Kids), LVs, Clique, Dist) :-
|
|
find_clique_from_kids(Kids, LVs, Clique, Dist).
|
|
|
|
find_clique_from_kids([K|_], LVs, Clique, Dist) :-
|
|
find_clique(K, LVs, Clique, Dist), !.
|
|
find_clique_from_kids([_|Kids], LVs, Clique, Dist) :-
|
|
find_clique_from_kids(Kids, LVs, Clique, Dist).
|
|
|
|
|
|
write_tree(I0, tree(Clique-(Dist,_),Leaves)) :- !,
|
|
matrix:matrix_to_list(Dist,L),
|
|
format('~*c ~w:~w~n',[I0,0' ,Clique,L]),
|
|
I is I0+2,
|
|
maplist(write_tree(I), Leaves).
|
|
write_tree(I0, tree(Clique-Dist,Leaves), I0) :-
|
|
matrix:matrix_to_list(Dist,L),
|
|
format('~*c ~w:~w~n',[I0,0' ,Clique, L]),
|
|
I is I0+2,
|
|
maplist(write_tree(I), Leaves).
|
|
|
|
write_subtree([], _).
|
|
write_subtree([Tree|Leaves], I) :-
|
|
write_tree(Tree, I),
|
|
write_subtree(Leaves, I).
|
|
|