This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/cplint/slipcase/bddem.c
Fabrizio Riguzzi be449b3aef updated cplint
2011-10-22 16:33:04 +02:00

1268 lines
27 KiB
C

/*
EMBLEM and SLIPCASE
Copyright (c) 2011, Fabrizio Riguzzi and Elena Bellodi
This package uses the library cudd, see http://vlsi.colorado.edu/~fabio/CUDD/
for the relative license.
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "cuddInt.h"
#include "YapInterface.h"
#define LOGZERO log(0.000001)
#define CACHE_SLOTS 1
#define UNIQUE_SLOTS 1
typedef struct
{
int nVal,nRule;
int firstBoolVar;
} variable;
typedef struct
{
DdNode *key;
double value;
} rowel;
typedef struct
{
int cnt;
rowel *row;
} tablerow;
tablerow * table;
static variable * vars;
static variable ** vars_ex;
static int * bVar2mVar;
static int ** bVar2mVar_ex;
static double * sigma;
static double ***eta;
static double ***eta_temp;
static double **arrayprob;
static int *rules;
static DdManager *mgr;
static DdManager **mgr_ex;
static int *nVars;
static int *nVars_ex;
static int nRules;
double * probs;
double * nodes_probs_ex;
double ** probs_ex;
static int * boolVars;
static int * boolVars_ex;
tablerow * nodesB;
tablerow * nodesF;
int ex,cycle;
DdNode *** nodesToVisit;
int * NnodesToVisit;
double * example_prob;
static int ret_prob(void);
double Prob(DdNode *node,int comp_par);
static int end_bdd(void);
static int init_test(void);
static int add_var(void);
static int init(void);
static int end(void);
static int EM(void);
static int Q(void);
double ProbPath(DdNode *node, int comp_par);
static int rec_deref(void);
int indexMvar(DdNode *node);
void Forward(DdNode *node);
void GetForward(DdNode *node, double ForwProbPath);
void UpdateForward(DdNode * node);
double GetOutsideExpe(DdNode *root,double ex_prob);
void Maximization(void);
static double Expectation(DdNode **nodes_ex, int lenNodes);
void init_my_predicates(void);
FILE *open_file(char *filename, const char *mode);
tablerow* init_table(int varcnt);
double * get_value(tablerow *tab, DdNode *node);
void add_or_replace_node(tablerow *tab, DdNode *node, double value);
void add_node(tablerow *tab, DdNode *node, double value);
void destroy_table(tablerow *tab,int varcnt);
static int init(void)
{
int j,i;
YAP_Term arg1,arg2,list;
ex=0;
cycle=0;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
nRules=YAP_IntOfTerm(arg1);
vars_ex=NULL;
nVars_ex=NULL;
eta= (double ***) malloc(nRules * sizeof(double **));
eta_temp= (double ***) malloc(nRules * sizeof(double **));
rules= (int *) malloc(nRules * sizeof(int));
arrayprob=(double **) malloc(nRules * sizeof(double *));
probs_ex=NULL;
bVar2mVar_ex=NULL;
boolVars_ex=NULL;
mgr_ex=NULL;
nodes_probs_ex=NULL;
list=arg2;
for (j=0;j<nRules;j++)
{
rules[j]=YAP_IntOfTerm(YAP_HeadOfTerm(list));
list=YAP_TailOfTerm(list);
eta[j]= (double **) malloc((rules[j]-1)*sizeof(double *));
eta_temp[j]= (double **) malloc((rules[j]-1)*sizeof(double *));
arrayprob[j]= (double *) malloc((rules[j]-1)*sizeof(double));
for (i=0;i<rules[j]-1;i++)
{
eta[j][i]=(double *) malloc(2*sizeof(double));
eta_temp[j][i]=(double *) malloc(2*sizeof(double));
}
}
return 1;
}
static int init_bdd(void)
{
mgr=Cudd_Init(0,0,UNIQUE_SLOTS,CACHE_SLOTS,5120);
Cudd_AutodynEnable(mgr, CUDD_REORDER_GROUP_SIFT);
Cudd_SetMaxCacheHard(mgr, 0);
Cudd_SetLooseUpTo(mgr, 0);
Cudd_SetMinHit(mgr, 15);
mgr_ex=(DdManager **) realloc(mgr_ex, (ex+1)* sizeof(DdManager *));
mgr_ex[ex]=mgr;
bVar2mVar_ex=(int **) realloc(bVar2mVar_ex, (ex+1)* sizeof(int *));
bVar2mVar_ex[ex]=NULL;
bVar2mVar=bVar2mVar_ex[ex];
vars_ex=(variable **) realloc(vars_ex, (ex+1)* sizeof(variable *));
vars_ex[ex]=NULL;
vars=vars_ex[ex];
nVars_ex=(int *) realloc(nVars_ex, (ex+1)* sizeof(int ));
nVars=nVars_ex+ex;
*nVars=0;
probs_ex=(double **) realloc(probs_ex, (ex+1)* sizeof(double *));
probs_ex[ex]=NULL;
probs=probs_ex[ex];
boolVars_ex=(int *) realloc(boolVars_ex, (ex+1)* sizeof(int ));
boolVars=boolVars_ex+ex;
*boolVars=0;
return 1;
}
static int end_bdd(void)
{
bVar2mVar_ex[ex]=bVar2mVar;
probs_ex[ex]=probs;
vars_ex[ex]=vars;
ex=ex+1;
return 1;
}
static int init_test(void)
{
YAP_Term arg1;
arg1=YAP_ARG1;
nRules=YAP_IntOfTerm(arg1);
mgr=Cudd_Init(0,0,UNIQUE_SLOTS,CACHE_SLOTS,0);
Cudd_AutodynEnable(mgr, CUDD_REORDER_GROUP_SIFT);
Cudd_SetMaxCacheHard(mgr, 1024*1024*1024);
Cudd_SetLooseUpTo(mgr, 1024*1024*512);
rules= (int *) malloc(nRules * sizeof(int));
bVar2mVar=NULL;
probs=NULL;
vars=NULL;
nVars=(int *) malloc(sizeof(int ));
*nVars=0;
boolVars=(int *) malloc(sizeof(int ));
*boolVars=0;
return 1;
}
static int end_test(void)
{
free(bVar2mVar);
free(vars);
free(nVars);
free(boolVars);
Cudd_Quit(mgr);
free(probs);
free(rules);
return 1;
}
static double Expectation(DdNode **nodes_ex,int lenNodes)
{
int i;
double rootProb,CLL=0;
for(i=0;i<lenNodes;i++)
{
if (!Cudd_IsConstant(nodes_ex[i]))
{
mgr=mgr_ex[i];
probs=probs_ex[i];
boolVars=boolVars_ex+i;
nodesB=init_table(*boolVars);
nodesF=init_table(*boolVars);
bVar2mVar=bVar2mVar_ex[i];
vars=vars_ex[i];
Forward(nodes_ex[i]);
rootProb=GetOutsideExpe(nodes_ex[i],example_prob[i]);
if (rootProb<=0.0)
CLL = CLL + LOGZERO*example_prob[i];
else
CLL = CLL + log(rootProb)*example_prob[i];
nodes_probs_ex[i]=rootProb;
destroy_table(nodesB,*boolVars);
destroy_table(nodesF,*boolVars);
}
else
if (nodes_ex[i]==Cudd_ReadLogicZero(mgr_ex[i]))
CLL=CLL+LOGZERO*example_prob[i];
}
return CLL;
}
static int end(void)
{
int r,i;
for (i=0;i<ex;i++)
{
Cudd_Quit(mgr_ex[i]);
free(bVar2mVar_ex[i]);
free(vars_ex[i]);
free(probs_ex[i]);
fflush(stdout);
}
free(mgr_ex);
free(bVar2mVar_ex);
free(vars_ex);
free(probs_ex);
free(nVars_ex);
free(boolVars_ex);
free(nodes_probs_ex);
for (r=0;r<nRules;r++)
{
for (i=0;i<rules[r]-1;i++)
{
free(eta[r][i]);
free(eta_temp[r][i]);
}
free(eta[r]);
free(eta_temp[r]);
}
free(eta);
free(eta_temp);
for (r=0;r<nRules;r++)
{
free(arrayprob[r]);
}
free(arrayprob);
free(rules);
return 1;
}
static int ret_prob(void)
{
YAP_Term arg1,arg2,out;
DdNode * node;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node=(DdNode *)YAP_IntOfTerm(arg1);
if (!Cudd_IsConstant(node))
{
table=init_table(*boolVars);
out=YAP_MkFloatTerm(Prob(node,0));
destroy_table(table,*boolVars);
}
else
{
if (node==Cudd_ReadOne(mgr))
out=YAP_MkFloatTerm(1.0);
else
out=YAP_MkFloatTerm(0.0);
}
return(YAP_Unify(out,arg2));
}
double Prob(DdNode *node,int comp_par)
/* compute the probability of the expression rooted at node.
table is used to store nodeB for which the probability has alread been computed
so that it is not recomputed
*/
{
int index,mVarIndex,comp,pos;
variable v;
double res;
double p,pt,pf,BChild0,BChild1;
double * value_p;
DdNode *nodekey,*T,*F;
comp=Cudd_IsComplement(node);
comp=(comp && !comp_par) ||(!comp && comp_par);
if (Cudd_IsConstant(node))
{
if (comp)
return 0.0;
else
return 1.0;
}
else
{
nodekey=Cudd_Regular(node);
/* if (comp)
nodekey=Cudd_Complement(nodefw);
else
nodekey=nodefw;*/
value_p=get_value(table,nodekey);
if (value_p!=NULL)
return *value_p;
else
{
index=Cudd_NodeReadIndex(node); //Returns the index of the node. The node pointer can be either regular or complemented.
//The index field holds the name of the variable that labels the node. The index of a variable is a permanent attribute that reflects the order of creation.
p=probs[index];
T = Cudd_T(node);
F = Cudd_E(node);
pf=Prob(F,comp);
pt=Prob(T,comp);
BChild0=pf*(1-p);
BChild1=pt*p;
mVarIndex=bVar2mVar[index];
v=vars[mVarIndex];
pos=index-v.firstBoolVar;
res=BChild0+BChild1;
add_node(table,nodekey,res);
return res;
}
}
}
static int add_var(void)
{
YAP_Term arg1,arg2,arg3,arg4,out,probTerm,probTerm_temp;
variable * v;
int i;
DdNode * node;
double p,p0;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
arg3=YAP_ARG3;
arg4=YAP_ARG4;
*nVars=*nVars+1;
vars=(variable *) realloc(vars,*nVars * sizeof(variable));
v=&vars[*nVars-1];
v->nVal=YAP_IntOfTerm(arg1);
v->nRule=YAP_IntOfTerm(arg3);
v->firstBoolVar=*boolVars;
probs=(double *) realloc(probs,(((*boolVars+v->nVal-1)* sizeof(double))));
bVar2mVar=(int *) realloc(bVar2mVar,((*boolVars+v->nVal-1)* sizeof(int)));
probTerm=arg2;
p0=1;
for (i=0;i<v->nVal-1;i++)
{
node=Cudd_bddIthVar(mgr,*boolVars+i);
p=YAP_FloatOfTerm(YAP_HeadOfTerm(probTerm));
bVar2mVar[*boolVars+i]=*nVars-1;
probs[*boolVars+i]=p/p0;
probTerm_temp=YAP_TailOfTerm(probTerm);
probTerm=probTerm_temp;
p0=p0*(1-p/p0);
}
*boolVars=*boolVars+v->nVal-1;
rules[v->nRule]= v->nVal;
out=YAP_MkIntTerm((YAP_Int)* nVars-1);
return YAP_Unify(out,arg4);
}
static int equality(void)
{
YAP_Term arg1,arg2,arg3,out;
int varIndex;
int value;
int i;
variable v;
DdNode * node, * tmp,*var;
arg1=YAP_ARG1; //var
arg2=YAP_ARG2; //value
arg3=YAP_ARG3; //node
varIndex=YAP_IntOfTerm(arg1);
value=YAP_IntOfTerm(arg2);
v=vars[varIndex];
i=v.firstBoolVar;
tmp=Cudd_ReadOne(mgr);
Cudd_Ref(tmp);
node=NULL;
for (i=v.firstBoolVar;i<v.firstBoolVar+value;i++)
{
var=Cudd_bddIthVar(mgr,i);
node=Cudd_bddAnd(mgr,tmp,Cudd_Not(var));
Cudd_Ref(node);
Cudd_RecursiveDeref(mgr,tmp);
tmp=node;
}
if (!(value==v.nVal-1))
{
var=Cudd_bddIthVar(mgr,v.firstBoolVar+value);
node=Cudd_bddAnd(mgr,tmp,var);
Cudd_Ref(node);
Cudd_RecursiveDeref(mgr,tmp);
}
out=YAP_MkIntTerm((YAP_Int) node);
return(YAP_Unify(out,arg3));
}
static int one(void)
{
YAP_Term arg,out;
DdNode * node;
arg=YAP_ARG1;
node = Cudd_ReadOne(mgr);
Cudd_Ref(node);
out=YAP_MkIntTerm((YAP_Int) node);
return(YAP_Unify(out,arg));
}
static int zero(void)
{
YAP_Term arg,out;
DdNode * node;
arg=YAP_ARG1;
node = Cudd_ReadLogicZero(mgr);
Cudd_Ref(node);
out=YAP_MkIntTerm((YAP_Int) node);
return(YAP_Unify(out,arg));
}
static int bdd_not(void)
{
YAP_Term arg1,arg2,out;
DdNode * node;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node = (DdNode *)YAP_IntOfTerm(arg1);
node=Cudd_Not(node);
out=YAP_MkIntTerm((YAP_Int) node);
return(YAP_Unify(out,arg2));
}
static int and(void)
{
YAP_Term arg1,arg2,arg3,out;
DdNode * node1, *node2,*nodeout;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
arg3=YAP_ARG3;
node1=(DdNode *)YAP_IntOfTerm(arg1);
node2=(DdNode *)YAP_IntOfTerm(arg2);
nodeout=Cudd_bddAnd(mgr,node1,node2);
Cudd_Ref(nodeout);
out=YAP_MkIntTerm((YAP_Int) nodeout);
return(YAP_Unify(out,arg3));
}
static int or(void)
{
YAP_Term arg1,arg2,arg3,out;
DdNode * node1,*node2,*nodeout;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
arg3=YAP_ARG3;
node1=(DdNode *)YAP_IntOfTerm(arg1);
node2=(DdNode *)YAP_IntOfTerm(arg2);
nodeout=Cudd_bddOr(mgr,node1,node2);
Cudd_Ref(nodeout);
out=YAP_MkIntTerm((YAP_Int) nodeout);
return(YAP_Unify(out,arg3));
}
static int garbage_collect(void)
{
YAP_Term arg1,arg2,out;
YAP_Int nodes,clearCache;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
clearCache=YAP_IntOfTerm(arg1);
nodes=(YAP_Int)cuddGarbageCollect(mgr,clearCache);
out=YAP_MkIntTerm(nodes);
return(YAP_Unify(out,arg2));
}
static int bdd_to_add(void)
{
YAP_Term arg1,arg2,out;
DdNode * node1,*node2;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node1=(DdNode *)YAP_IntOfTerm(arg1);
node2= Cudd_BddToAdd(mgr,node1);
out=YAP_MkIntTerm((YAP_Int) node2);
return(YAP_Unify(out,arg2));
}
static int create_dot(void)
{
char * onames[]={"Out"};
char ** inames;
DdNode * array[1];
YAP_Term arg1,arg2;
int i,b,index;
variable v;
char numberVar[10],numberBit[10],filename[1000];
FILE * file;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
YAP_StringToBuffer(arg2,filename,1000);
inames= (char **) malloc(sizeof(char *)*(*boolVars));
index=0;
for (i=0;i<*nVars;i++)
{
v=vars[i];
for (b=0;b<v.nVal-1;b++)
{
inames[b+index]=(char *) malloc(sizeof(char)*20);
strcpy(inames[b+index],"X");
sprintf(numberVar,"%d",i);
strcat(inames[b+index],numberVar);
strcat(inames[b+index],"_");
sprintf(numberBit,"%d",b);
strcat(inames[b+index],numberBit);
}
index=index+v.nVal-1;
}
array[0]=(DdNode *)YAP_IntOfTerm(arg1);
file = open_file(filename, "w");
Cudd_DumpDot(mgr,1,array,inames,onames,file);
fclose(file);
index=0;
for (i=0;i<*nVars;i++)
{
v=vars[i];
for (b=0;b<v.nVal-1;b++)
{
free(inames[b+index]);
}
index=index+v.nVal-1;
}
free(inames);
return 1;
}
static int rec_deref(void)
{
YAP_Term arg1;
DdNode * node;
arg1=YAP_ARG1;
node=(DdNode *) YAP_IntOfTerm(arg1);
Cudd_RecursiveDeref(mgr, node);
return 1;
}
double ProbPath(DdNode *node,int comp_par)
{
int index,mVarIndex,comp,pos,position,boolVarIndex;
variable v;
double res;
double value,p,pt,pf,BChild0,BChild1,e0,e1;
double * value_p,** eta_rule;
DdNode *nodekey,*T,*F;
comp=Cudd_IsComplement(node);
comp=(comp && !comp_par) ||(!comp && comp_par);
if (Cudd_IsConstant(node))
{
value=Cudd_V(node);
if (comp)
{
return 0.0;
}
else
{
return 1.0;
}
}
else
{
nodekey=Cudd_Regular(node);
value_p=get_value(nodesB,nodekey);
if (value_p!=NULL)
{
return *value_p;
}
else
{
index=Cudd_NodeReadIndex(node);
p=probs[index];
T = Cudd_T(node);
F = Cudd_E(node);
pf=ProbPath(F,comp);
pt=ProbPath(T,comp);
BChild0=pf*(1-p);
BChild1=pt*p;
value_p=get_value(nodesF,nodekey);
e0 = (*value_p)*BChild0;
e1 = (*value_p)*BChild1;
mVarIndex=bVar2mVar[index];
v=vars[mVarIndex];
pos=index-v.firstBoolVar;
eta_rule=eta_temp[v.nRule];
eta_rule[pos][0]=eta_rule[pos][0]+e0;
eta_rule[pos][1]=eta_rule[pos][1]+e1;
res=BChild0+BChild1;
add_node(nodesB,nodekey,res);
position=Cudd_ReadPerm(mgr,index);
position=position+1;
boolVarIndex=Cudd_ReadInvPerm(mgr,position); //Returns the index of the variable currently in the i-th position of the order.
if (position<*boolVars)
{
sigma[position]=sigma[position]+e0+e1;
}
if(!Cudd_IsConstant(T))
{
index=Cudd_NodeReadIndex(T);
position=Cudd_ReadPerm(mgr,index);
sigma[position]=sigma[position]-e1;
}
if(!Cudd_IsConstant(F))
{
index=Cudd_NodeReadIndex(F);
position=Cudd_ReadPerm(mgr,index);
sigma[position]=sigma[position]-e0;
}
return res;
}
}
}
void Forward(DdNode *root)
{
int i,j;
if (*boolVars)
{
nodesToVisit= (DdNode ***)malloc(sizeof(DdNode **)* *boolVars);
NnodesToVisit= (int *)malloc(sizeof(int)* *boolVars);
nodesToVisit[0]=(DdNode **)malloc(sizeof(DdNode *));
nodesToVisit[0][0]=root;
NnodesToVisit[0]=1;
for(i=1;i<*boolVars;i++)
{
nodesToVisit[i]=NULL;
NnodesToVisit[i]=0;
}
add_node(nodesF,Cudd_Regular(root),1);
for(i=0;i<*boolVars;i++)
{
for(j=0;j<NnodesToVisit[i];j++)
UpdateForward(nodesToVisit[i][j]);
}
for(i=0;i<*boolVars;i++)
{
free(nodesToVisit[i]);
}
free(nodesToVisit);
free(NnodesToVisit);
}
else
{
add_node(nodesF,Cudd_Regular(root),1);
}
}
void UpdateForward(DdNode *node)
{
int index,position,mVarIndex;
DdNode *T,*E,*nodereg;
variable v;
double *value_p,*value_p_T,*value_p_F,p;
if (Cudd_IsConstant(node))
{
return;
}
else
{
index=Cudd_NodeReadIndex(node);
mVarIndex=bVar2mVar[index];
v=vars[mVarIndex];
p=probs[index];
nodereg=Cudd_Regular(node);
value_p=get_value(nodesF,nodereg);
if (value_p== NULL)
{
printf("Error\n");
return;
}
else
{
T = Cudd_T(node);
E = Cudd_E(node);
if (!Cudd_IsConstant(T))
{
value_p_T=get_value(nodesF,T);
if (value_p_T!= NULL)
{
*value_p_T= *value_p_T+*value_p*p;
}
else
{
add_or_replace_node(nodesF,Cudd_Regular(T),*value_p*p);
index=Cudd_NodeReadIndex(T);
position=Cudd_ReadPerm(mgr,index);
nodesToVisit[position]=(DdNode **)realloc(nodesToVisit[position],
(NnodesToVisit[position]+1)* sizeof(DdNode *));
nodesToVisit[position][NnodesToVisit[position]]=T;
NnodesToVisit[position]=NnodesToVisit[position]+1;
}
}
if (!Cudd_IsConstant(E))
{
value_p_F=get_value(nodesF,Cudd_Regular(E));
if (value_p_F!= NULL)
{
*value_p_F= *value_p_F+*value_p*(1-p);
}
else
{
add_or_replace_node(nodesF,Cudd_Regular(E),*value_p*(1-p));
index=Cudd_NodeReadIndex(E);
position=Cudd_ReadPerm(mgr,index);
nodesToVisit[position]=(DdNode **)realloc(nodesToVisit[position],
(NnodesToVisit[position]+1)* sizeof(DdNode *));
nodesToVisit[position][NnodesToVisit[position]]=E;
NnodesToVisit[position]=NnodesToVisit[position]+1;
}
}
return;
}
}
}
int indexMvar(DdNode * node)
{
int index,mVarIndex;
index=Cudd_NodeReadIndex(node);
mVarIndex=bVar2mVar[index];
return mVarIndex;
}
double GetOutsideExpe(DdNode *root,double ex_prob)
{
int i,j,mVarIndex,bVarIndex;
double **eta_rule;
double theta,rootProb, T=0;
sigma=(double *)malloc(*boolVars * sizeof(double));
for (j=0; j<*boolVars; j++)
{
sigma[j]=0;
}
for (j=0; j<nRules; j++)
{
for (i=0; i<rules[j]-1; i++)
{
eta_temp[j][i][0]=0;
eta_temp[j][i][1]=0;
}
}
rootProb=ProbPath(root,0);
if (rootProb>0.0)
{
for (j=0; j<*boolVars; j++)
{
T += sigma[j];
bVarIndex=Cudd_ReadInvPerm(mgr,j);
if (bVarIndex==-1)
{
bVarIndex=j;
}
mVarIndex=bVar2mVar[bVarIndex];
eta_rule=eta_temp[vars[mVarIndex].nRule];
for (i=0; i<vars[mVarIndex].nVal-1;i++)
{
theta=probs[bVarIndex];
eta_rule[i][0]=eta_rule[i][0]+T*(1-theta);
eta_rule[i][1]=eta_rule[i][1]+T*theta;
}
}
for (j=0; j<nRules; j++)
{
for (i=0; i<rules[j]-1; i++)
{
eta[j][i][0]=eta[j][i][0]+eta_temp[j][i][0]*ex_prob/rootProb;
eta[j][i][1]=eta[j][i][1]+eta_temp[j][i][1]*ex_prob/rootProb;
}
}
}
free(sigma);
return rootProb;
}
void Maximization(void)
{
int r,i,j,e;
double sum=0;
double *probs_rule,**eta_rule;
for (r=0;r<nRules;r++)
{
eta_rule=eta[r];
for (i=0;i<rules[r]-1;i++)
{
sum=(eta_rule[i][0]+eta_rule[i][1]);
if (sum==0.0)
{
arrayprob[r][i]=0;
}
else
arrayprob[r][i]=eta_rule[i][1]/sum;
}
}
for(e=0;e<ex;e++)
{
nVars=nVars_ex+e;
probs=probs_ex[e];
vars=vars_ex[e];
for (j=0;j<*nVars;j++)
{
r=vars[j].nRule;
probs_rule=arrayprob[r];
for(i=0;i<rules[r]-1;i++)
{
probs[vars[j].firstBoolVar+i]=probs_rule[i];
}
}
}
}
static int randomize(void)
{
int i,j,e,rule;
double * theta,p0;
double pmass,par;
double **Theta_rules;
Theta_rules=(double **)malloc(nRules *sizeof(double *));
for (j=0;j<nRules;j++)
{
Theta_rules[j]=(double *)malloc(rules[j]*sizeof(double));
}
for (j=0;j<nRules;j++)
{
theta=Theta_rules[j];
pmass=0;
for (i=0;i<rules[j]-1;i++)
{
par=((double)rand())/RAND_MAX*(1-pmass);
pmass=pmass+par;
theta[i]=par;
}
theta[rules[j]-1]=1-pmass;
}
for(e=0;e<ex;e++)
{
nVars=nVars_ex+e;
probs=probs_ex[e];
vars=vars_ex[e];
for (j=0; j<*nVars; j++)
{
rule=vars[j].nRule;
theta=Theta_rules[rule];
p0=1;
for (i=0; i<vars[j].nVal-1;i++)
{
probs[vars[j].firstBoolVar+i]=theta[i]/p0;
p0=p0*(1-theta[i]/p0);
}
}
}
for (j=0;j<nRules;j++)
{
free(Theta_rules[j]);
}
free(Theta_rules);
return 1;
}
static int EM(void)
{
YAP_Term arg1,arg2,arg3,arg4,arg5,arg6,arg7,
out1,out2,nodesTerm,ruleTerm,tail,pair,compoundTerm;
DdNode * node1,**nodes_ex;
int r,lenNodes,i,iter;
long iter1;
double CLL0= -2.2*pow(10,10); //-inf
double CLL1= -1.7*pow(10,8); //+inf
double p,p0,**eta_rule,ea,er;
double ratio,diff;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
arg3=YAP_ARG3;
arg4=YAP_ARG4;
arg5=YAP_ARG5;
arg6=YAP_ARG6;
arg7=YAP_ARG7;
nodesTerm=arg1;
ea=YAP_FloatOfTerm(arg2);
er=YAP_FloatOfTerm(arg3);
lenNodes=YAP_IntOfTerm(arg4);
iter=YAP_IntOfTerm(arg5);
nodes_ex=(DdNode **)malloc(lenNodes*sizeof(DdNode*));
nodes_probs_ex=(double *)malloc(lenNodes*sizeof(double));
example_prob=(double *)malloc(lenNodes*sizeof(double));
for (i=0;i<lenNodes;i++)
{
pair=YAP_HeadOfTerm(nodesTerm);
node1=(DdNode *)YAP_IntOfTerm(YAP_HeadOfTerm(pair));
nodes_ex[i]=node1;
pair=YAP_TailOfTerm(pair);
example_prob[i]=YAP_FloatOfTerm(YAP_HeadOfTerm(pair));
nodesTerm=YAP_TailOfTerm(nodesTerm);
}
diff=CLL1-CLL0;
ratio=diff/fabs(CLL0);
if (iter==-1)
iter1= 2147000000;
else iter1=iter;
while ( (diff>ea) && (ratio>er) && (cycle<iter1) )
{
cycle++;
for (r=0;r<nRules;r++)
{
for (i=0;i<rules[r]-1;i++)
{
eta_rule=eta[r];
eta_rule[i][0]=0;
eta_rule[i][1]=0;
}
}
CLL0 = CLL1;
CLL1 = Expectation(nodes_ex,lenNodes);
Maximization();
diff=CLL1-CLL0;
ratio=diff/fabs(CLL0);
}
out2= YAP_TermNil();
for (r=0; r<nRules; r++)
{
tail=YAP_TermNil();
p0=1;
for (i=0;i<rules[r]-1;i++)
{
p=arrayprob[r][i]*p0;
tail=YAP_MkPairTerm(YAP_MkFloatTerm(p),tail);
p0=p0*(1-arrayprob[r][i]);
}
tail=YAP_MkPairTerm(YAP_MkFloatTerm(p0),tail);
ruleTerm=YAP_MkIntTerm(r);
compoundTerm=YAP_MkPairTerm(ruleTerm,YAP_MkPairTerm(tail,YAP_TermNil()));
out2=YAP_MkPairTerm(compoundTerm,out2);
}
out1=YAP_MkFloatTerm(CLL1);
YAP_Unify(out1,arg6);
free(nodes_ex);
free(example_prob);
return (YAP_Unify(out2,arg7));
}
static int Q(void)
{
YAP_Term arg1,arg2,arg3,arg4,out,out1,
term,nodesTerm,ruleTerm,tail,pair,compoundTerm;
DdNode * node1,**nodes_ex;
int r,lenNodes,i;
double p1,p0,**eta_rule,CLL;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
arg3=YAP_ARG3;
arg4=YAP_ARG4;
nodesTerm=arg1;
lenNodes=YAP_IntOfTerm(arg2);
nodes_ex=(DdNode **)malloc(lenNodes*sizeof(DdNode*));
example_prob=(double *)malloc(lenNodes*sizeof(double));
for (i=0;i<lenNodes;i++)
{
pair=YAP_HeadOfTerm(nodesTerm);
node1=(DdNode *)YAP_IntOfTerm(YAP_HeadOfTerm(pair));
nodes_ex[i]=node1;
pair=YAP_TailOfTerm(pair);
example_prob[i]=YAP_FloatOfTerm(YAP_HeadOfTerm(pair));
nodesTerm=YAP_TailOfTerm(nodesTerm);
}
for (r=0;r<nRules;r++)
{
for (i=0;i<rules[r]-1;i++)
{
eta_rule=eta[r];
eta_rule[i][0]=0;
eta_rule[i][1]=0;
}
}
CLL=Expectation(nodes_ex,lenNodes);
out= YAP_TermNil();
for (r=0; r<nRules; r++)
{
tail=YAP_TermNil();
eta_rule=eta[r];
for (i=0;i<rules[r]-1;i++)
{
p0=eta_rule[i][0];
p1=eta_rule[i][1];
term=YAP_MkPairTerm(YAP_MkFloatTerm(p0),
YAP_MkPairTerm(YAP_MkFloatTerm(p1),YAP_TermNil()));
tail=YAP_MkPairTerm(term,tail);
}
ruleTerm=YAP_MkIntTerm(r);
compoundTerm=YAP_MkPairTerm(ruleTerm,YAP_MkPairTerm(tail,YAP_TermNil()));
out=YAP_MkPairTerm(compoundTerm,out);
}
free(nodes_ex);
free(example_prob);
out1=YAP_MkFloatTerm(CLL);
YAP_Unify(out1,arg4);
return (YAP_Unify(out,arg3));
}
static int paths_to_non_zero(void)
{
double paths;
YAP_Term arg1,arg2,out;
DdNode * node;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node=(DdNode *)YAP_IntOfTerm(arg1);
paths=Cudd_CountPathsToNonZero(node);
out=YAP_MkFloatTerm(paths);
return(YAP_Unify(out,arg2));
}
static int paths(void)
{
double paths;
YAP_Term arg1,arg2,out;
DdNode * node;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node=(DdNode *)YAP_IntOfTerm(arg1);
paths=Cudd_CountPath(node);
out=YAP_MkFloatTerm(paths);
return(YAP_Unify(out,arg2));
}
static int dag_size(void)
{
int size;
YAP_Term arg1,arg2,out;
DdNode * node;
arg1=YAP_ARG1;
arg2=YAP_ARG2;
node=(DdNode *)YAP_IntOfTerm(arg1);
size=Cudd_DagSize(node);
out=YAP_MkIntTerm(size);
return(YAP_Unify(out,arg2));
}
void init_my_predicates()
/* function required by YAP for intitializing the predicates defined by a C function*/
{
YAP_UserCPredicate("init",init,2);
YAP_UserCPredicate("init_bdd",init_bdd,0);
YAP_UserCPredicate("end",end,0);
YAP_UserCPredicate("end_bdd",end_bdd,0);
YAP_UserCPredicate("add_var",add_var,4);
YAP_UserCPredicate("equality",equality,3);
YAP_UserCPredicate("and",and,3);
YAP_UserCPredicate("one",one,1);
YAP_UserCPredicate("zero",zero,1);
YAP_UserCPredicate("or",or,3);
YAP_UserCPredicate("bdd_not",bdd_not,2);
YAP_UserCPredicate("create_dot",create_dot,2);
YAP_UserCPredicate("init_test",init_test,1);
YAP_UserCPredicate("end_test",end_test,0);
YAP_UserCPredicate("ret_prob",ret_prob,2);
YAP_UserCPredicate("em",EM,7);
YAP_UserCPredicate("q",Q,4);
YAP_UserCPredicate("randomize",randomize,0);
YAP_UserCPredicate("deref",rec_deref,1);
YAP_UserCPredicate("garbage_collect",garbage_collect,2);
YAP_UserCPredicate("bdd_to_add",bdd_to_add,2);
YAP_UserCPredicate("paths_to_non_zero",paths_to_non_zero,2);
YAP_UserCPredicate("paths",paths,2);
YAP_UserCPredicate("dag_size",dag_size,2);
}
FILE * open_file(char *filename, const char *mode)
/* opens a file */
{
FILE *fp;
if ((fp = fopen(filename, mode)) == NULL)
{
perror(filename);
exit(1);
}
return fp;
}
tablerow* init_table(int varcnt) {
int i;
tablerow *tab;
tab = (tablerow *) malloc(sizeof(rowel) * varcnt);
for (i = 0; i < varcnt; i++)
{
tab[i].row = NULL;
tab[i].cnt = 0;
}
return tab;
}
void add_node(tablerow *tab, DdNode *node, double value) {
int index = Cudd_NodeReadIndex(node);
tab[index].row = (rowel *) realloc(tab[index].row,
(tab[index].cnt + 1) * sizeof(rowel));
tab[index].row[tab[index].cnt].key = node;
tab[index].row[tab[index].cnt].value = value;
tab[index].cnt += 1;
}
void add_or_replace_node(tablerow *tab, DdNode *node, double value)
{
int i;
int index = Cudd_NodeReadIndex(node);
for(i = 0; i < tab[index].cnt; i++)
{
if (tab[index].row[i].key == node)
{
tab[index].row[i].value=value;
return;
}
}
tab[index].row = (rowel *) realloc(tab[index].row,
(tab[index].cnt + 1) * sizeof(rowel));
tab[index].row[tab[index].cnt].key = node;
tab[index].row[tab[index].cnt].value = value;
tab[index].cnt += 1;
}
double * get_value(tablerow *tab, DdNode *node) {
int i;
int index = Cudd_NodeReadIndex(node);
for(i = 0; i < tab[index].cnt; i++)
{
if (tab[index].row[i].key == node)
{
return &tab[index].row[i].value;
}
}
return NULL;
}
void destroy_table(tablerow *tab,int varcnt)
{
int i;
for (i = 0; i < varcnt; i++)
{
free(tab[i].row);
}
free(tab);
}