7b2c4dc6ff
global functions should not be called from within file (bug in binutils/WIN32). git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@675 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
657 lines
14 KiB
C
657 lines
14 KiB
C
/*************************************************************************
|
|
* *
|
|
* YAP Prolog *
|
|
* *
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
* *
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
* *
|
|
**************************************************************************
|
|
* *
|
|
* File: unify.c *
|
|
* Last rev: *
|
|
* mods: *
|
|
* comments: Unification and other auxiliary routines for absmi *
|
|
* *
|
|
*************************************************************************/
|
|
#define IN_UNIFY_C 1
|
|
|
|
#include "absmi.h"
|
|
|
|
STATIC_PROTO(Int OCUnify_complex, (register CELL *, register CELL *, register CELL *));
|
|
STATIC_PROTO(int OCUnify, (register CELL, register CELL));
|
|
STATIC_PROTO(Int p_ocunify, (void));
|
|
#ifdef THREADED_CODE
|
|
STATIC_PROTO(int rtable_hash_op, (OPCODE));
|
|
STATIC_PROTO(void InitReverseLookupOpcode, (void));
|
|
#endif
|
|
|
|
static int
|
|
rational_tree_loop(CELL *pt0, CELL *pt0_end, CELL **to_visit0)
|
|
{
|
|
CELL **to_visit = to_visit0;
|
|
|
|
loop:
|
|
while (pt0 < pt0_end) {
|
|
register CELL *ptd0;
|
|
register CELL d0;
|
|
|
|
ptd0 = ++pt0;
|
|
pt0 = ptd0;
|
|
d0 = *ptd0;
|
|
deref_head(d0, rtree_loop_unk);
|
|
rtree_loop_nvar:
|
|
{
|
|
if (d0 == TermFoundVar)
|
|
goto cufail;
|
|
if (IsPairTerm(d0)) {
|
|
to_visit[0] = pt0;
|
|
to_visit[1] = pt0_end;
|
|
to_visit[2] = (CELL *)d0;
|
|
to_visit += 3;
|
|
*pt0 = TermFoundVar;
|
|
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
|
|
continue;
|
|
}
|
|
if (IsApplTerm(d0)) {
|
|
register Functor f;
|
|
register CELL *ap2;
|
|
|
|
/* store the terms to visit */
|
|
ap2 = RepAppl(d0);
|
|
f = (Functor) (*ap2);
|
|
/* compare functors */
|
|
if (IsExtensionFunctor(f)) {
|
|
continue;
|
|
}
|
|
to_visit[0] = pt0;
|
|
to_visit[1] = pt0_end;
|
|
to_visit[2] = (CELL *)d0;
|
|
to_visit += 3;
|
|
*pt0 = TermFoundVar;
|
|
d0 = ArityOfFunctor(f);
|
|
pt0 = ap2;
|
|
pt0_end = ap2 + d0;
|
|
continue;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
derefa_body(d0, ptd0, rtree_loop_unk, rtree_loop_nvar);
|
|
}
|
|
/* Do we still have compound terms to visit */
|
|
if (to_visit > to_visit0) {
|
|
to_visit -= 3;
|
|
pt0 = to_visit[0];
|
|
pt0_end = to_visit[1];
|
|
*pt0 = (CELL)to_visit[2];
|
|
goto loop;
|
|
}
|
|
return (FALSE);
|
|
|
|
cufail:
|
|
#ifdef RATIONAL_TREES
|
|
/* we found an infinite term */
|
|
while (to_visit > to_visit) {
|
|
CELL *pt0;
|
|
to_visit -= 3;
|
|
pt0 = to_visit[0];
|
|
*pt0 = (CELL)to_visit[2];
|
|
}
|
|
#endif
|
|
return (TRUE);
|
|
|
|
}
|
|
|
|
static inline int
|
|
rational_tree(Term d0) {
|
|
if (IsPairTerm(d0)) {
|
|
CELL *pt0 = RepPair(d0);
|
|
CELL **to_visit = (CELL **)H;
|
|
|
|
return(rational_tree_loop(pt0-1, pt0+1, to_visit));
|
|
} else if (IsApplTerm(d0)) {
|
|
CELL *pt0 = RepAppl(d0);
|
|
Functor f = (Functor)(*pt0);
|
|
CELL **to_visit = (CELL **)H;
|
|
|
|
return(rational_tree_loop(pt0, pt0+ArityOfFunctor(f), to_visit));
|
|
} else
|
|
return(FALSE);
|
|
}
|
|
|
|
static Int
|
|
OCUnify_complex(register CELL *pt0, register CELL *pt0_end,
|
|
register CELL *pt1
|
|
)
|
|
{
|
|
|
|
register CELL **to_visit;
|
|
#if SHADOW_HB
|
|
register CELL *HBREG;
|
|
HBREG = HB;
|
|
#endif
|
|
|
|
to_visit = (CELL **) H;
|
|
loop:
|
|
while (pt0 < pt0_end) {
|
|
register CELL *ptd0 = ++pt0;
|
|
register CELL d0 = *ptd0;
|
|
|
|
++pt1;
|
|
deref_head(d0, unify_comp_unk);
|
|
unify_comp_nvar:
|
|
{
|
|
register CELL *ptd1 = pt1;
|
|
register CELL d1 = *ptd1;
|
|
|
|
deref_head(d1, unify_comp_nvar_unk);
|
|
unify_comp_nvar_nvar:
|
|
if (d0 == d1) {
|
|
if (rational_tree_loop(pt0-1, pt0, to_visit))
|
|
goto cufail;
|
|
continue;
|
|
} if (IsPairTerm(d0)) {
|
|
if (!IsPairTerm(d1)) {
|
|
goto cufail;
|
|
}
|
|
/* now link the two structures so that no one else will */
|
|
/* come here */
|
|
to_visit[0] = pt0;
|
|
to_visit[1] = pt0_end;
|
|
to_visit[2] = pt1;
|
|
/* we want unification of rational trees to fail */
|
|
to_visit[3] = (CELL *)*pt0;
|
|
to_visit[4] = (CELL *)*pt1;
|
|
to_visit += 5;
|
|
*pt0 = TermFoundVar;
|
|
*pt1 = TermFoundVar;
|
|
pt0_end = (pt0 = RepPair(d0) - 1) + 2;
|
|
pt0_end = RepPair(d0) + 1;
|
|
pt1 = RepPair(d1) - 1;
|
|
continue;
|
|
}
|
|
else if (IsApplTerm(d0)) {
|
|
register Functor f;
|
|
register CELL *ap2, *ap3;
|
|
|
|
/* store the terms to visit */
|
|
ap2 = RepAppl(d0);
|
|
f = (Functor) (*ap2);
|
|
if (!IsApplTerm(d1)) {
|
|
goto cufail;
|
|
}
|
|
ap3 = RepAppl(d1);
|
|
/* compare functors */
|
|
if (f != (Functor) *ap3) {
|
|
goto cufail;
|
|
}
|
|
if (IsExtensionFunctor(f)) {
|
|
switch((CELL)f) {
|
|
case (CELL)FunctorDBRef:
|
|
if (d0 == d1) continue;
|
|
goto cufail;
|
|
case (CELL)FunctorLongInt:
|
|
if (ap2[1] == ap3[1]) continue;
|
|
goto cufail;
|
|
case (CELL)FunctorDouble:
|
|
if (FloatOfTerm(d0) == FloatOfTerm(d1)) continue;
|
|
goto cufail;
|
|
#ifdef USE_GMP
|
|
case (CELL)FunctorBigInt:
|
|
if (mpz_cmp(_YAP_BigIntOfTerm(d0),_YAP_BigIntOfTerm(d1)) == 0) continue;
|
|
goto cufail;
|
|
#endif /* USE_GMP */
|
|
default:
|
|
goto cufail;
|
|
}
|
|
}
|
|
/* now link the two structures so that no one else will */
|
|
/* come here */
|
|
to_visit[0] = pt0;
|
|
to_visit[1] = pt0_end;
|
|
to_visit[2] = pt1;
|
|
to_visit[3] = (CELL *)*pt0;
|
|
to_visit[4] = (CELL *)*pt1;
|
|
to_visit += 5;
|
|
*pt0 = TermFoundVar;
|
|
*pt1 = TermFoundVar;
|
|
d0 = ArityOfFunctor(f);
|
|
pt0 = ap2;
|
|
pt0_end = ap2 + d0;
|
|
pt1 = ap3;
|
|
continue;
|
|
} else {
|
|
if (d0 == d1)
|
|
continue;
|
|
else goto cufail;
|
|
}
|
|
|
|
derefa_body(d1, ptd1, unify_comp_nvar_unk, unify_comp_nvar_nvar);
|
|
|
|
/* d1 and pt2 have the unbound value, whereas d0 is bound */
|
|
BIND_GLOBAL(ptd1, d0, bind_ocunify1);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(ptd1, d0);
|
|
if (ptd1 < H0) _YAP_WakeUp(ptd1);
|
|
bind_ocunify1:
|
|
#endif
|
|
if (rational_tree_loop(ptd1-1, ptd1, to_visit))
|
|
goto cufail;
|
|
continue;
|
|
|
|
}
|
|
|
|
derefa_body(d0, ptd0, unify_comp_unk, unify_comp_nvar);
|
|
{
|
|
register CELL d1;
|
|
register CELL *ptd1 = NULL;
|
|
|
|
d1 = *(ptd1 = pt1);
|
|
/* pt2 is unbound */
|
|
deref_head(d1, unify_comp_var_unk);
|
|
unify_comp_var_nvar:
|
|
/* pt2 is unbound and d1 is bound */
|
|
BIND_GLOBAL(ptd0, d1, bind_ocunify2);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(ptd0, d1);
|
|
if (ptd0 < H0) _YAP_WakeUp(ptd0);
|
|
bind_ocunify2:
|
|
#endif
|
|
if (rational_tree_loop(ptd0-1, ptd0, to_visit))
|
|
goto cufail;
|
|
continue;
|
|
|
|
derefa_body(d1, ptd1, unify_comp_var_unk, unify_comp_var_nvar);
|
|
/* ptd0 and ptd1 are unbound */
|
|
UnifyGlobalCells(ptd0, ptd1);
|
|
}
|
|
}
|
|
/* Do we still have compound terms to visit */
|
|
if (to_visit > (CELL **) H) {
|
|
to_visit -= 5;
|
|
pt0 = to_visit[0];
|
|
pt0_end = to_visit[1];
|
|
pt1 = to_visit[2];
|
|
*pt0 = (CELL)to_visit[3];
|
|
*pt1 = (CELL)to_visit[4];
|
|
goto loop;
|
|
}
|
|
/* successful exit */
|
|
return (TRUE);
|
|
|
|
cufail:
|
|
/* failure */
|
|
while (to_visit > (CELL **) H) {
|
|
CELL *pt0;
|
|
to_visit -= 5;
|
|
pt0 = to_visit[0];
|
|
pt1 = to_visit[2];
|
|
*pt0 = (CELL)to_visit[3];
|
|
*pt1 = (CELL)to_visit[4];
|
|
}
|
|
/* failure */
|
|
return (FALSE);
|
|
#if SHADOW_REGS
|
|
#if defined(B) || defined(TR)
|
|
#undef _YAP_REGS
|
|
#endif /* defined(B) || defined(TR) */
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
OCUnify(register CELL d0, register CELL d1)
|
|
{
|
|
|
|
register CELL *pt0, *pt1;
|
|
|
|
#if SHADOW_HB
|
|
register CELL *HBREG = HB;
|
|
#endif
|
|
|
|
deref_head(d0, oc_unify_unk);
|
|
|
|
oc_unify_nvar:
|
|
/* d0 is bound */
|
|
deref_head(d1, oc_unify_nvar_unk);
|
|
oc_unify_nvar_nvar:
|
|
|
|
if (d0 == d1) {
|
|
if (rational_tree(d0))
|
|
return(FALSE);
|
|
return(TRUE);
|
|
}
|
|
/* both arguments are bound */
|
|
if (IsPairTerm(d0)) {
|
|
if (!IsPairTerm(d1)) {
|
|
return (FALSE);
|
|
}
|
|
pt0 = RepPair(d0);
|
|
pt1 = RepPair(d1);
|
|
return (OCUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1));
|
|
}
|
|
else if (IsApplTerm(d0)) {
|
|
if (!IsApplTerm(d1))
|
|
return (FALSE);
|
|
pt0 = RepAppl(d0);
|
|
d0 = *pt0;
|
|
pt1 = RepAppl(d1);
|
|
d1 = *pt1;
|
|
if (d0 != d1) {
|
|
return (FALSE);
|
|
} else {
|
|
if (IsExtensionFunctor((Functor)d0)) {
|
|
switch(d0) {
|
|
case (CELL)FunctorDBRef:
|
|
return(pt0 == pt1);
|
|
case (CELL)FunctorLongInt:
|
|
return(pt0[1] == pt1[1]);
|
|
case (CELL)FunctorDouble:
|
|
return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1)));
|
|
#ifdef USE_GMP
|
|
case (CELL)FunctorBigInt:
|
|
return(mpz_cmp(_YAP_BigIntOfTerm(AbsAppl(pt0)),_YAP_BigIntOfTerm(AbsAppl(pt0))) == 0);
|
|
#endif /* USE_GMP */
|
|
default:
|
|
return(FALSE);
|
|
}
|
|
}
|
|
return (OCUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0),
|
|
pt1));
|
|
}
|
|
} else {
|
|
return(FALSE);
|
|
}
|
|
|
|
deref_body(d1, pt1, oc_unify_nvar_unk, oc_unify_nvar_nvar);
|
|
/* d0 is bound and d1 is unbound */
|
|
BIND(pt1, d0, bind_ocunify4);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt1, d0);
|
|
if (pt1 < H0) _YAP_WakeUp(pt1);
|
|
bind_ocunify4:
|
|
#endif
|
|
if (rational_tree(d0))
|
|
return(FALSE);
|
|
return (TRUE);
|
|
|
|
deref_body(d0, pt0, oc_unify_unk, oc_unify_nvar);
|
|
/* pt0 is unbound */
|
|
deref_head(d1, oc_unify_var_unk);
|
|
oc_unify_var_nvar:
|
|
/* pt0 is unbound and d1 is bound */
|
|
BIND(pt0, d1, bind_ocunify5);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt0, d1);
|
|
if (pt0 < H0) _YAP_WakeUp(pt0);
|
|
bind_ocunify5:
|
|
#endif
|
|
if (rational_tree(d1))
|
|
return(FALSE);
|
|
return (TRUE);
|
|
|
|
deref_body(d1, pt1, oc_unify_var_unk, oc_unify_var_nvar);
|
|
/* d0 and pt1 are unbound */
|
|
UnifyCells(pt0, pt1, uc1, uc2);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt0, (CELL)pt1);
|
|
if (pt0 < H0) _YAP_WakeUp(pt0);
|
|
uc1:
|
|
#endif
|
|
return (TRUE);
|
|
#ifdef COROUTINING
|
|
uc2:
|
|
DO_TRAIL(pt1, (CELL)pt0);
|
|
if (pt1 < H0) {
|
|
_YAP_WakeUp(pt1);
|
|
}
|
|
#endif
|
|
return (TRUE);
|
|
}
|
|
|
|
static Int
|
|
p_ocunify(void)
|
|
{
|
|
return(OCUnify(ARG1,ARG2));
|
|
}
|
|
|
|
static Int
|
|
p_cyclic(void)
|
|
{
|
|
Term t = Deref(ARG1);
|
|
if (IsVarTerm(t))
|
|
return(FALSE);
|
|
return(rational_tree(t));
|
|
}
|
|
|
|
static Int
|
|
p_acyclic(void)
|
|
{
|
|
Term t = Deref(ARG1);
|
|
if (IsVarTerm(t))
|
|
return(TRUE);
|
|
return(!rational_tree(t));
|
|
}
|
|
|
|
int
|
|
_YAP_IUnify(register CELL d0, register CELL d1)
|
|
{
|
|
#if SHADOW_REGS
|
|
#if defined(B) || defined(TR)
|
|
register REGSTORE *regp = &_YAP_REGS;
|
|
|
|
#define _YAP_REGS (*regp)
|
|
#endif /* defined(B) || defined(TR) */
|
|
#endif
|
|
|
|
#if SHADOW_HB
|
|
register CELL *HBREG = HB;
|
|
#endif
|
|
|
|
register CELL *pt0, *pt1;
|
|
|
|
deref_head(d0, unify_unk);
|
|
|
|
unify_nvar:
|
|
/* d0 is bound */
|
|
deref_head(d1, unify_nvar_unk);
|
|
unify_nvar_nvar:
|
|
/* both arguments are bound */
|
|
if (d0 == d1)
|
|
return (TRUE);
|
|
if (IsPairTerm(d0)) {
|
|
if (!IsPairTerm(d1)) {
|
|
return (FALSE);
|
|
}
|
|
pt0 = RepPair(d0);
|
|
pt1 = RepPair(d1);
|
|
return (IUnify_complex(pt0 - 1, pt0 + 1, pt1 - 1));
|
|
}
|
|
else if (IsApplTerm(d0)) {
|
|
pt0 = RepAppl(d0);
|
|
d0 = *pt0;
|
|
if (!IsApplTerm(d1))
|
|
return (FALSE);
|
|
pt1 = RepAppl(d1);
|
|
d1 = *pt1;
|
|
if (d0 != d1) {
|
|
return (FALSE);
|
|
} else {
|
|
if (IsExtensionFunctor((Functor)d0)) {
|
|
switch(d0) {
|
|
case (CELL)FunctorDBRef:
|
|
return(pt0 == pt1);
|
|
case (CELL)FunctorLongInt:
|
|
return(pt0[1] == pt1[1]);
|
|
case (CELL)FunctorDouble:
|
|
return(FloatOfTerm(AbsAppl(pt0)) == FloatOfTerm(AbsAppl(pt1)));
|
|
#ifdef USE_GMP
|
|
case (CELL)FunctorBigInt:
|
|
return(mpz_cmp(_YAP_BigIntOfTerm(AbsAppl(pt0)),_YAP_BigIntOfTerm(AbsAppl(pt0))) == 0);
|
|
#endif /* USE_GMP */
|
|
default:
|
|
return(FALSE);
|
|
}
|
|
}
|
|
return (IUnify_complex(pt0, pt0 + ArityOfFunctor((Functor) d0),
|
|
pt1));
|
|
}
|
|
} else {
|
|
return (FALSE);
|
|
}
|
|
|
|
deref_body(d1, pt1, unify_nvar_unk, unify_nvar_nvar);
|
|
/* d0 is bound and d1 is unbound */
|
|
BIND(pt1, d0, bind_unify3);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt1, d0);
|
|
if (pt1 < H0) _YAP_WakeUp(pt1);
|
|
bind_unify3:
|
|
#endif
|
|
return (TRUE);
|
|
|
|
deref_body(d0, pt0, unify_unk, unify_nvar);
|
|
/* pt0 is unbound */
|
|
deref_head(d1, unify_var_unk);
|
|
unify_var_nvar:
|
|
/* pt0 is unbound and d1 is bound */
|
|
BIND(pt0, d1, bind_unify4);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt0, d1);
|
|
if (pt0 < H0) _YAP_WakeUp(pt0);
|
|
bind_unify4:
|
|
#endif
|
|
return (TRUE);
|
|
|
|
#if TRAILING_REQUIRES_BRANCH
|
|
unify_var_nvar_trail:
|
|
DO_TRAIL(pt0);
|
|
return (TRUE);
|
|
#endif
|
|
|
|
deref_body(d1, pt1, unify_var_unk, unify_var_nvar);
|
|
/* d0 and pt1 are unbound */
|
|
UnifyCells(pt0, pt1, uc1, uc2);
|
|
#ifdef COROUTINING
|
|
DO_TRAIL(pt0, (CELL)pt1);
|
|
if (pt0 < H0) _YAP_WakeUp(pt0);
|
|
uc1:
|
|
#endif
|
|
return (TRUE);
|
|
#ifdef COROUTINING
|
|
uc2:
|
|
DO_TRAIL(pt1, (CELL)pt0);
|
|
if (pt1 < H0) {
|
|
_YAP_WakeUp(pt1);
|
|
}
|
|
return (TRUE);
|
|
#endif
|
|
#if SHADOW_REGS
|
|
#if defined(B) || defined(TR)
|
|
#undef _YAP_REGS
|
|
#endif /* defined(B) || defined(TR) */
|
|
#endif
|
|
}
|
|
|
|
/**********************************************************************
|
|
* *
|
|
* Conversion from Label to Op *
|
|
* *
|
|
**********************************************************************/
|
|
|
|
#if USE_THREADED_CODE
|
|
|
|
static inline int
|
|
rtable_hash_op(OPCODE opc, int hash_mask) {
|
|
return((((CELL)opc) >> 3) & hash_mask);
|
|
}
|
|
|
|
#define OP_HASH_SIZE 2048
|
|
|
|
/* mask a hash table that allows for fast reverse translation from
|
|
instruction address to corresponding opcode */
|
|
static void
|
|
InitReverseLookupOpcode(void)
|
|
{
|
|
opentry *opeptr;
|
|
op_numbers i;
|
|
/* 2 K should be OK */
|
|
int hash_size_mask = OP_HASH_SIZE-1;
|
|
|
|
if (OP_RTABLE == NULL)
|
|
OP_RTABLE = (opentry *)_YAP_AllocCodeSpace(OP_HASH_SIZE*sizeof(struct opcode_tab_entry));
|
|
if (OP_RTABLE == NULL) {
|
|
_YAP_Error(FATAL_ERROR, TermNil,
|
|
"Couldn't obtain space for the reverse translation opcode table");
|
|
}
|
|
opeptr = OP_RTABLE;
|
|
/* clear up table */
|
|
{
|
|
int j;
|
|
for (j=0; j<=OP_HASH_SIZE; j++) {
|
|
opeptr[j].opc = NIL;
|
|
opeptr[j].opnum = _Ystop;
|
|
}
|
|
}
|
|
opeptr = OP_RTABLE;
|
|
opeptr[rtable_hash_op(_YAP_opcode(_Ystop),hash_size_mask)].opc
|
|
= _YAP_opcode(_Ystop);
|
|
/* now place entries */
|
|
for (i = _std_top; i > _Ystop; i--) {
|
|
OPCODE opc = _YAP_opcode(i);
|
|
int j = rtable_hash_op(opc,hash_size_mask);
|
|
|
|
while (opeptr[j].opc != NIL) {
|
|
if (++j > hash_size_mask)
|
|
j = 0;
|
|
}
|
|
/* clear entry, no conflict */
|
|
opeptr[j].opnum = i;
|
|
opeptr[j].opc = opc;
|
|
}
|
|
}
|
|
|
|
/* given an opcode find the corresponding opnumber. This should make
|
|
switches on ops a much easier operation */
|
|
op_numbers
|
|
_YAP_op_from_opcode(OPCODE opc)
|
|
{
|
|
int j = rtable_hash_op(opc,OP_HASH_SIZE-1);
|
|
|
|
while (OP_RTABLE[j].opc != opc) {
|
|
if (j == OP_HASH_SIZE-1)
|
|
j = 0;
|
|
else
|
|
j++;
|
|
}
|
|
return(OP_RTABLE[j].opnum);
|
|
}
|
|
#else
|
|
op_numbers
|
|
_YAP_op_from_opcode(OPCODE opc)
|
|
{
|
|
return((op_numbers)opc);
|
|
}
|
|
#endif
|
|
|
|
|
|
void
|
|
_YAP_InitUnify(void)
|
|
{
|
|
_YAP_InitCPred("unify_with_occurs_check", 2, p_ocunify, SafePredFlag);
|
|
_YAP_InitCPred("cyclic_term", 1, p_cyclic, SafePredFlag|TestPredFlag);
|
|
_YAP_InitCPred("acyclic_term", 1, p_acyclic, SafePredFlag|TestPredFlag);
|
|
}
|
|
|
|
|
|
void
|
|
_YAP_InitAbsmi(void)
|
|
{
|
|
/* initialise access to abstract machine instructions */
|
|
#if USE_THREADED_CODE
|
|
_YAP_absmi(1);
|
|
InitReverseLookupOpcode();
|
|
#endif
|
|
}
|
|
|