834 lines
28 KiB
C
834 lines
28 KiB
C
/*
|
|
---------------------------------------------------------------------------
|
|
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
|
|
|
|
LICENSE TERMS
|
|
|
|
The free distribution and use of this software in both source and binary
|
|
form is allowed (with or without changes) provided that:
|
|
|
|
1. distributions of this source code include the above copyright
|
|
notice, this list of conditions and the following disclaimer;
|
|
|
|
2. distributions in binary form include the above copyright
|
|
notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other associated materials;
|
|
|
|
3. the copyright holder's name is not used to endorse products
|
|
built using this software without specific written permission.
|
|
|
|
ALTERNATIVELY, provided that this notice is retained in full, this product
|
|
may be distributed under the terms of the GNU General Public License (GPL),
|
|
in which case the provisions of the GPL apply INSTEAD OF those given above.
|
|
|
|
DISCLAIMER
|
|
|
|
This software is provided 'as is' with no explicit or implied warranties
|
|
in respect of its properties, including, but not limited to, correctness
|
|
and/or fitness for purpose.
|
|
---------------------------------------------------------------------------
|
|
Issue Date: 01/08/2005
|
|
|
|
This is a bit oriented version of SHA2 that operates on arrays of bytes
|
|
stored in memory. This code implements sha256, sha384 and sha512 but the
|
|
latter two functions rely on efficient 64-bit integer operations that
|
|
may not be very efficient on 32-bit machines
|
|
|
|
The sha256 functions use a type 'sha256_ctx' to hold details of the
|
|
current hash state and uses the following three calls:
|
|
|
|
void sha256_begin(sha256_ctx ctx[1])
|
|
void sha256_hash(const unsigned char data[],
|
|
unsigned long len, sha256_ctx ctx[1])
|
|
void sha_end1(unsigned char hval[], sha256_ctx ctx[1])
|
|
|
|
The first subroutine initialises a hash computation by setting up the
|
|
context in the sha256_ctx context. The second subroutine hashes 8-bit
|
|
bytes from array data[] into the hash state withinh sha256_ctx context,
|
|
the number of bytes to be hashed being given by the the unsigned long
|
|
integer len. The third subroutine completes the hash calculation and
|
|
places the resulting digest value in the array of 8-bit bytes hval[].
|
|
|
|
The sha384 and sha512 functions are similar and use the interfaces:
|
|
|
|
void sha384_begin(sha384_ctx ctx[1]);
|
|
void sha384_hash(const unsigned char data[],
|
|
unsigned long len, sha384_ctx ctx[1]);
|
|
void sha384_end(unsigned char hval[], sha384_ctx ctx[1]);
|
|
|
|
void sha512_begin(sha512_ctx ctx[1]);
|
|
void sha512_hash(const unsigned char data[],
|
|
unsigned long len, sha512_ctx ctx[1]);
|
|
void sha512_end(unsigned char hval[], sha512_ctx ctx[1]);
|
|
|
|
In addition there is a function sha2 that can be used to call all these
|
|
functions using a call with a hash length parameter as follows:
|
|
|
|
int sha2_begin(unsigned long len, sha2_ctx ctx[1]);
|
|
void sha2_hash(const unsigned char data[],
|
|
unsigned long len, sha2_ctx ctx[1]);
|
|
void sha2_end(unsigned char hval[], sha2_ctx ctx[1]);
|
|
|
|
My thanks to Erik Andersen <andersen@codepoet.org> for testing this code
|
|
on big-endian systems and for his assistance with corrections
|
|
*/
|
|
|
|
#if 1
|
|
#define UNROLL_SHA2 /* for SHA2 loop unroll */
|
|
#endif
|
|
|
|
#include <string.h> /* for memcpy() etc. */
|
|
|
|
#include "sha2.h"
|
|
#include "brg_endian.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C"
|
|
{
|
|
#endif
|
|
|
|
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
|
|
#pragma intrinsic(memcpy)
|
|
#endif
|
|
|
|
#if 0 && defined(_MSC_VER)
|
|
#define rotl32 _lrotl
|
|
#define rotr32 _lrotr
|
|
#else
|
|
#define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
|
|
#define rotr32(x,n) (((x) >> n) | ((x) << (32 - n)))
|
|
#endif
|
|
|
|
#if !defined(bswap_32)
|
|
#define bswap_32(x) ((rotr32((x), 24) & 0x00ff00ff) | (rotr32((x), 8) & 0xff00ff00))
|
|
#endif
|
|
|
|
#if (PLATFORM_BYTE_ORDER == IS_LITTLE_ENDIAN)
|
|
#define SWAP_BYTES
|
|
#else
|
|
#undef SWAP_BYTES
|
|
#endif
|
|
|
|
#if 0
|
|
|
|
#define ch(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
|
|
#define maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
|
|
|
|
#else /* Thanks to Rich Schroeppel and Colin Plumb for the following */
|
|
|
|
#define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define maj(x,y,z) (((x) & (y)) | ((z) & ((x) ^ (y))))
|
|
|
|
#endif
|
|
|
|
/* round transforms for SHA256 and SHA512 compression functions */
|
|
|
|
#define vf(n,i) v[(n - i) & 7]
|
|
|
|
#define hf(i) (p[i & 15] += \
|
|
g_1(p[(i + 14) & 15]) + p[(i + 9) & 15] + g_0(p[(i + 1) & 15]))
|
|
|
|
#define v_cycle(i,j) \
|
|
vf(7,i) += (j ? hf(i) : p[i]) + k_0[i+j] \
|
|
+ s_1(vf(4,i)) + ch(vf(4,i),vf(5,i),vf(6,i)); \
|
|
vf(3,i) += vf(7,i); \
|
|
vf(7,i) += s_0(vf(0,i))+ maj(vf(0,i),vf(1,i),vf(2,i))
|
|
|
|
#if defined(SHA_224) || defined(SHA_256)
|
|
|
|
#define SHA256_MASK (SHA256_BLOCK_SIZE - 1)
|
|
|
|
#if defined(SWAP_BYTES)
|
|
#define bsw_32(p,n) \
|
|
{ int _i = (n); while(_i--) ((uint_32t*)p)[_i] = bswap_32(((uint_32t*)p)[_i]); }
|
|
#else
|
|
#define bsw_32(p,n)
|
|
#endif
|
|
|
|
#define s_0(x) (rotr32((x), 2) ^ rotr32((x), 13) ^ rotr32((x), 22))
|
|
#define s_1(x) (rotr32((x), 6) ^ rotr32((x), 11) ^ rotr32((x), 25))
|
|
#define g_0(x) (rotr32((x), 7) ^ rotr32((x), 18) ^ ((x) >> 3))
|
|
#define g_1(x) (rotr32((x), 17) ^ rotr32((x), 19) ^ ((x) >> 10))
|
|
#define k_0 k256
|
|
|
|
/* rotated SHA256 round definition. Rather than swapping variables as in */
|
|
/* FIPS-180, different variables are 'rotated' on each round, returning */
|
|
/* to their starting positions every eight rounds */
|
|
|
|
#define q(n) v##n
|
|
|
|
#define one_cycle(a,b,c,d,e,f,g,h,k,w) \
|
|
q(h) += s_1(q(e)) + ch(q(e), q(f), q(g)) + k + w; \
|
|
q(d) += q(h); q(h) += s_0(q(a)) + maj(q(a), q(b), q(c))
|
|
|
|
/* SHA256 mixing data */
|
|
|
|
const uint_32t k256[64] =
|
|
{ 0x428a2f98ul, 0x71374491ul, 0xb5c0fbcful, 0xe9b5dba5ul,
|
|
0x3956c25bul, 0x59f111f1ul, 0x923f82a4ul, 0xab1c5ed5ul,
|
|
0xd807aa98ul, 0x12835b01ul, 0x243185beul, 0x550c7dc3ul,
|
|
0x72be5d74ul, 0x80deb1feul, 0x9bdc06a7ul, 0xc19bf174ul,
|
|
0xe49b69c1ul, 0xefbe4786ul, 0x0fc19dc6ul, 0x240ca1ccul,
|
|
0x2de92c6ful, 0x4a7484aaul, 0x5cb0a9dcul, 0x76f988daul,
|
|
0x983e5152ul, 0xa831c66dul, 0xb00327c8ul, 0xbf597fc7ul,
|
|
0xc6e00bf3ul, 0xd5a79147ul, 0x06ca6351ul, 0x14292967ul,
|
|
0x27b70a85ul, 0x2e1b2138ul, 0x4d2c6dfcul, 0x53380d13ul,
|
|
0x650a7354ul, 0x766a0abbul, 0x81c2c92eul, 0x92722c85ul,
|
|
0xa2bfe8a1ul, 0xa81a664bul, 0xc24b8b70ul, 0xc76c51a3ul,
|
|
0xd192e819ul, 0xd6990624ul, 0xf40e3585ul, 0x106aa070ul,
|
|
0x19a4c116ul, 0x1e376c08ul, 0x2748774cul, 0x34b0bcb5ul,
|
|
0x391c0cb3ul, 0x4ed8aa4aul, 0x5b9cca4ful, 0x682e6ff3ul,
|
|
0x748f82eeul, 0x78a5636ful, 0x84c87814ul, 0x8cc70208ul,
|
|
0x90befffaul, 0xa4506cebul, 0xbef9a3f7ul, 0xc67178f2ul,
|
|
};
|
|
|
|
/* Compile 64 bytes of hash data into SHA256 digest value */
|
|
/* NOTE: this routine assumes that the byte order in the */
|
|
/* ctx->wbuf[] at this point is such that low address bytes */
|
|
/* in the ORIGINAL byte stream will go into the high end of */
|
|
/* words on BOTH big and little endian systems */
|
|
|
|
VOID_RETURN sha256_compile(sha256_ctx ctx[1])
|
|
{
|
|
#if !defined(UNROLL_SHA2)
|
|
|
|
uint_32t j, *p = ctx->wbuf, v[8];
|
|
|
|
memcpy(v, ctx->hash, 8 * sizeof(uint_32t));
|
|
|
|
for(j = 0; j < 64; j += 16)
|
|
{
|
|
v_cycle( 0, j); v_cycle( 1, j);
|
|
v_cycle( 2, j); v_cycle( 3, j);
|
|
v_cycle( 4, j); v_cycle( 5, j);
|
|
v_cycle( 6, j); v_cycle( 7, j);
|
|
v_cycle( 8, j); v_cycle( 9, j);
|
|
v_cycle(10, j); v_cycle(11, j);
|
|
v_cycle(12, j); v_cycle(13, j);
|
|
v_cycle(14, j); v_cycle(15, j);
|
|
}
|
|
|
|
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
|
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
|
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
|
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
|
|
|
#else
|
|
|
|
uint_32t *p = ctx->wbuf,v0,v1,v2,v3,v4,v5,v6,v7;
|
|
|
|
v0 = ctx->hash[0]; v1 = ctx->hash[1];
|
|
v2 = ctx->hash[2]; v3 = ctx->hash[3];
|
|
v4 = ctx->hash[4]; v5 = ctx->hash[5];
|
|
v6 = ctx->hash[6]; v7 = ctx->hash[7];
|
|
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[ 0],p[ 0]);
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[ 1],p[ 1]);
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[ 2],p[ 2]);
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[ 3],p[ 3]);
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[ 4],p[ 4]);
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[ 5],p[ 5]);
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[ 6],p[ 6]);
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[ 7],p[ 7]);
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[ 8],p[ 8]);
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[ 9],p[ 9]);
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[10],p[10]);
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[11],p[11]);
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[12],p[12]);
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[13],p[13]);
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[14],p[14]);
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[15],p[15]);
|
|
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[16],hf( 0));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[17],hf( 1));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[18],hf( 2));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[19],hf( 3));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[20],hf( 4));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[21],hf( 5));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[22],hf( 6));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[23],hf( 7));
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[24],hf( 8));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[25],hf( 9));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[26],hf(10));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[27],hf(11));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[28],hf(12));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[29],hf(13));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[30],hf(14));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[31],hf(15));
|
|
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[32],hf( 0));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[33],hf( 1));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[34],hf( 2));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[35],hf( 3));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[36],hf( 4));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[37],hf( 5));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[38],hf( 6));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[39],hf( 7));
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[40],hf( 8));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[41],hf( 9));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[42],hf(10));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[43],hf(11));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[44],hf(12));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[45],hf(13));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[46],hf(14));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[47],hf(15));
|
|
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[48],hf( 0));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[49],hf( 1));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[50],hf( 2));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[51],hf( 3));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[52],hf( 4));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[53],hf( 5));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[54],hf( 6));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[55],hf( 7));
|
|
one_cycle(0,1,2,3,4,5,6,7,k256[56],hf( 8));
|
|
one_cycle(7,0,1,2,3,4,5,6,k256[57],hf( 9));
|
|
one_cycle(6,7,0,1,2,3,4,5,k256[58],hf(10));
|
|
one_cycle(5,6,7,0,1,2,3,4,k256[59],hf(11));
|
|
one_cycle(4,5,6,7,0,1,2,3,k256[60],hf(12));
|
|
one_cycle(3,4,5,6,7,0,1,2,k256[61],hf(13));
|
|
one_cycle(2,3,4,5,6,7,0,1,k256[62],hf(14));
|
|
one_cycle(1,2,3,4,5,6,7,0,k256[63],hf(15));
|
|
|
|
ctx->hash[0] += v0; ctx->hash[1] += v1;
|
|
ctx->hash[2] += v2; ctx->hash[3] += v3;
|
|
ctx->hash[4] += v4; ctx->hash[5] += v5;
|
|
ctx->hash[6] += v6; ctx->hash[7] += v7;
|
|
#endif
|
|
}
|
|
|
|
/* SHA256 hash data in an array of bytes into hash buffer */
|
|
/* and call the hash_compile function as required. */
|
|
|
|
VOID_RETURN sha256_hash(const unsigned char data[], unsigned long len, sha256_ctx ctx[1])
|
|
{ uint_32t pos = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK),
|
|
ofs = (ctx->count[0] & 7);
|
|
const unsigned char *sp = data;
|
|
unsigned char *w = (unsigned char*)ctx->wbuf;
|
|
|
|
if((ctx->count[0] += len) < len)
|
|
++(ctx->count[1]);
|
|
|
|
if(ofs) /* if not on a byte boundary */
|
|
{
|
|
if(ofs + len < 8) /* if no added bytes are needed */
|
|
{
|
|
w[pos] |= (*sp >> ofs);
|
|
}
|
|
else /* otherwise and add bytes */
|
|
{ unsigned char part = w[pos];
|
|
|
|
while((int)(ofs + (len -= 8)) >= 0)
|
|
{
|
|
w[pos++] = part | (*sp >> ofs);
|
|
part = *sp++ << (8 - ofs);
|
|
if(pos == SHA256_BLOCK_SIZE)
|
|
{
|
|
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
|
sha256_compile(ctx); pos = 0;
|
|
}
|
|
}
|
|
|
|
w[pos] = part;
|
|
}
|
|
}
|
|
else /* data is byte aligned */
|
|
{ uint_32t space = SHA256_BLOCK_SIZE - pos;
|
|
|
|
while((int)(len - 8 * space) >= 0)
|
|
{
|
|
len -= 8 * space;
|
|
memcpy(w + pos, sp, space);
|
|
sp += space;
|
|
space = SHA256_BLOCK_SIZE;
|
|
bsw_32(w, SHA256_BLOCK_SIZE >> 2);
|
|
sha256_compile(ctx); pos = 0;
|
|
}
|
|
memcpy(w + pos, sp, (len + 7) >> 3);
|
|
}
|
|
}
|
|
|
|
/* SHA256 Final padding and digest calculation */
|
|
|
|
static void sha_end1(unsigned char hval[], sha256_ctx ctx[1], const unsigned int hlen)
|
|
{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA256_MASK), m1;
|
|
|
|
/* put bytes in the buffer in an order in which references to */
|
|
/* 32-bit words will put bytes with lower addresses into the */
|
|
/* top of 32 bit words on BOTH big and little endian machines */
|
|
bsw_32(ctx->wbuf, (i + 4) >> 2)
|
|
|
|
/* we now need to mask valid bytes and add the padding which is */
|
|
/* a single 1 bit and as many zero bits as necessary. Note that */
|
|
/* we can always add the first padding byte here because the */
|
|
/* buffer always has at least one empty slot */
|
|
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
|
ctx->wbuf[i >> 2] &= ((0xffffff00 | (~m1 + 1)) << 8 * (~i & 3));
|
|
ctx->wbuf[i >> 2] |= (m1 << 8 * (~i & 3));
|
|
|
|
/* we need 9 or more empty positions, one for the padding byte */
|
|
/* (above) and eight for the length count. If there is not */
|
|
/* enough space pad and empty the buffer */
|
|
if(i > SHA256_BLOCK_SIZE - 9)
|
|
{
|
|
if(i < 60) ctx->wbuf[15] = 0;
|
|
sha256_compile(ctx);
|
|
i = 0;
|
|
}
|
|
else /* compute a word index for the empty buffer positions */
|
|
i = (i >> 2) + 1;
|
|
|
|
while(i < 14) /* and zero pad all but last two positions */
|
|
ctx->wbuf[i++] = 0;
|
|
|
|
/* the following 32-bit length fields are assembled in the */
|
|
/* wrong byte order on little endian machines but this is */
|
|
/* corrected later since they are only ever used as 32-bit */
|
|
/* word values. */
|
|
ctx->wbuf[14] = ctx->count[1];
|
|
ctx->wbuf[15] = ctx->count[0];
|
|
sha256_compile(ctx);
|
|
|
|
/* extract the hash value as bytes in case the hash buffer is */
|
|
/* mislaigned for 32-bit words */
|
|
for(i = 0; i < hlen; ++i)
|
|
hval[i] = (unsigned char)(ctx->hash[i >> 2] >> (8 * (~i & 3)));
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_224)
|
|
|
|
const uint_32t i224[8] =
|
|
{
|
|
0xc1059ed8ul, 0x367cd507ul, 0x3070dd17ul, 0xf70e5939ul,
|
|
0xffc00b31ul, 0x68581511ul, 0x64f98fa7ul, 0xbefa4fa4ul
|
|
};
|
|
|
|
VOID_RETURN sha224_begin(sha224_ctx ctx[1])
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
memcpy(ctx->hash, i224, 8 * sizeof(uint_32t));
|
|
}
|
|
|
|
VOID_RETURN sha224_end(unsigned char hval[], sha224_ctx ctx[1])
|
|
{
|
|
sha_end1(hval, ctx, SHA224_DIGEST_SIZE);
|
|
}
|
|
|
|
VOID_RETURN sha224(unsigned char hval[], const unsigned char data[], unsigned long len)
|
|
{ sha224_ctx cx[1];
|
|
|
|
sha224_begin(cx);
|
|
sha224_hash(data, len, cx);
|
|
sha_end1(hval, cx, SHA224_DIGEST_SIZE);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_256)
|
|
|
|
const uint_32t i256[8] =
|
|
{
|
|
0x6a09e667ul, 0xbb67ae85ul, 0x3c6ef372ul, 0xa54ff53aul,
|
|
0x510e527ful, 0x9b05688cul, 0x1f83d9abul, 0x5be0cd19ul
|
|
};
|
|
|
|
VOID_RETURN sha256_begin(sha256_ctx ctx[1])
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
memcpy(ctx->hash, i256, 8 * sizeof(uint_32t));
|
|
}
|
|
|
|
VOID_RETURN sha256_end(unsigned char hval[], sha256_ctx ctx[1])
|
|
{
|
|
sha_end1(hval, ctx, SHA256_DIGEST_SIZE);
|
|
}
|
|
|
|
VOID_RETURN sha256(unsigned char hval[], const unsigned char data[], unsigned long len)
|
|
{ sha256_ctx cx[1];
|
|
|
|
sha256_begin(cx);
|
|
sha256_hash(data, len, cx);
|
|
sha_end1(hval, cx, SHA256_DIGEST_SIZE);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_384) || defined(SHA_512)
|
|
|
|
#define SHA512_MASK (SHA512_BLOCK_SIZE - 1)
|
|
|
|
#define rotr64(x,n) (((x) >> n) | ((x) << (64 - n)))
|
|
|
|
#if !defined(bswap_64)
|
|
#define bswap_64(x) (((uint_64t)(bswap_32((uint_32t)(x)))) << 32 | bswap_32((uint_32t)((x) >> 32)))
|
|
#endif
|
|
|
|
#if defined(SWAP_BYTES)
|
|
#define bsw_64(p,n) \
|
|
{ int _i = (n); while(_i--) ((uint_64t*)p)[_i] = bswap_64(((uint_64t*)p)[_i]); }
|
|
#else
|
|
#define bsw_64(p,n)
|
|
#endif
|
|
|
|
/* SHA512 mixing function definitions */
|
|
|
|
#ifdef s_0
|
|
# undef s_0
|
|
# undef s_1
|
|
# undef g_0
|
|
# undef g_1
|
|
# undef k_0
|
|
#endif
|
|
|
|
#define s_0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
|
|
#define s_1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
|
|
#define g_0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
|
|
#define g_1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
|
|
#define k_0 k512
|
|
|
|
/* SHA384/SHA512 mixing data */
|
|
|
|
const uint_64t k512[80] =
|
|
{
|
|
li_64(428a2f98d728ae22), li_64(7137449123ef65cd),
|
|
li_64(b5c0fbcfec4d3b2f), li_64(e9b5dba58189dbbc),
|
|
li_64(3956c25bf348b538), li_64(59f111f1b605d019),
|
|
li_64(923f82a4af194f9b), li_64(ab1c5ed5da6d8118),
|
|
li_64(d807aa98a3030242), li_64(12835b0145706fbe),
|
|
li_64(243185be4ee4b28c), li_64(550c7dc3d5ffb4e2),
|
|
li_64(72be5d74f27b896f), li_64(80deb1fe3b1696b1),
|
|
li_64(9bdc06a725c71235), li_64(c19bf174cf692694),
|
|
li_64(e49b69c19ef14ad2), li_64(efbe4786384f25e3),
|
|
li_64(0fc19dc68b8cd5b5), li_64(240ca1cc77ac9c65),
|
|
li_64(2de92c6f592b0275), li_64(4a7484aa6ea6e483),
|
|
li_64(5cb0a9dcbd41fbd4), li_64(76f988da831153b5),
|
|
li_64(983e5152ee66dfab), li_64(a831c66d2db43210),
|
|
li_64(b00327c898fb213f), li_64(bf597fc7beef0ee4),
|
|
li_64(c6e00bf33da88fc2), li_64(d5a79147930aa725),
|
|
li_64(06ca6351e003826f), li_64(142929670a0e6e70),
|
|
li_64(27b70a8546d22ffc), li_64(2e1b21385c26c926),
|
|
li_64(4d2c6dfc5ac42aed), li_64(53380d139d95b3df),
|
|
li_64(650a73548baf63de), li_64(766a0abb3c77b2a8),
|
|
li_64(81c2c92e47edaee6), li_64(92722c851482353b),
|
|
li_64(a2bfe8a14cf10364), li_64(a81a664bbc423001),
|
|
li_64(c24b8b70d0f89791), li_64(c76c51a30654be30),
|
|
li_64(d192e819d6ef5218), li_64(d69906245565a910),
|
|
li_64(f40e35855771202a), li_64(106aa07032bbd1b8),
|
|
li_64(19a4c116b8d2d0c8), li_64(1e376c085141ab53),
|
|
li_64(2748774cdf8eeb99), li_64(34b0bcb5e19b48a8),
|
|
li_64(391c0cb3c5c95a63), li_64(4ed8aa4ae3418acb),
|
|
li_64(5b9cca4f7763e373), li_64(682e6ff3d6b2b8a3),
|
|
li_64(748f82ee5defb2fc), li_64(78a5636f43172f60),
|
|
li_64(84c87814a1f0ab72), li_64(8cc702081a6439ec),
|
|
li_64(90befffa23631e28), li_64(a4506cebde82bde9),
|
|
li_64(bef9a3f7b2c67915), li_64(c67178f2e372532b),
|
|
li_64(ca273eceea26619c), li_64(d186b8c721c0c207),
|
|
li_64(eada7dd6cde0eb1e), li_64(f57d4f7fee6ed178),
|
|
li_64(06f067aa72176fba), li_64(0a637dc5a2c898a6),
|
|
li_64(113f9804bef90dae), li_64(1b710b35131c471b),
|
|
li_64(28db77f523047d84), li_64(32caab7b40c72493),
|
|
li_64(3c9ebe0a15c9bebc), li_64(431d67c49c100d4c),
|
|
li_64(4cc5d4becb3e42b6), li_64(597f299cfc657e2a),
|
|
li_64(5fcb6fab3ad6faec), li_64(6c44198c4a475817)
|
|
};
|
|
|
|
/* Compile 128 bytes of hash data into SHA384/512 digest */
|
|
/* NOTE: this routine assumes that the byte order in the */
|
|
/* ctx->wbuf[] at this point is such that low address bytes */
|
|
/* in the ORIGINAL byte stream will go into the high end of */
|
|
/* words on BOTH big and little endian systems */
|
|
|
|
VOID_RETURN sha512_compile(sha512_ctx ctx[1])
|
|
{ uint_64t v[8], *p = ctx->wbuf;
|
|
uint_32t j;
|
|
|
|
memcpy(v, ctx->hash, 8 * sizeof(uint_64t));
|
|
|
|
for(j = 0; j < 80; j += 16)
|
|
{
|
|
v_cycle( 0, j); v_cycle( 1, j);
|
|
v_cycle( 2, j); v_cycle( 3, j);
|
|
v_cycle( 4, j); v_cycle( 5, j);
|
|
v_cycle( 6, j); v_cycle( 7, j);
|
|
v_cycle( 8, j); v_cycle( 9, j);
|
|
v_cycle(10, j); v_cycle(11, j);
|
|
v_cycle(12, j); v_cycle(13, j);
|
|
v_cycle(14, j); v_cycle(15, j);
|
|
}
|
|
|
|
ctx->hash[0] += v[0]; ctx->hash[1] += v[1];
|
|
ctx->hash[2] += v[2]; ctx->hash[3] += v[3];
|
|
ctx->hash[4] += v[4]; ctx->hash[5] += v[5];
|
|
ctx->hash[6] += v[6]; ctx->hash[7] += v[7];
|
|
}
|
|
|
|
/* Compile 128 bytes of hash data into SHA256 digest value */
|
|
/* NOTE: this routine assumes that the byte order in the */
|
|
/* ctx->wbuf[] at this point is in such an order that low */
|
|
/* address bytes in the ORIGINAL byte stream placed in this */
|
|
/* buffer will now go to the high end of words on BOTH big */
|
|
/* and little endian systems */
|
|
|
|
VOID_RETURN sha512_hash(const unsigned char data[], unsigned long len, sha512_ctx ctx[1])
|
|
{ uint_32t pos = (uint_32t)(ctx->count[0] >> 3) & SHA512_MASK,
|
|
ofs = (uint_32t)(ctx->count[0] & 7);
|
|
const unsigned char *sp = data;
|
|
unsigned char *w = (unsigned char*)ctx->wbuf;
|
|
|
|
if((ctx->count[0] += len) < len)
|
|
++(ctx->count[1]);
|
|
|
|
if(ofs) /* if not on a byte boundary */
|
|
{
|
|
if(ofs + len < 8) /* if no added bytes are needed */
|
|
{
|
|
w[pos] |= (*sp >> ofs);
|
|
}
|
|
else /* otherwise and add bytes */
|
|
{ unsigned char part = w[pos];
|
|
|
|
while((int)(ofs + (len -= 8)) >= 0)
|
|
{
|
|
w[pos++] = part | (*sp >> ofs);
|
|
part = *sp++ << (8 - ofs);
|
|
if(pos == SHA512_BLOCK_SIZE)
|
|
{
|
|
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
|
sha512_compile(ctx); pos = 0;
|
|
}
|
|
}
|
|
|
|
w[pos] = part;
|
|
}
|
|
}
|
|
else /* data is byte aligned */
|
|
{ uint_32t space = SHA512_BLOCK_SIZE - pos;
|
|
|
|
while((int)(len - 8 * space) >= 0)
|
|
{
|
|
len -= 8 * space;
|
|
memcpy(w + pos, sp, space);
|
|
sp += space;
|
|
space = SHA512_BLOCK_SIZE;
|
|
bsw_64(w, SHA512_BLOCK_SIZE >> 3);
|
|
sha512_compile(ctx); pos = 0;
|
|
}
|
|
memcpy(w + pos, sp, (len + 7) >> 3);
|
|
}
|
|
}
|
|
|
|
/* SHA384/512 Final padding and digest calculation */
|
|
|
|
static void sha_end2(unsigned char hval[], sha512_ctx ctx[1], const unsigned int hlen)
|
|
{ uint_32t i = (uint_32t)((ctx->count[0] >> 3) & SHA512_MASK);
|
|
uint_64t m1;
|
|
|
|
/* put bytes in the buffer in an order in which references to */
|
|
/* 32-bit words will put bytes with lower addresses into the */
|
|
/* top of 32 bit words on BOTH big and little endian machines */
|
|
bsw_64(ctx->wbuf, (i + 8) >> 3);
|
|
|
|
/* we now need to mask valid bytes and add the padding which is */
|
|
/* a single 1 bit and as many zero bits as necessary. Note that */
|
|
/* we can always add the first padding byte here because the */
|
|
/* buffer always has at least one empty slot */
|
|
m1 = (unsigned char)0x80 >> (ctx->count[0] & 7);
|
|
ctx->wbuf[i >> 3] &= ((li_64(ffffffffffffff00) | (~m1 + 1)) << 8 * (~i & 7));
|
|
ctx->wbuf[i >> 3] |= (m1 << 8 * (~i & 7));
|
|
|
|
/* we need 17 or more empty byte positions, one for the padding */
|
|
/* byte (above) and sixteen for the length count. If there is */
|
|
/* not enough space pad and empty the buffer */
|
|
if(i > SHA512_BLOCK_SIZE - 17)
|
|
{
|
|
if(i < 120) ctx->wbuf[15] = 0;
|
|
sha512_compile(ctx);
|
|
i = 0;
|
|
}
|
|
else
|
|
i = (i >> 3) + 1;
|
|
|
|
while(i < 14)
|
|
ctx->wbuf[i++] = 0;
|
|
|
|
/* the following 64-bit length fields are assembled in the */
|
|
/* wrong byte order on little endian machines but this is */
|
|
/* corrected later since they are only ever used as 64-bit */
|
|
/* word values. */
|
|
ctx->wbuf[14] = ctx->count[1];
|
|
ctx->wbuf[15] = ctx->count[0];
|
|
sha512_compile(ctx);
|
|
|
|
/* extract the hash value as bytes in case the hash buffer is */
|
|
/* misaligned for 32-bit words */
|
|
for(i = 0; i < hlen; ++i)
|
|
hval[i] = (unsigned char)(ctx->hash[i >> 3] >> (8 * (~i & 7)));
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_384)
|
|
|
|
/* SHA384 initialisation data */
|
|
|
|
const uint_64t i384[80] =
|
|
{
|
|
li_64(cbbb9d5dc1059ed8), li_64(629a292a367cd507),
|
|
li_64(9159015a3070dd17), li_64(152fecd8f70e5939),
|
|
li_64(67332667ffc00b31), li_64(8eb44a8768581511),
|
|
li_64(db0c2e0d64f98fa7), li_64(47b5481dbefa4fa4)
|
|
};
|
|
|
|
VOID_RETURN sha384_begin(sha384_ctx ctx[1])
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
memcpy(ctx->hash, i384, 8 * sizeof(uint_64t));
|
|
}
|
|
|
|
VOID_RETURN sha384_end(unsigned char hval[], sha384_ctx ctx[1])
|
|
{
|
|
sha_end2(hval, ctx, SHA384_DIGEST_SIZE);
|
|
}
|
|
|
|
VOID_RETURN sha384(unsigned char hval[], const unsigned char data[], unsigned long len)
|
|
{ sha384_ctx cx[1];
|
|
|
|
sha384_begin(cx);
|
|
sha384_hash(data, len, cx);
|
|
sha_end2(hval, cx, SHA384_DIGEST_SIZE);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_512)
|
|
|
|
/* SHA512 initialisation data */
|
|
|
|
const uint_64t i512[80] =
|
|
{
|
|
li_64(6a09e667f3bcc908), li_64(bb67ae8584caa73b),
|
|
li_64(3c6ef372fe94f82b), li_64(a54ff53a5f1d36f1),
|
|
li_64(510e527fade682d1), li_64(9b05688c2b3e6c1f),
|
|
li_64(1f83d9abfb41bd6b), li_64(5be0cd19137e2179)
|
|
};
|
|
|
|
VOID_RETURN sha512_begin(sha512_ctx ctx[1])
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
memcpy(ctx->hash, i512, 8 * sizeof(uint_64t));
|
|
}
|
|
|
|
VOID_RETURN sha512_end(unsigned char hval[], sha512_ctx ctx[1])
|
|
{
|
|
sha_end2(hval, ctx, SHA512_DIGEST_SIZE);
|
|
}
|
|
|
|
VOID_RETURN sha512(unsigned char hval[], const unsigned char data[], unsigned long len)
|
|
{ sha512_ctx cx[1];
|
|
|
|
sha512_begin(cx);
|
|
sha512_hash(data, len, cx);
|
|
sha_end2(hval, cx, SHA512_DIGEST_SIZE);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SHA_2)
|
|
|
|
#define CTX_224(x) ((x)->uu->ctx256)
|
|
#define CTX_256(x) ((x)->uu->ctx256)
|
|
#define CTX_384(x) ((x)->uu->ctx512)
|
|
#define CTX_512(x) ((x)->uu->ctx512)
|
|
|
|
/* SHA2 initialisation */
|
|
|
|
INT_RETURN sha2_begin(unsigned long len, sha2_ctx ctx[1])
|
|
{
|
|
switch(len)
|
|
{
|
|
#if defined(SHA_224)
|
|
case 224:
|
|
case 28: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
|
memcpy(CTX_256(ctx)->hash, i224, 32);
|
|
ctx->sha2_len = 28; return EXIT_SUCCESS;
|
|
#endif
|
|
#if defined(SHA_256)
|
|
case 256:
|
|
case 32: CTX_256(ctx)->count[0] = CTX_256(ctx)->count[1] = 0;
|
|
memcpy(CTX_256(ctx)->hash, i256, 32);
|
|
ctx->sha2_len = 32; return EXIT_SUCCESS;
|
|
#endif
|
|
#if defined(SHA_384)
|
|
case 384:
|
|
case 48: CTX_384(ctx)->count[0] = CTX_384(ctx)->count[1] = 0;
|
|
memcpy(CTX_384(ctx)->hash, i384, 64);
|
|
ctx->sha2_len = 48; return EXIT_SUCCESS;
|
|
#endif
|
|
#if defined(SHA_512)
|
|
case 512:
|
|
case 64: CTX_512(ctx)->count[0] = CTX_512(ctx)->count[1] = 0;
|
|
memcpy(CTX_512(ctx)->hash, i512, 64);
|
|
ctx->sha2_len = 64; return EXIT_SUCCESS;
|
|
#endif
|
|
default: return EXIT_FAILURE;
|
|
}
|
|
}
|
|
|
|
VOID_RETURN sha2_hash(const unsigned char data[], unsigned long len, sha2_ctx ctx[1])
|
|
{
|
|
switch(ctx->sha2_len)
|
|
{
|
|
#if defined(SHA_224)
|
|
case 28: sha224_hash(data, len, CTX_224(ctx)); return;
|
|
#endif
|
|
#if defined(SHA_256)
|
|
case 32: sha256_hash(data, len, CTX_256(ctx)); return;
|
|
#endif
|
|
#if defined(SHA_384)
|
|
case 48: sha384_hash(data, len, CTX_384(ctx)); return;
|
|
#endif
|
|
#if defined(SHA_512)
|
|
case 64: sha512_hash(data, len, CTX_512(ctx)); return;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
VOID_RETURN sha2_end(unsigned char hval[], sha2_ctx ctx[1])
|
|
{
|
|
switch(ctx->sha2_len)
|
|
{
|
|
#if defined(SHA_224)
|
|
case 28: sha_end1(hval, CTX_224(ctx), SHA224_DIGEST_SIZE); return;
|
|
#endif
|
|
#if defined(SHA_256)
|
|
case 32: sha_end1(hval, CTX_256(ctx), SHA256_DIGEST_SIZE); return;
|
|
#endif
|
|
#if defined(SHA_384)
|
|
case 48: sha_end2(hval, CTX_384(ctx), SHA384_DIGEST_SIZE); return;
|
|
#endif
|
|
#if defined(SHA_512)
|
|
case 64: sha_end2(hval, CTX_512(ctx), SHA512_DIGEST_SIZE); return;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
INT_RETURN sha2(unsigned char hval[], unsigned long size,
|
|
const unsigned char data[], unsigned long len)
|
|
{ sha2_ctx cx[1];
|
|
|
|
if(sha2_begin(size, cx) == EXIT_SUCCESS)
|
|
{
|
|
sha2_hash(data, len, cx); sha2_end(hval, cx); return EXIT_SUCCESS;
|
|
}
|
|
else
|
|
return EXIT_FAILURE;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(__cplusplus)
|
|
}
|
|
#endif
|