This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/Logtalk/examples/symdiff/symdiff.lgt
pmoura 3455276aa2 Logtalk 2.26.2 files.
git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1487 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2005-12-24 18:07:41 +00:00

335 lines
5.4 KiB
Plaintext

:- protocol(symdiffp).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
comment is 'Symbolic differentiation and simplification protocol.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
:- public(diff/1).
:- mode(diff(-expression), one).
:- info(diff/1, [
comment is 'Returns the symbolic differentiation of self.',
argnames is ['Expression']]).
:- public(simplify/1).
:- mode(simplify(-expression), one).
:- info(simplify/1, [
comment is 'Returns the symbolic simplification of self.',
argnames is ['Expression']]).
:- end_protocol.
:- object(x,
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
comment is 'Symbolic differentiation and simplification of a variable.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(1).
simplify(x).
:- end_object.
:- object(_ + _,
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
parnames is ['Expression1', 'Expression2'],
comment is 'Symbolic differentiation and simplification of +/2 expressions.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(Diff) :-
this(X + Y),
once(diff(X, Y, Diff)).
diff(I, J, 0) :-
integer(I),
integer(J).
diff(X, J, DX) :-
integer(J),
X::diff(DX).
diff(I, Y, DY) :-
integer(I),
Y::diff(DY).
diff(X, Y, DX + DY) :-
X::diff(DX),
Y::diff(DY).
simplify(S) :-
this(X + Y),
once(simplify(X, Y, S)).
simplify(I, J, S) :-
integer(I),
integer(J),
S is I + J.
simplify(X, 0, S) :-
X::simplify(S).
simplify(0, Y, S) :-
Y::simplify(S).
simplify(X, J, S + J) :-
integer(J),
X::simplify(S).
simplify(I, Y, I + S) :-
integer(I),
Y::simplify(S).
simplify(X, Y, S) :-
X::simplify(SX),
Y::simplify(SY),
(X + Y \= SX + SY ->
(SX + SY)::simplify(S)
;
S = SX + SY).
:- end_object.
:- object(_ - _,
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
parnames is ['Expression1', 'Expression2'],
comment is 'Symbolic differentiation and simplification of -/2 expressions.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(Diff) :-
this(X - Y),
once(diff(X, Y, Diff)).
diff(I, J, 0) :-
integer(I),
integer(J).
diff(X, J, DX) :-
integer(J),
X::diff(DX).
diff(I, Y, DY) :-
integer(I),
Y::diff(DY).
diff(X, Y, DX - DY) :-
X::diff(DX),
Y::diff(DY).
simplify(S) :-
this(X - Y),
once(simplify(X, Y, S)).
simplify(X, X, 0).
simplify(I, J, S) :-
integer(I),
integer(J),
S is I - J.
simplify(X, 0, S) :-
X::simplify(S).
simplify(0, Y, S) :-
Y::simplify(S).
simplify(X, J, S - J) :-
integer(J),
X::simplify(S).
simplify(I, Y, I - S) :-
integer(I),
Y::simplify(S).
simplify(X, Y, S) :-
X::simplify(SX),
Y::simplify(SY),
(X - Y \= SX - SY ->
(SX - SY)::simplify(S)
;
S = SX - SY).
:- end_object.
:- object(_ * _,
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
parnames is ['Expression1', 'Expression2'],
comment is 'Symbolic differentiation and simplification of */2 expressions.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(Diff) :-
this(X * Y),
once(diff(X, Y, Diff)).
diff(I, J, 0) :-
integer(I),
integer(J).
diff(0, _, 0).
diff(_, 0, 0).
diff(X, J, J * DX) :-
integer(J),
X::diff(DX).
diff(I, Y, I * DY) :-
integer(I),
Y::diff(DY).
diff(X, Y, X * DY + DX * Y) :-
X::diff(DX),
Y::diff(DY).
simplify(S) :-
this(X * Y),
once(simplify(X, Y, S)).
simplify(I, J, S) :-
integer(I),
integer(J),
S is I * J.
simplify(0, _, 0).
simplify(_, 0, 0).
simplify(1, Y, SY) :-
Y::simplify(SY).
simplify(X, 1, SX) :-
X::simplify(SX).
simplify(I, Y, I * SY) :-
integer(I),
Y::simplify(SY).
simplify(X, J, J * SX) :-
integer(J),
X::simplify(SX).
simplify(X, Y, SX * SY) :-
X::simplify(SX),
Y::simplify(SY).
:- end_object.
:- object(_ ** _,
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
parnames is ['Expression', 'Power'],
comment is 'Symbolic differentiation and simplification of **/2 expressions.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(Diff) :-
this(X ** Y),
once(diff(X, Y, Diff)).
diff(X, Y, Y * X ** Y2 * DX) :-
integer(Y),
Y2 is Y - 1,
X::diff(DX).
diff(X, Y, Y * X ** Y2 * DX) :-
Y2 = Y - 1,
X::diff(DX).
simplify(S) :-
this(X ** Y),
once(simplify(X, Y, S)).
simplify(_, 0, 1).
simplify(X, 1, X).
simplify(X, Y, S ** Y) :-
integer(Y),
X::simplify(S).
simplify(X, Y, SX ** SY) :-
X::simplify(SX),
Y::simplify(SY).
:- end_object.
:- object(log(_),
implements(symdiffp)).
:- info([
author is 'Paulo Moura',
version is 1.0,
date is 1999/12/29,
parnames is ['Expression'],
comment is 'Symbolic differentiation and simplification of log/1 expressions.',
source is 'Example based on the Clocksin and Mellish Prolog book.']).
diff(Diff) :-
this(log(X)),
once(diff(X, Diff)).
diff(I, 0) :-
integer(I).
diff(X, DX * X ** -1) :-
X::diff(DX).
simplify(S) :-
this(log(X)),
once(simplify(X, S)).
simplify(1, 0).
simplify(I, Log) :-
integer(I),
Log is log(I).
simplify(X, X).
:- end_object.