545 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			545 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| /*  $Id: aggregate.pl,v 1.4 2008-07-22 23:34:49 vsc Exp $
 | |
| 
 | |
|     Part of SWI-Prolog
 | |
| 
 | |
|     Author:        Jan Wielemaker
 | |
|     E-mail:        wielemak@science.uva.nl
 | |
|     WWW:           http://www.swi-prolog.org
 | |
|     Copyright (C): 2008, University of Amsterdam
 | |
| 
 | |
|     This program is free software; you can redistribute it and/or
 | |
|     modify it under the terms of the GNU General Public License
 | |
|     as published by the Free Software Foundation; either version 2
 | |
|     of the License, or (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public
 | |
|     License along with this library; if not, write to the Free Software
 | |
|     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
| 
 | |
|     As a special exception, if you link this library with other files,
 | |
|     compiled with a Free Software compiler, to produce an executable, this
 | |
|     library does not by itself cause the resulting executable to be covered
 | |
|     by the GNU General Public License. This exception does not however
 | |
|     invalidate any other reasons why the executable file might be covered by
 | |
|     the GNU General Public License.
 | |
| */
 | |
| 
 | |
| :- module(aggretate,
 | |
| 	  [ foreach/2,			% :Generator, :Goal
 | |
| 	    aggregate/3,		% +Templ, :Goal, -Result
 | |
| 	    aggregate/4,		% +Templ, +Discrim, :Goal, -Result
 | |
| 	    aggregate_all/3,		% +Templ, :Goal, -Result
 | |
| 	    aggregate_all/4,		% +Templ, +Discrim, :Goal, -Result
 | |
| 	    free_variables/4		% :Generator, :Template, +Vars0, -Vars
 | |
| 	  ]).
 | |
| :- use_module(library(ordsets)).
 | |
| :- use_module(library(pairs)).
 | |
| :- use_module(library(error)).
 | |
| :- use_module(library(lists)).
 | |
| 
 | |
| :- meta_predicate
 | |
| 	foreach(0,0),
 | |
| 	aggregate(?,0,-),
 | |
| 	aggregate(?,?,0,-),
 | |
| 	aggregate_all(?,0,-),
 | |
| 	aggregate_all(?,?,0,-).
 | |
| 
 | |
| /** <module> Aggregation operators on backtrackable predicates
 | |
| 
 | |
| This library provides aggregating operators  over   the  solutions  of a
 | |
| predicate. The operations are a generalisation   of the bagof/3, setof/3
 | |
| and findall/3 built-in predicates. The   defined  aggregation operations
 | |
| are counting, computing the sum, minimum,   maximum,  a bag of solutions
 | |
| and a set of solutions. We first   give  a simple example, computing the
 | |
| country with the smallest area:
 | |
| 
 | |
| ==
 | |
| average_country_area(Name, Area) :-
 | |
| 	aggregate(min(A, N), country(N, A), min(Area, Name)).
 | |
| ==
 | |
| 
 | |
| There are four aggregation predicates, distinguished on two properties.
 | |
| 
 | |
|     $ aggregate vs. aggregate_all :
 | |
|     The aggregate predicates use setof/3 (aggregate/4) or bagof/3
 | |
|     (aggregate/3), dealing with existential qualified variables
 | |
|     (Var^Goal) and providing multiple solutions for the remaining free
 | |
|     variables in Goal. The aggregate_all/3 predicate uses findall/3,
 | |
|     implicitely qualifying all free variables and providing exactly one
 | |
|     solution, while aggregate_all/4 uses sort/2 over solutions and
 | |
|     Distinguish (see below) generated using findall/3.
 | |
| 
 | |
|     $ The Distinguish argument :
 | |
|     The versions with 4 arguments provide a Distinguish argument that
 | |
|     allow for keeping duplicate bindings of a variable in the result.
 | |
|     For example, if we wish to compute the total population of all
 | |
|     countries we do not want to loose results because two countries
 | |
|     have the same population.  Therefore we use:
 | |
|     
 | |
|     ==
 | |
| 	aggregate(sum(P), Name, country(Name, P), Total)
 | |
|     ==
 | |
| 
 | |
| All aggregation predicates support the following operator below in
 | |
| Template. In addition, they allow for an arbitrary named compound term
 | |
| where each of the arguments is a term from the list below. I.e. the term
 | |
| r(min(X), max(X)) computes both the minimum and maximum binding for X.
 | |
| 
 | |
| 	* count
 | |
| 	Count number of solutions.  Same as sum(1).
 | |
| 	* sum(Expr)
 | |
| 	Sum of Expr for all solutions.
 | |
| 	* min(Expr)
 | |
| 	Minimum of Expr for all solutions.
 | |
| 	* min(Expr, Witness)
 | |
| 	A term min(Min, Witness), where Min is the minimal version
 | |
| 	of Expr over all Solution and Witness is any other template
 | |
| 	the applied to the solution that produced Min.  If multiple
 | |
| 	solutions provide the same minimum, Witness corresponds to
 | |
| 	the first solution.
 | |
| 	* max(Expr)
 | |
| 	Maximum of Expr for all solutions.
 | |
| 	* max(Expr, Witness)
 | |
| 	As min(Expr, Witness), but producing the maximum result.
 | |
| 	* set(X)
 | |
| 	An ordered set with all solutions for X.
 | |
| 	* bag(X)
 | |
| 	A list of all solutions for X.
 | |
| 
 | |
| ---+++ Acknowledgements
 | |
| 
 | |
| _|The development of this library was sponsored by SecuritEase,
 | |
|   http://www.securitease.com
 | |
| |_
 | |
| 
 | |
| @compat Quintus, SICStus 4. The forall/2 is a SWI-Prolog built-in and
 | |
| 	term_variables/3 is a SWI-Prolog with a *|different definition|*.
 | |
| @tbd	Analysing the aggregation template and compiling a predicate
 | |
| 	for the list aggregation can be done at compile time.
 | |
| @tbd	aggregate_all/3 can be rewritten to run in constant space using
 | |
| 	non-backtrackable assignment on a term.
 | |
| */
 | |
| 
 | |
| 		 /*******************************
 | |
| 		 *	     AGGREGATE		*
 | |
| 		 *******************************/
 | |
| 
 | |
| %%	aggregate(+Template, :Goal, -Result) is nondet.
 | |
| %
 | |
| %	Aggregate bindings in Goal according to Template.  The aggregate/3
 | |
| %	version performs bagof/3 on Goal.
 | |
| 
 | |
| aggregate(Template, Goal0, Result) :-
 | |
| 	template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
 | |
| 	bagof(Pattern, Goal, List),
 | |
| 	aggregate_list(Aggregate, List, Result).
 | |
| 
 | |
| %%	aggregate(+Template, +Discriminator, :Goal, -Result) is nondet.
 | |
| %
 | |
| %	Aggregate bindings in Goal according to Template.  The aggregate/3
 | |
| %	version performs setof/3 on Goal.
 | |
| 
 | |
| aggregate(Template, Discriminator, Goal0, Result) :-
 | |
| 	template_to_pattern(bag, Template, Pattern, Goal0, Goal, Aggregate),
 | |
| 	setof(Discriminator-Pattern, Goal, Pairs),
 | |
| 	pairs_values(Pairs, List),
 | |
| 	aggregate_list(Aggregate, List, Result).
 | |
| 
 | |
| %%	aggregate_all(+Template, :Goal, -Result) is semidet.
 | |
| %
 | |
| %	Aggregate bindings in Goal according to Template.  The aggregate_all/3
 | |
| %	version performs findall/3 on Goal.
 | |
| 
 | |
| aggregate_all(Template, Goal0, Result) :-
 | |
| 	template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
 | |
| 	findall(Pattern, Goal, List),
 | |
| 	aggregate_list(Aggregate, List, Result).
 | |
| 
 | |
| %%	aggregate_all(+Template, +Discriminator, :Goal, -Result) is semidet.
 | |
| %
 | |
| %	Aggregate bindings in Goal according to Template.  The aggregate_all/3
 | |
| %	version performs findall/3 followed by sort/2 on Goal.
 | |
| 
 | |
| aggregate_all(Template, Discriminator, Goal0, Result) :-
 | |
| 	template_to_pattern(all, Template, Pattern, Goal0, Goal, Aggregate),
 | |
| 	findall(Discriminator-Pattern, Goal, Pairs0),
 | |
| 	sort(Pairs0, Pairs),
 | |
| 	pairs_values(Pairs, List),
 | |
| 	aggregate_list(Aggregate, List, Result).
 | |
| 
 | |
| 
 | |
| template_to_pattern(_All, Template, Pattern, Goal0, Goal, Aggregate) :-
 | |
| 	template_to_pattern(Template, Pattern, Post, Vars, Aggregate),
 | |
| 	existential_vars(Goal0, Goal1, AllVars, Vars),
 | |
| 	clean_body((Goal1, Post), Goal2),
 | |
| 	add_existential_vars(AllVars, Goal2, Goal).
 | |
| 
 | |
| existential_vars(Var, Var) -->
 | |
| 	{ var(Var) }, !.
 | |
| existential_vars(Var^G0, G) --> !,
 | |
| 	[Var],
 | |
| 	existential_vars(G0, G).
 | |
| existential_vars(G, G) -->
 | |
| 	[].
 | |
| 
 | |
| add_existential_vars([], G, G).
 | |
| add_existential_vars([H|T], G0, H^G1) :-
 | |
| 	add_existential_vars(T, G0, G1).
 | |
| 
 | |
| 
 | |
| %%	clean_body(+Goal0, -Goal) is det.
 | |
| %
 | |
| %	Remove redundant =true= from Goal0.
 | |
| 
 | |
| clean_body((Goal0,Goal1), Goal) :- !,
 | |
| 	clean_body(Goal0, GoalA),
 | |
| 	clean_body(Goal1, GoalB),
 | |
| 	(   GoalA == true
 | |
| 	->  Goal = GoalB
 | |
| 	;   GoalB == true
 | |
| 	->  Goal = GoalA
 | |
| 	;   Goal = (GoalA,GoalB)
 | |
| 	).
 | |
| clean_body(Goal, Goal).
 | |
| 
 | |
| 
 | |
| %%	template_to_pattern(+Template, -Pattern, -Post, -Vars, -Agregate)
 | |
| %
 | |
| %	Determine which parts of the goal we must remember in the
 | |
| %	findall/3 pattern.
 | |
| %	
 | |
| %	@param Post is a body-term that evaluates expressions to reduce
 | |
| %		    storage requirements.
 | |
| %	@param Vars is a list of intermediate variables that must be
 | |
| %		    added to the existential variables for bagof/3.
 | |
| %	@param Agregate defines the aggregation operation to execute. 
 | |
| 
 | |
| template_to_pattern(sum(X),	      X,	 true, 	  [],   sum) :- var(X), !.
 | |
| template_to_pattern(sum(X0),	      X,	 X is X0, [X0], sum) :- !.
 | |
| template_to_pattern(count,	      1,	 true,    [],   count) :- !.
 | |
| template_to_pattern(min(X),	      X,	 true,    [],   min) :- var(X), !.
 | |
| template_to_pattern(min(X0),	      X,	 X is X0, [X0], min) :- !.
 | |
| template_to_pattern(min(X0, Witness), X-Witness, X is X0, [X0], min_witness) :- !.
 | |
| template_to_pattern(max(X0),	      X,	 X is X0, [X0], max) :- !.
 | |
| template_to_pattern(max(X0, Witness), X-Witness, X is X0, [X0], max_witness) :- !.
 | |
| template_to_pattern(set(X),	      X,	 true,    [],   set) :- !.
 | |
| template_to_pattern(bag(X),	      X,	 true,    [],   bag) :- !.
 | |
| template_to_pattern(Term, Pattern, Goal, Vars, term(MinNeeded, Functor, AggregateArgs)) :-
 | |
| 	compound(Term), !,
 | |
| 	Term =.. [Functor|Args0],
 | |
| 	templates_to_patterns(Args0, Args, Goal, Vars, AggregateArgs),
 | |
| 	needs_one(AggregateArgs, MinNeeded),
 | |
| 	Pattern =.. [Functor|Args].
 | |
| template_to_pattern(Term, _, _, _, _) :-
 | |
| 	type_error(aggregate_template, Term).
 | |
| 
 | |
| templates_to_patterns([], [], true, [], []).
 | |
| templates_to_patterns([H0], [H], G, Vars, [A]) :- !,
 | |
| 	template_to_pattern(H0, H, G, Vars, A).
 | |
| templates_to_patterns([H0|T0], [H|T], (G0,G), Vars, [A0|A]) :-
 | |
| 	template_to_pattern(H0, H, G0, V0, A0),
 | |
| 	append(V0, RV, Vars),
 | |
| 	templates_to_patterns(T0, T, G, RV, A).
 | |
| 			    
 | |
| %%	needs_one(+Ops, -OneOrZero)
 | |
| %
 | |
| %	If one of the operations in Ops needs at least one answer,
 | |
| %	unify OneOrZero to 1.  Else 0.
 | |
| 
 | |
| needs_one(Ops, 1) :-
 | |
| 	member(Op, Ops),
 | |
| 	needs_one(Op), !.
 | |
| needs_one(_, 0).
 | |
| 
 | |
| needs_one(min).
 | |
| needs_one(min_witness).
 | |
| needs_one(max).
 | |
| needs_one(max_witness).
 | |
| 
 | |
| %%	aggregate_list(+Op, +List, -Answer) is semidet.
 | |
| %
 | |
| %	Aggregate the answer  from  the   list  produced  by  findall/3,
 | |
| %	bagof/3 or setof/3. The latter  two   cases  deal  with compound
 | |
| %	answers.
 | |
| %	
 | |
| %	@tbd	Compile code for incremental state update, which we will use
 | |
| %		for aggregate_all/3 as well.  We should be using goal_expansion
 | |
| %		to generate these clauses.
 | |
| 
 | |
| aggregate_list(bag, List0, List) :- !,
 | |
| 	List = List0.
 | |
| aggregate_list(set, List, Set) :- !,
 | |
| 	sort(List, Set).
 | |
| aggregate_list(sum, List, Sum) :-
 | |
| 	sumlist(List, Sum).
 | |
| aggregate_list(count, List, Count) :-
 | |
| 	length(List, Count).
 | |
| aggregate_list(max, List, Sum) :-
 | |
| 	max_list(List, Sum).
 | |
| aggregate_list(max_witness, List, max(Max, Witness)) :-
 | |
| 	max_pair(List, Max, Witness).
 | |
| aggregate_list(min, List, Sum) :-
 | |
| 	min_list(List, Sum).
 | |
| aggregate_list(min_witness, List, min(Min, Witness)) :-
 | |
| 	min_pair(List, Min, Witness).
 | |
| aggregate_list(term(0, Functor, Ops), List, Result) :- !,
 | |
| 	maplist(state0, Ops, StateArgs, FinishArgs),
 | |
| 	State0 =.. [Functor|StateArgs],
 | |
| 	aggregate_term_list(List, Ops, State0, Result0),
 | |
| 	finish_result(Ops, FinishArgs, Result0, Result).
 | |
| aggregate_list(term(1, Functor, Ops), [H|List], Result) :-
 | |
| 	H =.. [Functor|Args],
 | |
| 	maplist(state1, Ops, Args, StateArgs, FinishArgs),
 | |
| 	State0 =.. [Functor|StateArgs],
 | |
| 	aggregate_term_list(List, Ops, State0, Result0),
 | |
| 	finish_result(Ops, FinishArgs, Result0, Result).
 | |
| 
 | |
| aggregate_term_list([], _, State, State).
 | |
| aggregate_term_list([H|T], Ops, State0, State) :-
 | |
| 	step_term(Ops, H, State0, State1),
 | |
| 	aggregate_term_list(T, Ops, State1, State).
 | |
| 
 | |
| 
 | |
| %%	min_pair(+Pairs, -Key, -Value) is det.
 | |
| %%	max_pair(+Pairs, -Key, -Value) is det.
 | |
| %
 | |
| %	True if Key-Value has the  smallest/largest   key  in  Pairs. If
 | |
| %	multiple pairs share the smallest/largest key, the first pair is
 | |
| %	returned.
 | |
| 
 | |
| min_pair([M0-W0|T], M, W) :-
 | |
| 	min_pair(T, M0, W0, M, W).
 | |
| 
 | |
| min_pair([], M, W, M, W).
 | |
| min_pair([M0-W0|T], M1, W1, M, W) :-
 | |
| 	(   M0 > M1
 | |
| 	->  min_pair(T, M0, W0, M, W)
 | |
| 	;   min_pair(T, M1, W1, M, W)
 | |
| 	).
 | |
| 
 | |
| max_pair([M0-W0|T], M, W) :-
 | |
| 	max_pair(T, M0, W0, M, W).
 | |
| 
 | |
| max_pair([], M, W, M, W).
 | |
| max_pair([M0-W0|T], M1, W1, M, W) :-
 | |
| 	(   M0 > M1
 | |
| 	->  max_pair(T, M0, W0, M, W)
 | |
| 	;   max_pair(T, M1, W1, M, W)
 | |
| 	).
 | |
| 
 | |
| %%	step(+AggregateAction, +New, +State0, -State1).
 | |
| 
 | |
| step(bag,   X, [X|L], L).
 | |
| step(set,   X, [X|L], L).
 | |
| step(count, _, X0, X1) :-
 | |
| 	succ(X0, X1).
 | |
| step(sum,   X, X0, X1) :-
 | |
| 	X1 is X0+X.
 | |
| step(max,   X, X0, X1) :-
 | |
| 	X1 is max(X0, X).
 | |
| step(min,   X, X0, X1) :-
 | |
| 	X1 is min(X0, X).
 | |
| step(max_witness, X-W, X0-W0, X1-W1) :-
 | |
| 	(   X > X0
 | |
| 	->  X1 = X, W1 = W
 | |
| 	;   X1 = X0, W1 = W0
 | |
| 	).
 | |
| step(min_witness, X-W, X0-W0, X1-W1) :-
 | |
| 	(   X < X0
 | |
| 	->  X1 = X, W1 = W
 | |
| 	;   X1 = X0, W1 = W0
 | |
| 	).
 | |
| step(term(Ops), Row, Row0, Row1) :-
 | |
| 	step_term(Ops, Row, Row0, Row1).
 | |
| 
 | |
| step_term(Ops, Row, Row0, Row1) :-
 | |
| 	functor(Row, Name, Arity),
 | |
| 	functor(Row1, Name, Arity),
 | |
| 	step_list(Ops, 1, Row, Row0, Row1).
 | |
| 
 | |
| step_list([], _, _, _, _).
 | |
| step_list([Op|OpT], Arg, Row, Row0, Row1) :-
 | |
| 	arg(Arg, Row, X),
 | |
| 	arg(Arg, Row0, X0),
 | |
| 	arg(Arg, Row1, X1),
 | |
| 	step(Op, X, X0, X1),
 | |
| 	succ(Arg, Arg1),
 | |
| 	step_list(OpT, Arg1, Row, Row0, Row1).
 | |
| 
 | |
| finish_result(Ops, Finish, R0, R) :-
 | |
| 	functor(R0, Functor, Arity),
 | |
| 	functor(R, Functor, Arity),
 | |
| 	finish_result(Ops, Finish, 1, R0, R).
 | |
| 
 | |
| finish_result([], _, _, _, _).
 | |
| finish_result([Op|OpT], [F|FT], I, R0, R) :-
 | |
| 	arg(I, R0, A0),
 | |
| 	arg(I, R, A),
 | |
| 	finish_result1(Op, F, A0, A),
 | |
| 	succ(I, I2),
 | |
| 	finish_result(OpT, FT, I2, R0, R).
 | |
| 	
 | |
| finish_result1(bag, Bag0, [], Bag) :- !,
 | |
| 	Bag = Bag0.
 | |
| finish_result1(set, Bag,  [], Set) :- !,
 | |
| 	sort(Bag, Set).
 | |
| finish_result1(max_witness, _, M-W, R) :- !,
 | |
| 	R = max(M,W).
 | |
| finish_result1(min_witness, _, M-W, R) :- !,
 | |
| 	R = min(M,W).
 | |
| finish_result1(_, _, A, A).
 | |
| 
 | |
| %%	state0(+Op, -State, -Finish)
 | |
| 
 | |
| state0(bag,   L, L).
 | |
| state0(set,   L, L).
 | |
| state0(count, 0, _).
 | |
| state0(sum,   0, _).
 | |
| 
 | |
| %%	state1(+Op, +First, -State, -Finish)
 | |
| 
 | |
| state1(bag, X, [X|L], L).
 | |
| state1(set, X, [X|L], L).
 | |
| state1(_,   X, X,     _).
 | |
| 
 | |
| 
 | |
| 		 /*******************************
 | |
| 		 *	       FOREACH		*
 | |
| 		 *******************************/
 | |
| 
 | |
| %%	foreach(:Generator, :Goal)
 | |
| %
 | |
| %	True if the conjunction of instances  of Goal using the bindings
 | |
| %	from  Generator  is  true.  Unlike    forall/2,   which  runs  a
 | |
| %	failure-driven loop that  proves  Goal   for  each  solution  of
 | |
| %	Generator, foreach creates a  conjunction.   Each  member of the
 | |
| %	conjunction is a copy of  Goal,   where  the variables it shares
 | |
| %	with Generator are filled with the values from the corresponding
 | |
| %	solution.
 | |
| %	
 | |
| %	The implementation executes forall/2 if   Goal  does not contain
 | |
| %	any variables that are not shared with Generator.
 | |
| %	
 | |
| %	Here is an example:
 | |
| %	
 | |
| %	==
 | |
| %	?- foreach(between(1,4,X), dif(X,Y)), Y = 5.
 | |
| %	Y = 5
 | |
| %	?- foreach(between(1,4,X), dif(X,Y)), Y = 3.
 | |
| %	No
 | |
| %	==
 | |
| %	
 | |
| %	@bug	Goal is copied repeatetly, which may cause problems if
 | |
| %		attributed variables are involved.
 | |
| 
 | |
| foreach(Generator, Goal0) :-
 | |
| 	strip_module(Goal0, M, G),
 | |
| 	Goal = M:G,
 | |
| 	term_variables(Generator, GenVars0), sort(GenVars0, GenVars),
 | |
| 	term_variables(Goal, GoalVars0), sort(GoalVars0, GoalVars),
 | |
| 	ord_subtract(GoalVars, GenVars, SharedGoalVars),
 | |
| 	(   SharedGoalVars == []
 | |
| 	->  \+ (Generator, \+Goal)	% = forall(Generator, Goal)
 | |
| 	;   ord_intersection(GenVars, GoalVars, SharedVars),
 | |
| 	    Templ =.. [v|SharedVars],
 | |
| 	    SharedTempl =.. [v|SharedGoalVars],
 | |
| 	    findall(Templ, Generator, List),
 | |
| 	    prove_list(List, Templ, SharedTempl, Goal)
 | |
| 	).
 | |
| 
 | |
| prove_list([], _, _, _).
 | |
| prove_list([H|T], Templ, SharedTempl, Goal) :-
 | |
| 	copy_term(Templ+SharedTempl+Goal,
 | |
| 		  H+SharedTempl+Copy),
 | |
| 	Copy,
 | |
| 	prove_list(T, Templ, SharedTempl, Goal).
 | |
| 	
 | |
| 
 | |
| %%	free_variables(:Generator, +Template, +VarList0, -VarList) is det.
 | |
| %
 | |
| %	In order to handle variables properly, we   have to find all the
 | |
| %	universally quantified variables in the Generator. All variables
 | |
| %	as yet unbound are universally quantified, unless
 | |
| %   
 | |
| %	    1. they occur in the template
 | |
| %	    2. they are bound by X^P, setof, or bagof
 | |
| %	
 | |
| %	free_variables(Generator, Template, OldList, NewList) finds this
 | |
| %	set, using OldList as an accumulator.
 | |
| %	
 | |
| %	@author Richard O'Keefe
 | |
| %	@author Jan Wielemaker (made some SWI-Prolog enhancements)
 | |
| %	@license Public domain (from DEC10 library).
 | |
| %	@tbd Distinguish between control-structures and data terms.
 | |
| %	@tbd Exploit our built-in term_variables/2 at some places?
 | |
| 
 | |
| free_variables(Term, Bound, VarList, [Term|VarList]) :-
 | |
| 	var(Term),
 | |
| 	term_is_free_of(Bound, Term),
 | |
| 	list_is_free_of(VarList, Term), !.
 | |
| free_variables(Term, _Bound, VarList, VarList) :-
 | |
| 	var(Term), !.
 | |
| free_variables(Term, Bound, OldList, NewList) :-
 | |
| 	explicit_binding(Term, Bound, NewTerm, NewBound), !,
 | |
| 	free_variables(NewTerm, NewBound, OldList, NewList).
 | |
| free_variables(Term, Bound, OldList, NewList) :-
 | |
| 	functor(Term, _, N),
 | |
| 	free_variables(N, Term, Bound, OldList, NewList).
 | |
| 
 | |
| free_variables(0, _, _, VarList, VarList) :- !.
 | |
| free_variables(N, Term, Bound, OldList, NewList) :-
 | |
| 	arg(N, Term, Argument),
 | |
| 	free_variables(Argument, Bound, OldList, MidList),
 | |
| 	M is N-1, !,
 | |
| 	free_variables(M, Term, Bound, MidList, NewList).
 | |
| 
 | |
| %   explicit_binding checks for goals known to existentially quantify
 | |
| %   one or more variables.  In particular \+ is quite common.
 | |
| 
 | |
| explicit_binding(\+ _Goal,	       Bound, fail,	Bound      ) :- !.
 | |
| explicit_binding(not(_Goal),	       Bound, fail,	Bound	   ) :- !.
 | |
| explicit_binding(Var^Goal,	       Bound, Goal,	Bound+Var) :- !.
 | |
| explicit_binding(setof(Var,Goal,Set),  Bound, Goal-Set, Bound+Var) :- !.
 | |
| explicit_binding(bagof(Var,Goal,Bag),  Bound, Goal-Bag, Bound+Var) :- !.
 | |
| 
 | |
| %%	term_is_free_of(+Term, +Var) is semidet.
 | |
| %
 | |
| %	True if Var does not appear  in   Term.  This has been rewritten
 | |
| %	from the DEC10 library source   to exploit our non-deterministic
 | |
| %	arg/3.
 | |
| 
 | |
| term_is_free_of(Term, Var) :-
 | |
| 	\+ var_in_term(Term, Var).
 | |
| 
 | |
| var_in_term(Term, Var) :-
 | |
| 	Var == Term, !.
 | |
| var_in_term(Term, Var) :-
 | |
| 	compound(Term),
 | |
| 	genarg(_, Term, Arg),
 | |
| 	var_in_term(Arg, Var), !.
 | |
| 
 | |
| 
 | |
| %%	list_is_free_of(+List, +Var) is semidet.
 | |
| %
 | |
| %	True if Var is not in List.
 | |
| 
 | |
| list_is_free_of([Head|Tail], Var) :-
 | |
| 	Head \== Var, !,
 | |
| 	list_is_free_of(Tail, Var).
 | |
| list_is_free_of([], _).
 | |
| 
 | |
| 
 | |
| %	term_variables(+Term, +Vars0, -Vars) is det.
 | |
| %
 | |
| %	True if Vars is the union of variables in Term and Vars0.
 | |
| %	We cannot have this as term_variables/3 is already defined
 | |
| %	as a difference-list version of term_variables/2.
 | |
| 
 | |
| %term_variables(Term, Vars0, Vars) :-
 | |
| %	term_variables(Term+Vars0, Vars).
 |