This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/arith2.c
2017-02-20 14:21:46 +00:00

1380 lines
28 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: arith2.c *
* Last rev: *
* mods: *
* comments: arithmetical expression evaluation *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "%W% %G%";
#endif
/**
@file arith2.c
@addtogroup arithmetic_operators
These are the binary numeric operators currently supported by YAP.
- <b> _X_+ _Y_ [ISO]</b><p>
Sum.
- <b> _X_- _Y_ [ISO]</b><p>
Difference.
- <b> _X_\* _Y_ [ISO]</b><p>
Product.
- <b> _X_/ _Y_ [ISO]</b><p>
Quotient.
- <b> _X_// _Y_ [ISO]</b><p>
Integer quotient.
- <b> _X_ mod _Y_ [ISO]</b><p> @anchor mod_2
Integer module operator, always positive.
- <b> _X_ rem _Y_ [ISO]</b><p> @anchor rem_2
Integer remainder, similar to `mod` but always has the same sign as `X`.
- <b> _X_ div _Y_ [ISO]</b><p> @anchor div_2
Integer division, as if defined by `( _X_ - _X_ mod _Y_)// _Y_`.
- <b> max( _X_, _Y_) [ISO]</b><p> @anchor max_2
The greater value of _X_ and _Y_.
- <b> min( _X_, _Y_) [ISO]</b><p> @anchor min_2
The lesser value of _X_ and _Y_.
- <b> _X_ ^ _Y_ [ISO]</b><p>
_X_ raised to the power of _Y_, (from the C-Prolog syntax).
- <b> exp( _X_, _Y_)</b><p> @anchor exp_2
_X_ raised to the power of _Y_, (from the Quintus Prolog syntax).
- <b> _X_ \*\* _Y_ [ISO]</b><p>
_X_ raised to the power of _Y_ (from ISO).
- <b> _X_ /\\ _Y_ [ISO]</b><p>
Integer bitwise conjunction.
- <b> _X_ \\/ _Y_ [ISO]</b><p>
Integer bitwise disjunction.
- <b> _X_ # _Y_</b><p>
Integer bitwise exclusive disjunction.
- <b> _X_ \>\< _Y_</b><p>
Integer bitwise exclusive disjunction.
- <b> xor( _X_ , _Y_) [ISO]</b><p> @anchor xor_2
Integer bitwise exclusive disjunction.
- <b> _X_ \<\< _Y_</b><p>
Integer bitwise left logical shift of _X_ by _Y_ places.
- <b> _X_ \>\> _Y_ [ISO]</b><p>
Integer bitwise right logical shift of _X_ by _Y_ places.
- <b> gcd( _X_, _Y_)</b><p> @anchor gcd_2
The greatest common divisor of the two integers _X_ and _Y_.
- <b> atan( _X_, _Y_)</b><p> @anchor atan_2
Four-quadrant arc tangent. Also available as `atan2/2`.
- <b> atan2( _X_, _Y_) [ISO]</b><p> @anchor atan2_2
Four-quadrant arc tangent.
- <b> _X_ rdiv _Y_ [ISO]</b><p> @anchor rdiv_2
Rational division.
*/
#include "Yap.h"
#include "Yatom.h"
#include "YapHeap.h"
#include "YapEval.h"
#include "arith2.h"
typedef struct init_un_eval {
char *OpName;
arith2_op f;
} InitBinEntry;
static Term
p_mod(Term t1, Term t2 USES_REGS) {
switch (ETypeOfTerm(t1)) {
case (CELL)long_int_e:
switch (ETypeOfTerm(t2)) {
case (CELL)long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
Int mod;
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " mod 0", i1);
if (i1 == Int_MIN && i2 == -1) {
return MkIntTerm(0);
}
mod = i1%i2;
if (mod && (mod ^ i2) < 0)
mod += i2;
RINT(mod);
}
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2");
case (CELL)big_int_e:
#ifdef USE_GMP
return Yap_gmp_mod_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
break;
}
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t1, "mod/2");
case (CELL)big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* modulo between bignum and integer */
{
Int i2 = IntegerOfTerm(t2);
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... mod 0");
return Yap_gmp_mod_big_int(t1, i2);
}
case (CELL)big_int_e:
/* two bignums */
return Yap_gmp_mod_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2");
default:
RERROR();
}
#endif
default:
RERROR();
}
}
static Term
p_div2(Term t1, Term t2 USES_REGS) {
switch (ETypeOfTerm(t1)) {
case (CELL)long_int_e:
switch (ETypeOfTerm(t2)) {
case (CELL)long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
Int res, mod;
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " div 0", i1);
if (i1 == Int_MIN && i2 == -1) {
#ifdef USE_GMP
return Yap_gmp_add_ints(Int_MAX, 1);
#else
Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, t1,
"// /2 with %d and %d", i1, i2);
#endif
}
mod = i1%i2;
if (mod && (mod ^ i2) < 0)
mod += i2;
res = (i1 - mod) / i2;
RINT(res);
}
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2");
case (CELL)big_int_e:
#ifdef USE_GMP
return Yap_gmp_div_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
break;
}
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2");
case (CELL)big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* modulo between bignum and integer */
{
Int i2 = IntegerOfTerm(t2);
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... div 0");
return Yap_gmp_div2_big_int(t1, i2);
}
case (CELL)big_int_e:
/* two bignums */
return Yap_gmp_div2_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "div/2");
default:
RERROR();
}
#endif
default:
RERROR();
}
}
static Term
p_rem(Term t1, Term t2 USES_REGS) {
switch (ETypeOfTerm(t1)) {
case (CELL)long_int_e:
switch (ETypeOfTerm(t2)) {
case (CELL)long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " rem 0", i1);
if (i1 == Int_MIN && i2 == -1) {
return MkIntTerm(0);
}
RINT(i1%i2);
}
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rem/2");
case (CELL)big_int_e:
#ifdef USE_GMP
return Yap_gmp_rem_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
}
break;
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t1, "rem/2");
case (CELL)big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
if (IntegerOfTerm(t2) == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... rem 0");
return Yap_gmp_rem_big_int(t1, IntegerOfTerm(t2));
case (CELL)big_int_e:
/* two bignums */
return Yap_gmp_rem_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rem/2");
default:
RERROR();
}
#endif
default:
RERROR();
}
}
static Term
p_rdiv(Term t1, Term t2 USES_REGS) {
#ifdef USE_GMP
switch (ETypeOfTerm(t1)) {
case (CELL)double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rdiv/2");
case (CELL)long_int_e:
switch (ETypeOfTerm(t2)) {
case (CELL)long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
if (i2 == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is " Int_FORMAT " rdiv 0", i1);
return Yap_gmq_rdiv_int_int(i1, i2);
}
case (CELL)big_int_e:
/* I know the term is much larger, so: */
return Yap_gmq_rdiv_int_big(IntegerOfTerm(t1), t2);
default:
RERROR();
}
break;
case (CELL)big_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
if (IntegerOfTerm(t2) == 0)
Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, t2, "X is ... rdiv 0");
/* I know the term is much larger, so: */
return Yap_gmq_rdiv_big_int(t1, IntegerOfTerm(t2));
case (CELL)big_int_e:
return Yap_gmq_rdiv_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rdiv/2");
default:
RERROR();
}
default:
RERROR();
}
#else
RERROR();
#endif
}
/*
Floating point division: /
*/
static Term
p_fdiv(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i2 = IntegerOfTerm(t2);
/* two integers */
RFLOAT((((Float)IntegerOfTerm(t1))/(Float)i2));
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(fl1/fl2);
}
case (CELL)big_int_e:
#ifdef USE_GMP
return Yap_gmp_fdiv_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
}
break;
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(FloatOfTerm(t1)/(Float)i2);
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(FloatOfTerm(t1)/f2);
}
case big_int_e:
#ifdef USE_GMP
return Yap_gmp_fdiv_float_big(FloatOfTerm(t1), t2);
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
return Yap_gmp_fdiv_big_int(t1, IntegerOfTerm(t2));
case big_int_e:
/* two bignums*/
return Yap_gmp_fdiv_big_big(t1, t2);
case double_e:
return Yap_gmp_fdiv_big_float(t1, FloatOfTerm(t2));
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
/*
xor #
*/
static Term
p_xor(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* two integers */
RINT(IntegerOfTerm(t1) ^ IntegerOfTerm(t2));
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2");
case big_int_e:
#ifdef USE_GMP
return Yap_gmp_xor_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
}
break;
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t1, "#/2");
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
return Yap_gmp_xor_int_big(IntegerOfTerm(t2), t1);
case big_int_e:
return Yap_gmp_xor_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "#/2");
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
/*
atan2: arc tangent x/y
*/
static Term
p_atan2(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* two integers */
RFLOAT(atan2(IntegerOfTerm(t1),IntegerOfTerm(t2)));
case double_e:
RFLOAT(atan2(IntegerOfTerm(t1),FloatOfTerm(t2)));
case big_int_e:
#ifdef USE_GMP
{
Int i1 = IntegerOfTerm(t1);
Float f2 = Yap_gmp_to_float(t2);
RFLOAT(atan2(i1,f2));
}
#endif
default:
RERROR();
break;
}
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(atan2(FloatOfTerm(t1),i2));
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(atan2(FloatOfTerm(t1),f2));
}
case big_int_e:
#ifdef USE_GMP
{
RFLOAT(atan2(FloatOfTerm(t1),Yap_gmp_to_float(t2)));
}
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
{
Float dbl1 = Yap_gmp_to_float(t1);
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
RFLOAT(atan2(dbl1,i));
}
case big_int_e:
/* two bignums */
RFLOAT(atan2(dbl1,Yap_gmp_to_float(t2)));
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(atan2(dbl1,dbl));
}
default:
RERROR();
}
}
#endif
default:
RERROR();
}
RERROR();
}
/*
power: x^y
*/
static Term
p_power(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i2 = IntegerOfTerm(t2);
/* two integers */
RFLOAT(pow(IntegerOfTerm(t1),i2));
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(pow(fl1,fl2));
}
case big_int_e:
#ifdef USE_GMP
{
Int i1 = IntegerOfTerm(t1);
Float f2 = Yap_gmp_to_float(t2);
RFLOAT(pow(i1,f2));
}
#endif
default:
RERROR();
}
break;
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),i2));
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),f2));
}
case big_int_e:
#ifdef USE_GMP
{
RFLOAT(pow(FloatOfTerm(t1),Yap_gmp_to_float(t2)));
}
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
RFLOAT(pow(Yap_gmp_to_float(t1),i));
}
case big_int_e:
/* two bignums */
RFLOAT(pow(Yap_gmp_to_float(t1),Yap_gmp_to_float(t2)));
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(pow(Yap_gmp_to_float(t1),dbl));
}
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
/* next function is adapted from:
Inline C++ integer exponentiation routines
Version 1.01
Copyright (C) 1999-2004 John C. Bowman <bowman@math.ualberta.ca>
*/
static inline Int
ipow(Int x, Int p)
{
Int r;
if (p == 0) return ((CELL)1);
if (x == 0 && p > 0) return 0L;
if(p < 0)
return (-p % 2) ? x : ((CELL)1);
r = ((CELL)1);
for(;;) {
if(p & 1) {
if (mul_overflow((r*x), r, x)) {
return 0;
}
r *= x;
}
if((p >>= 1) == 0) return r;
if (mul_overflow((x*x), x, x)) {
return 0;
}
x *= x;
}
}
/*
power: x^y
*/
static Term
p_exp(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
Int pow;
if (i2 < 0) {
Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t2,
"%d ^ %d", i1, i2);
}
pow = ipow(i1,i2);
#ifdef USE_GMP
/* two integers */
if ((i1 && !pow)) {
/* overflow */
return Yap_gmp_exp_int_int(i1, i2);
}
#endif
RINT(pow);
}
case double_e:
{
/* integer, double */
Float fl1 = (Float)IntegerOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
RFLOAT(pow(fl1,fl2));
}
case big_int_e:
#ifdef USE_GMP
{
Int i = IntegerOfTerm(t1);
return Yap_gmp_exp_int_big(i,t2);
}
#endif
default:
RERROR();
}
break;
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i2 = IntegerOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),i2));
}
case double_e:
{
Float f2 = FloatOfTerm(t2);
RFLOAT(pow(FloatOfTerm(t1),f2));
}
case big_int_e:
#ifdef USE_GMP
{
RFLOAT(pow(FloatOfTerm(t1),Yap_gmp_to_float(t2)));
}
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i = IntegerOfTerm(t2);
return Yap_gmp_exp_big_int(t1,i);
}
case big_int_e:
/* two bignums, makes no sense */
return Yap_gmp_exp_big_big(t1,t2);
case double_e:
{
Float dbl = FloatOfTerm(t2);
RFLOAT(pow(Yap_gmp_to_float(t1),dbl));
}
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
static Int
gcd(Int m11,Int m21 USES_REGS)
{
/* Blankinship algorithm, provided by Miguel Filgueiras */
Int m12=1, m22=0, k;
while (m11>0 && m21>0)
if (m11<m21) {
k = m21/m11; m21 -= k*m11; m22 -= k*m12;
} else {
k=m11/m21; m11 -= k*m21; m12 -= k*m22;
}
if (m11<0 || m21<0) { /* overflow? */
/* Oflow = 1; */
Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11),
"gcd/2 with %d and %d", m11, m21);
return(1);
}
if (m11) return(m11);
return(m21);
}
#ifdef GCD_MULT
Int gcdmult(Int m11,Int m21,Int *pm11) /* *pm11 gets multiplier of m11 */
{
Int m12=1, m22=0, k;
while (m11 && m21)
if (m11<m21) {
k = m21/m11; m21 -= k*m11; m22 -= k*m12;
} else {
k=m11/m21; m11 -= k*m21; m12 -= k*m22;
}
if (m11<0 || m21<0) { /* overflow? */
/* Oflow = 1; */
Yap_ArithError(EVALUATION_ERROR_INT_OVERFLOW, MkIntegerTerm(m11),
"gcdmult/2 with %d and %d", m11, m21);
return(1);
}
if (m11) {
*pm11 = m12; return(m11);
}
*pm11 = m22;
return(m21);
}
#endif
/*
module gcd
*/
static Term
p_gcd(Term t1, Term t2 USES_REGS)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* two integers */
{
Int i1 = IntegerOfTerm(t1), i2 = IntegerOfTerm(t2);
i1 = (i1 >= 0 ? i1 : -i1);
i2 = (i2 >= 0 ? i2 : -i2);
RINT(gcd(i1,i2 PASS_REGS));
}
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2");
case big_int_e:
#ifdef USE_GMP
return Yap_gmp_gcd_int_big(IntegerOfTerm(t1), t2);
#endif
default:
RERROR();
}
break;
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t1, "gcd/2");
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
return Yap_gmp_gcd_int_big(IntegerOfTerm(t2), t1);
case big_int_e:
return Yap_gmp_gcd_big_big(t1, t2);
case double_e:
Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2");
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
/*
minimum: min(x,y)
*/
static Term
p_min(Term t1, Term t2)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
return((i1 < i2 ? t1 : t2));
}
case double_e:
{
/* integer, double */
Int i = IntegerOfTerm(t1);
Float fl = FloatOfTerm(t2);
if (i <= fl) {
return t1;
}
return t2;
}
case big_int_e:
#ifdef USE_GMP
if (Yap_gmp_cmp_int_big(IntegerOfTerm(t1), t2) < 0) {
return t1;
}
return t2;
#endif
default:
RERROR();
}
break;
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i = IntegerOfTerm(t2);
Float fl = FloatOfTerm(t1);
if (i <= fl) {
return t2;
}
return t1;
}
case double_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
if (fl1 <= fl2) {
return t1;
}
return t2;
}
case big_int_e:
#ifdef USE_GMP
if (Yap_gmp_cmp_float_big(FloatOfTerm(t1), t2) < 0) {
return t1;
}
return t2;
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
if (Yap_gmp_cmp_big_int(t1, IntegerOfTerm(t2)) < 0) {
return t1;
}
return t2;
case big_int_e:
if (Yap_gmp_cmp_big_big(t1, t2) < 0) {
return t1;
}
return t2;
case double_e:
if (Yap_gmp_cmp_big_float(t1, FloatOfTerm(t2)) < 0) {
return t1;
}
return t2;
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
/*
maximum: max(x,y)
*/
static Term
p_max(Term t1, Term t2)
{
switch (ETypeOfTerm(t1)) {
case long_int_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
{
Int i1 = IntegerOfTerm(t1);
Int i2 = IntegerOfTerm(t2);
return((i1 > i2 ? t1 : t2));
}
case double_e:
{
/* integer, double */
Int i = IntegerOfTerm(t1);
Float fl = FloatOfTerm(t2);
if (i >= fl) {
return t1;
}
return t2;
}
case big_int_e:
#ifdef USE_GMP
if (Yap_gmp_cmp_int_big(IntegerOfTerm(t1), t2) > 0) {
return t1;
}
return t2;
#endif
default:
RERROR();
}
break;
case double_e:
switch (ETypeOfTerm(t2)) {
case long_int_e:
/* float / integer */
{
Int i = IntegerOfTerm(t2);
Float fl = FloatOfTerm(t1);
if (i >= fl) {
return t2;
}
return t1;
}
case double_e:
{
Float fl1 = FloatOfTerm(t1);
Float fl2 = FloatOfTerm(t2);
if (fl1 >= fl2) {
return t1;
}
return t2;
}
case big_int_e:
#ifdef USE_GMP
if (Yap_gmp_cmp_float_big(FloatOfTerm(t1), t2) > 0) {
return t1;
}
return t2;
#endif
default:
RERROR();
}
break;
case big_int_e:
#ifdef USE_GMP
switch (ETypeOfTerm(t2)) {
case long_int_e:
if (Yap_gmp_cmp_big_int(t1, IntegerOfTerm(t2)) > 0) {
return t1;
}
return t2;
case big_int_e:
if (Yap_gmp_cmp_big_big(t1, t2) > 0) {
return t1;
}
return t2;
case double_e:
if (Yap_gmp_cmp_big_float(t1, FloatOfTerm(t2)) > 0) {
return t1;
}
return t2;
default:
RERROR();
}
#endif
default:
RERROR();
}
RERROR();
}
static Term
eval2(Int fi, Term t1, Term t2 USES_REGS) {
arith2_op f = fi;
switch (f) {
case op_plus:
return p_plus(t1, t2 PASS_REGS);
case op_minus:
return p_minus(t1, t2 PASS_REGS);
case op_times:
return p_times(t1, t2 PASS_REGS);
case op_div:
return p_div(t1, t2 PASS_REGS);
case op_idiv:
return p_div2(t1, t2 PASS_REGS);
case op_and:
return p_and(t1, t2 PASS_REGS);
case op_or:
return p_or(t1, t2 PASS_REGS);
case op_sll:
return p_sll(t1, t2 PASS_REGS);
case op_slr:
return p_slr(t1, t2 PASS_REGS);
case op_mod:
return p_mod(t1, t2 PASS_REGS);
case op_rem:
return p_rem(t1, t2 PASS_REGS);
case op_fdiv:
return p_fdiv(t1, t2 PASS_REGS);
case op_xor:
return p_xor(t1, t2 PASS_REGS);
case op_atan2:
return p_atan2(t1, t2 PASS_REGS);
case op_power:
return p_exp(t1, t2 PASS_REGS);
case op_power2:
return p_power(t1, t2 PASS_REGS);
case op_gcd:
return p_gcd(t1, t2 PASS_REGS);
case op_min:
return p_min(t1, t2);
case op_max:
return p_max(t1, t2);
case op_rdiv:
return p_rdiv(t1, t2 PASS_REGS);
}
RERROR();
}
Term Yap_eval_binary(Int f, Term t1, Term t2)
{
CACHE_REGS
return eval2(f,t1,t2 PASS_REGS);
}
static InitBinEntry InitBinTab[] = {
{"+", op_plus},
{"-", op_minus},
{"*", op_times},
{"/", op_fdiv},
{"mod", op_mod},
{"rem", op_rem},
{"//", op_div},
{"div", op_idiv},
{"<<", op_sll},
{">>", op_slr},
{"/\\", op_and},
{"\\/", op_or},
{"#", op_xor},
{"><", op_xor},
{"xor", op_xor},
{"atan", op_atan2},
{"atan2", op_atan2},
/* C-Prolog exponentiation */
{"^", op_power},
/* ISO-Prolog exponentiation */
{"**", op_power2},
/* Quintus exponentiation */
{"exp", op_power2},
{"gcd", op_gcd},
{"min", op_min},
{"max", op_max},
{"rdiv", op_rdiv}
};
static Int
p_binary_is( USES_REGS1 )
{ /* X is Y */
Term t = Deref(ARG2);
Term t1, t2;
yap_error_number err;
if (IsVarTerm(t)) {
Yap_ArithError(INSTANTIATION_ERROR,t, "VAR(X , Y)");
return(FALSE);
}
Yap_ClearExs();
t1 = Yap_Eval(Deref(ARG3));
if ((err = Yap_FoundArithError())) {
Atom name;
if (IsIntTerm(t)) {
Int i = IntOfTerm(t);
name = Yap_NameOfBinaryOp(i);
} else {
name = AtomOfTerm(Deref(ARG2));
}
Yap_EvalError(err,ARG3,"X is ~s/2: error in first argument ", RepAtom(name)->StrOfAE);
return FALSE;
}
t2 = Yap_Eval(Deref(ARG4));
if ((err=Yap_FoundArithError())) {
Atom name;
if (IsIntTerm(t)) {
Int i = IntOfTerm(t);
name = Yap_NameOfBinaryOp(i);
} else {
name = AtomOfTerm(Deref(ARG2));
}
Yap_EvalError(err,ARG3,"X is ~s/2: error in first argument ", RepAtom(name)->StrOfAE);
return FALSE;
}
if (IsIntTerm(t)) {
Int i = IntOfTerm(t);
Term tout = eval2(i, t1, t2 PASS_REGS);
if ((err = Yap_FoundArithError()) != YAP_NO_ERROR) {
Term ts[2], terr;
Atom name = Yap_NameOfBinaryOp( i );
Functor f = Yap_MkFunctor( name, 2 );
ts[0] = t1;
ts[1] = t2;
terr = Yap_MkApplTerm( f, 2, ts );
Yap_EvalError(err, terr ,"error in %s/2 ", RepAtom(name)->StrOfAE);
return FALSE;
}
return Yap_unify_constant(ARG1,tout);
}
if (IsAtomTerm(t)) {
Atom name = AtomOfTerm(t);
ExpEntry *p;
Term out;
if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) {
Yap_EvalError(TYPE_ERROR_EVALUABLE, takeIndicator(t),
"functor %s/2 for arithmetic expression",
RepAtom(name)->StrOfAE);
P = FAILCODE;
return(FALSE);
}
out= eval2(p->FOfEE, t1, t2 PASS_REGS);
if ((err = Yap_FoundArithError()) != YAP_NO_ERROR) {
Term ts[2], terr;
Functor f = Yap_MkFunctor( name, 2 );
ts[0] = t1;
ts[1] = t2;
terr = Yap_MkApplTerm( f, 2, ts );
Yap_EvalError(err, terr ,"error in ~s/2 ", RepAtom(name)->StrOfAE);
return FALSE;
}
return Yap_unify_constant(ARG1,out);
}
return FALSE;
}
static Int
do_arith23(arith2_op op USES_REGS)
{ /* X is Y */
Term t = Deref(ARG1);
Int out;
Term t1, t2;
yap_error_number err;
Yap_ClearExs();
if (IsVarTerm(t)) {
Yap_EvalError(INSTANTIATION_ERROR,t, "X is Y");
return(FALSE);
}
t1 = Yap_Eval(t);
if (t1 == 0L)
return FALSE;
t2 = Yap_Eval(Deref(ARG2));
if (t2 == 0L)
return FALSE;
out= eval2(op, t1, t2 PASS_REGS);
if ((err=Yap_FoundArithError())) {
Term ts[2], t;
Functor f = Yap_MkFunctor( Yap_NameOfBinaryOp(op), 2 );
ts[0] = t1;
ts[1] = t2;
t = Yap_MkApplTerm( f, 2, ts );
Yap_EvalError(err, t ,"error in ~s(Y,Z) ",Yap_NameOfBinaryOp(op));
return FALSE;
}
return Yap_unify_constant(ARG3,out);
}
static Int
export_p_plus( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_plus PASS_REGS);
}
static Int
export_p_minus( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_minus PASS_REGS);
}
static Int
export_p_times( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_times PASS_REGS);
}
static Int
export_p_div( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_div PASS_REGS);
}
static Int
export_p_and( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_and PASS_REGS);
}
static Int
export_p_or( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_or PASS_REGS);
}
static Int
export_p_slr( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_slr PASS_REGS);
}
static Int
export_p_sll( USES_REGS1 )
{ /* X is Y */
return do_arith23(op_sll PASS_REGS);
}
static Int
p_binary_op_as_integer( USES_REGS1 )
{ /* X is Y */
Term t = Deref(ARG1);
if (IsVarTerm(t)) {
Yap_EvalError(INSTANTIATION_ERROR,t, "X is Y");
return(FALSE);
}
if (IsIntTerm(t)) {
return Yap_unify_constant(ARG2,t);
}
if (IsAtomTerm(t)) {
Atom name = AtomOfTerm(t);
ExpEntry *p;
if (EndOfPAEntr(p = RepExpProp(Yap_GetExpProp(name, 2)))) {
return Yap_unify(ARG1,ARG2);
}
return Yap_unify_constant(ARG2,MkIntTerm(p->FOfEE));
}
return(FALSE);
}
Atom
Yap_NameOfBinaryOp(int i)
{
return Yap_LookupAtom(InitBinTab[i].OpName);
}
void
Yap_InitBinaryExps(void)
{
unsigned int i;
ExpEntry *p;
for (i = 0; i < sizeof(InitBinTab)/sizeof(InitBinEntry); ++i) {
AtomEntry *ae = RepAtom(Yap_LookupAtom(InitBinTab[i].OpName));
if (ae == NULL) {
Yap_EvalError(RESOURCE_ERROR_HEAP,TermNil,"at InitBinaryExps");
return;
}
WRITE_LOCK(ae->ARWLock);
if (Yap_GetExpPropHavingLock(ae, 2)) {
WRITE_UNLOCK(ae->ARWLock);
break;
}
p = (ExpEntry *) Yap_AllocAtomSpace(sizeof(ExpEntry));
p->KindOfPE = ExpProperty;
p->ArityOfEE = 2;
p->ENoOfEE = 2;
p->FOfEE = InitBinTab[i].f;
AddPropToAtom(ae, (PropEntry *)p);
WRITE_UNLOCK(ae->ARWLock);
}
Yap_InitCPred("is", 4, p_binary_is, TestPredFlag | SafePredFlag);
Yap_InitCPred("$binary_op_as_integer", 2, p_binary_op_as_integer, TestPredFlag|SafePredFlag);
Yap_InitAsmPred("$plus", 3, _plus, export_p_plus, SafePredFlag);
Yap_InitAsmPred("$minus", 3, _minus, export_p_minus, SafePredFlag);
Yap_InitAsmPred("$times", 3, _times, export_p_times, SafePredFlag);
Yap_InitAsmPred("$div", 3, _div, export_p_div, SafePredFlag);
Yap_InitAsmPred("$and", 3, _and, export_p_and, SafePredFlag);
Yap_InitAsmPred("$or", 3, _or, export_p_or, SafePredFlag);
Yap_InitAsmPred("$sll", 3, _sll, export_p_sll, SafePredFlag);
Yap_InitAsmPred("$slr", 3, _slr, export_p_slr, SafePredFlag);
}
/* This routine is called from Restore to make sure we have the same arithmetic operators */
int
Yap_ReInitBinaryExps(void)
{
return(TRUE);
}