This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/dialect/swi/fli/swi.c
2014-05-30 01:06:09 +01:00

3263 lines
68 KiB
C
Executable File

/* yap2swi.c */
/*
* Project: jpl for Yap Prolog
* Author: Steve Moyle and Vitor Santos Costa
* Email: steve.moyle@comlab.ox.ac.uk
* Date: 21 January 2002
* Copyright (c) 2002-2014 Vitor Santos Costa from an original version by Steve Moyle. All rights reserved.
*/
/**
*
* @file swi.c
*
* @addtogroup swi-c-interface
*
* @{
*/
#define PL_KERNEL 1
//=== includes ===============================================================
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <wchar.h>
#include <assert.h>
#include <Yap.h>
#include <Yatom.h>
#include <YapHeap.h>
#include <eval.h>
#if HAVE_MATH_H
#include <math.h>
#endif
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if !HAVE_SNPRINTF
#define snprintf(X,Y,Z,A) sprintf(X,Z,A)
#endif
#define PL_KERNEL 1
#include <pl-shared.h>
#include <yapio.h>
#include <YapText.h>
#ifdef USE_GMP
#include <gmp.h>
#endif
#ifdef __WIN32__
/* Windows */
#include <fcntl.h>
#endif
#include "swi.h"
#include "pl-error.h"
extern int PL_unify_termv(term_t l, va_list args);
extern X_API Atom YAP_AtomFromSWIAtom(atom_t at);
extern X_API atom_t YAP_SWIAtomFromAtom(Atom at);
static int
do_gc(UInt sz)
{
/* always called from user_call_cpred */
CACHE_REGS
UInt arity;
yamop *nextpc;
if (P && PREVOP(P,Osbpp)->opc == Yap_opcode(_call_usercpred)) {
arity = PREVOP(P,Osbpp)->y_u.Osbpp.p->ArityOfPE;
nextpc = P;
} else {
arity = 0;
nextpc = CP;
}
return Yap_gcl(sz, arity, ENV, nextpc);
}
X_API extern Atom
YAP_AtomFromSWIAtom(atom_t at)
{
return SWIAtomToAtom(at);
}
X_API extern atom_t
YAP_SWIAtomFromAtom(Atom at)
{
return AtomToSWIAtom(at);
}
extern X_API Int YAP_PLArityOfSWIFunctor(functor_t at);
/* This is silly, but let's keep it like that for now */
X_API Int
YAP_PLArityOfSWIFunctor(functor_t f) {
if (((CELL)(f) & 2) && ((CELL)f) < N_SWI_FUNCTORS*4+2)
return ArityOfFunctor(SWI_Functors[(CELL)f/4]);
if (IsAtomTerm(f))
return 0;
return ArityOfFunctor((Functor)f);
}
void
Yap_InitSWIHash(void)
{
int i, j;
for (i=0; i < N_SWI_ATOMS; i++) {
Yap_PutAtomTranslation( SWI_Atoms[i], i );
}
AtomTranslations = N_SWI_ATOMS;
for (j=0; j < N_SWI_FUNCTORS; j++) {
add_to_hash(j, (ADDR)SWI_Functors[j]);
}
}
static void
UserCPredicate(char *a, CPredicate def, unsigned long int arity, Term mod, int flags)
{
CACHE_REGS
Term cm = CurrentModule;
/* fprintf(stderr,"doing %s:%s/%d\n", RepAtom(AtomOfTerm(mod))->StrOfAE, a,arity); */
CurrentModule = mod;
Yap_InitCPred(a, arity, def, (UserCPredFlag|CArgsPredFlag|flags));
CurrentModule = cm;
}
/** @defgroup swi-ATOMS Atom Construction
* @ingroup swi-c-interface
* @{
* */
/* SWI: void PL_agc_hook(void) */
/** @brief Atom garbage collection hook
*
*/
X_API PL_agc_hook_t
PL_agc_hook(PL_agc_hook_t entry)
{
return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry);
}
/** @brief extract the text representation from atom
*
*/
X_API char* PL_atom_chars(atom_t a) /* SAM check type */
{
Atom at = SWIAtomToAtom(a);
if (IsWideAtom(at))
return NULL;
return RepAtom(at)->StrOfAE;
}
/** @brief extract the text representation from atom, including its length
*
*/
X_API char* PL_atom_nchars(atom_t a, size_t *len) /* SAM check type */
{
char *s = RepAtom(SWIAtomToAtom(a))->StrOfAE;
*len = strlen(s);
return s;
}
/** @}
*
* @defgroup swi-term_references Term References
* @ingroup swi-c-interface
* @{
* */
/** @brief duplicate a term reference
*
*/
X_API term_t PL_copy_term_ref(term_t from)
{
CACHE_REGS
return Yap_InitSlot(Yap_GetFromSlot(from PASS_REGS) PASS_REGS);
}
/** @brief create a new term reference
*
*/
X_API term_t PL_new_term_ref(void)
{
CACHE_REGS
term_t to = Yap_NewSlots(1 PASS_REGS);
return to;
}
/** @brief create several new term references
*
* @par n is the number of references
*/
X_API term_t PL_new_term_refs(int n)
{
CACHE_REGS
term_t to = Yap_NewSlots(n PASS_REGS);
return to;
}
/** @brief dispose of all term references created since after
*
*/
X_API void PL_reset_term_refs(term_t after)
{
CACHE_REGS
term_t new = Yap_NewSlots(1 PASS_REGS);
Yap_RecoverSlots(after-new, new PASS_REGS);
}
/** @}
* @defgroup swi-term_manipulation Term Manipulation
* @ingroup swi-c-interface
* */
/**
* @defgroup swi-get-operations Reading Terms
* @ingroup swi-term_manipulation
* @{
* */
/** @brief *name is assigned the name and *arity the arity if term ts, or the operaton fails.
*
*/
X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsAtomTerm(t)) {
*name = AtomToSWIAtom(AtomOfTerm(t));
*arity = 0;
return 1;
}
if (YAP_IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f)) {
return 0;
}
*name = AtomToSWIAtom(NameOfFunctor(f));
*arity = ArityOfFunctor(f);
return 1;
}
if (YAP_IsPairTerm(t)) {
*name = AtomToSWIAtom(AtomDot);
*arity = 2;
return 1;
}
return 0;
}
/** @brief a is assigned the argument index from term ts
*
*/
X_API int PL_get_arg(int index, term_t ts, term_t a)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm( t ))
return 0;
if ( !IsApplTerm(t) ) {
if (IsPairTerm(t)) {
if (index == 1){
Yap_PutInSlot(a,HeadOfTerm(t) PASS_REGS);
return 1;
} else if (index == 2) {
Yap_PutInSlot(a,TailOfTerm(t) PASS_REGS);
return 1;
}
}
return 0;
}
Yap_PutInSlot(a,ArgOfTerm(index, t) PASS_REGS);
return 1;
}
/** @brief *ap is assigned the name and *ip the arity from term ts
*
*/
X_API int PL_get_compound_name_arity(term_t ts, atom_t *ap, int *ip)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( !YAP_IsApplTerm(t) ) {
if (YAP_IsPairTerm(t)) {
if (ip)
*ip = 2;
if (ap)
*ap = ATOM_nil;
return 1;
}
return 0;
} else {
Functor f = FunctorOfTerm( t );
if (IsExtensionFunctor(f)) return FALSE;
if (ip)
*ip = ArityOfFunctor( f );
if (ap)
*ap = AtomToSWIAtom( NameOfFunctor( f ));
return 1;
}
}
/** @brief *a is assigned the atom in term ts, or the operation fails
*
*/
X_API int PL_get_atom(term_t ts, atom_t *a)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( !IsAtomTerm(t))
return 0;
*a = AtomToSWIAtom(AtomOfTerm(t));
return 1;
}
/** @brief *i is assigned the int in term ts, or the operation fails
*
*/
/* SWI: int PL_get_integer(term_t t, int *i)
YAP: long int YAP_IntOfTerm(Term) */
X_API int PL_get_integer(term_t ts, int *i)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm(t) || !IsIntegerTerm(t) )
return 0;
*i = (int)IntegerOfTerm(t);
return 1;
}
/** @brief *i is assigned the boolean atom `true` or `false` in term ts, or the operation fails
*
*/
X_API int PL_get_long(term_t ts, long *i)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (long)dbl == 0.0) {
*i = (long)dbl;
return 1;
}
}
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
}
/* SWI: int PL_get_bool(term_t t, int *i)
YAP: long int YAP_AtomOfTerm(Term) */
X_API int PL_get_bool(term_t ts, int *i)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
Atom at;
if (!IsAtomTerm(t) )
return 0;
at = AtomOfTerm(t);
if (at == AtomTrue) {
*i = TRUE;
return 1;
}
if (at == AtomFalse) {
*i = FALSE;
return 1;
}
return 0;
}
/** @brief *a is assigned the int64 in term ts, or the operation fails
*
*/
X_API int PL_get_int64(term_t ts, int64_t *i)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (int64_t)dbl == 0.0) {
*i = (int64_t)dbl;
return 1;
}
#if SIZEOF_INT_P==4 && !USE_GMP
{
union {
double d;
int64_t i;
} udbi_;
udbi_.d = YAP_FloatOfTerm(t);
*i = udbi_.i;
return 1;
}
#endif
return 0;
}
#if USE_GMP
else if (YAP_IsBigNumTerm(t)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return 0;
}
mpz_get_str (s, 10, &g);
#ifdef _WIN32
sscanf(s, "%I64d", (long long int *)i);
#else
sscanf(s, "%lld", (long long int *)i);
#endif
return 1;
}
#endif
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
}
/** @brief *a is assigned the intptr_t in term ts, or the operation fails
*
*/
X_API int PL_get_intptr(term_t ts, intptr_t *a)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( !IsIntegerTerm(t) )
return 0;
*a = (intptr_t)(IntegerOfTerm(t));
return 1;
}
/** @brief *a is assigned the uintptr_t in term ts, or the operation fails
*
*/
X_API int PL_get_uintptr(term_t ts, uintptr_t *a)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( !IsIntegerTerm(t) )
return 0;
*a = (uintptr_t)(IntegerOfTerm(t));
return 1;
}
/** @brief a is assigned the argument index from term ts
*
*/
X_API int _PL_get_arg(int index, term_t ts, term_t a)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( !YAP_IsApplTerm(t) ) {
if (YAP_IsPairTerm(t)) {
if (index == 1){
Yap_PutInSlot(a,HeadOfTerm(t) PASS_REGS);
return 1;
} else if (index == 2) {
Yap_PutInSlot(a,TailOfTerm(t) PASS_REGS);
return 1;
}
}
return 0;
}
Yap_PutInSlot(a,ArgOfTerm(index, t) PASS_REGS);
return 1;
}
/** @brief *a is assigned the string representation of the atom in term ts, or the operation fails
*
*/
X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!IsAtomTerm(t) || IsWideAtom(AtomOfTerm(t)))
return 0;
*a = RepAtom(AtomOfTerm(t))->StrOfAE;
return 1;
}
/** @brief *a is assigned the string representation of the atom in term ts, and *len its size, or the operation fails
*
*/
X_API int PL_get_atom_nchars(term_t ts, size_t *len, char **s) /* SAM check type */
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!IsAtomTerm(t))
return 0;
*s = RepAtom(AtomOfTerm(t))->StrOfAE;
*len = strlen(*s);
return 1;
}
/** PL_get_chars converts a term t to a string.
*
* From the SWI manual:
*
* int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the
* argument term t to a 0-terminated C-string. flags is a bitwise
* disjunction from two groups of constants. The first specifies which
* term-types should converted and the second how the argument is
* stored. Below is a specification of these constants. BUF_RING
* implies, if the data is not static (as from an atom), the data is
* copied to the next buffer from a ring of sixteen (16) buffers. This is a
* convenient way of converting multiple arguments passed to a foreign
* predicate to C-strings. If BUF_MALLOC is used, the data must be
* freed using free() when not needed any longer.
- CVT_ATOM Convert if term is an atom
- CVT_STRING Convert if term is a string
- CVT_LIST Convert if term is a list of integers between 1 and 255
- CVT_INTEGER Convert if term is an integer (using %d)
- CVT_FLOAT Convert if term is a float (using %f)
- CVT_NUMBER Convert if term is a integer or float
- CVT_ATOMIC Convert if term is atomic
- CVT_VARIABLE Convert variable to print-name
- CVT_ALL Convert if term is any of the above, except for variables
- BUF_DISCARDABLE Data must copied immediately
- BUF_RING Data is stored in a ring of buffers
- BUF_MALLOC Data is copied to a new buffer returned by malloc(3)
*/
/** @brief *f is assigned the functor of term ts, or the operation fails
*
*/
X_API int PL_get_functor(term_t ts, functor_t *f)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( IsAtomTerm(t)) {
*f = t;
} else {
*f = FunctorToSWIFunctor(FunctorOfTerm(t));
}
return 1;
}
/** @brief *f is assigned the floating point number of term ts, or the operation fails
*
*/
X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if ( IsFloatTerm(t)) {
*f = FloatOfTerm(t);
} else if ( IsIntegerTerm(t)) {
*f = IntegerOfTerm(t);
#if USE_GMP
} else if (IsBigIntTerm(t)) {
*f = Yap_gmp_to_float( t );
#endif
} else {
return 0;
}
return 1;
}
/** @brief *s is assigned the string representation of the string in term ts, and *len its size, or the operation fails
*
*/
X_API int PL_get_string_chars(term_t t, char **s, size_t *len)
{
CACHE_REGS
Term tt = Yap_GetFromSlot(t PASS_REGS);
if (!IsStringTerm(tt)) {
return 0;
}
*s = (char *)StringOfTerm(tt);
*len = utf8_strlen(*s, strlen(*s));
return TRUE;
}
/** @brief h is assigned the head of the pair term ts, and tl its tail, or the operation fails
*
*/
X_API int PL_get_list(term_t ts, term_t h, term_t tl)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm(t) || !IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,HeadOfTerm(t) PASS_REGS);
Yap_PutInSlot(tl,TailOfTerm(t) PASS_REGS);
return 1;
}
/** @brief h is assigned the head of the pair term ts, or the operation fails
*
*/
X_API int PL_get_head(term_t ts, term_t h)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,YAP_HeadOfTerm(t) PASS_REGS);
return 1;
}
/** @brief *s is assigned the string representation of the term ts, and *len its size, or the operation fails
*
*/
X_API int PL_get_string(term_t t, char **s, size_t *len)
{
return PL_get_string_chars(t, s, len);
}
/**
* @}
* */
/**
* @defgroup swi-unify-operations Unifying Terms
* @ingroup swi-term_manipulation
* @{
* */
/** @brief t unifies with the true/false value in a.
*
*/
X_API int PL_unify_bool(term_t t, int a)
{
CACHE_REGS
Term iterm = (a ? MkAtomTerm(AtomTrue) : MkAtomTerm(AtomFalse) );
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
}
#if USE_GMP
/*******************************
* GMP *
*******************************/
X_API int PL_get_mpz(term_t t, mpz_t mpz)
{
CACHE_REGS
Term t0 = Yap_GetFromSlot(t PASS_REGS);
return Yap_term_to_existing_big(t0, mpz);
}
X_API int PL_unify_mpz(term_t t, mpz_t mpz)
{
CACHE_REGS
Term iterm = Yap_MkBigIntTerm(mpz);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
}
X_API int PL_get_mpq(term_t t, mpq_t mpz)
{
CACHE_REGS
Term t0 = Yap_GetFromSlot(t PASS_REGS);
return Yap_term_to_existing_rat(t0, mpz);
}
X_API int PL_unify_mpq(term_t t, mpq_t mpq)
{
CACHE_REGS
Term iterm = Yap_MkBigRatTerm(mpq);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
}
#endif
/* SWI: int PL_get_module(term_t t, module_t *m) */
X_API int PL_get_module(term_t ts, module_t *m)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!IsAtomTerm(t) )
return FALSE;
*m = Yap_GetModuleEntry(t);
return TRUE;
}
/* SWI: int PL_new_module(term_t t, module_t *m) */
X_API module_t PL_new_module(atom_t swiat)
{
Atom at = SWIAtomToAtom(swiat);
Term t;
WRITE_LOCK(RepAtom(at)->ARWLock);
t = Yap_Module(MkAtomTerm(at));
WRITE_UNLOCK(RepAtom(at)->ARWLock);
return Yap_GetModuleEntry(t);
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_nil(term_t ts)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
return ( t == TermNil );
}
/* SWI: int PL_get_pointer(term_t t, int *i)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_get_pointer(term_t ts, void **i)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm(t) || !IsIntegerTerm(t) )
return 0;
*i = (void *)IntegerOfTerm(t);
return 1;
}
X_API int PL_get_tail(term_t ts, term_t tl)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(tl,YAP_TailOfTerm(t) PASS_REGS);
return 1;
}
/* end PL_get_* functions =============================*/
/* begin PL_new_* functions =============================*/
/* SWI: atom_t PL_new_atom(const char *)
YAP: YAP_Atom LookupAtom(char *) */
/* SAM should the following be used instead?
YAP_Atom FullLookupAtom(char *)
*/
X_API atom_t PL_new_atom(const char *c)
{
CACHE_REGS
Atom at;
atom_t sat;
while((at = Yap_CharsToAtom(c PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_new_atom" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
sat = AtomToSWIAtom(at);
return sat;
}
X_API atom_t PL_new_atom_nchars(size_t len, const char *c)
{
CACHE_REGS
Atom at;
atom_t sat;
while((at = Yap_NCharsToAtom(c, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_new_atom_nchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
sat = AtomToSWIAtom(at);
return sat;
}
X_API atom_t PL_new_atom_wchars(size_t len, const wchar_t *c)
{
CACHE_REGS
Atom at;
atom_t sat;
while((at = Yap_NWCharsToAtom(c, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_new_atom_wchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
sat = AtomToSWIAtom(at);
return sat;
}
X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp)
{
Atom at = SWIAtomToAtom(name);
if (!IsWideAtom(at))
return NULL;
*sp = wcslen(RepAtom(at)->WStrOfAE);
return RepAtom(at)->WStrOfAE;
}
X_API functor_t PL_new_functor(atom_t name, int arity)
{
functor_t f;
Atom at = SWIAtomToAtom(name);
if (arity == 0) {
f = FunctorToSWIFunctor((Functor)MkAtomTerm(at));
} else {
f = FunctorToSWIFunctor(Yap_MkFunctor(at,arity));
}
return f;
}
X_API atom_t PL_functor_name(functor_t f)
{
if (IsAtomTerm(f)) {
return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f)));
} else {
return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f)));
}
}
X_API int PL_functor_arity(functor_t f)
{
if (IsAtomTerm(f)) {
return 0;
} else {
return ArityOfFunctor(SWIFunctorToFunctor(f));
}
}
/* end PL_new_* functions =============================*/
/* begin PL_put_* functions =============================*/
X_API int PL_cons_functor(term_t d, functor_t f,...)
{
CACHE_REGS
va_list ap;
int arity, i;
Term *tmp, t;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d, (YAP_Term)f PASS_REGS);
return TRUE;
}
arity = ArityOfFunctor(ff);
if (Unsigned(HR)+arity > Unsigned(ASP)-CreepFlag) {
if (!do_gc(arity*sizeof(CELL))) {
return FALSE;
}
}
if (arity == 2 && ff == FunctorDot) {
t = Yap_MkNewPairTerm();
tmp = RepPair(t);
} else {
t = Yap_MkNewApplTerm(ff, arity);
tmp = RepAppl(t)+1;
}
va_start (ap, f);
for (i = 0; i < arity; i++) {
Yap_unify(tmp[i],Yap_GetFromSlot(va_arg(ap, term_t) PASS_REGS));
}
va_end (ap);
Yap_PutInSlot(d,t PASS_REGS);
return TRUE;
}
X_API int PL_cons_functor_v(term_t d, functor_t f, term_t a0)
{
CACHE_REGS
int arity, i;
Term *tmp, t;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d, (YAP_Term)f PASS_REGS);
return TRUE;
}
arity = ArityOfFunctor(ff);
if (Unsigned(HR) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
return FALSE;
}
}
if (arity == 2 && ff == FunctorDot) {
t = Yap_MkNewPairTerm();
tmp = RepPair(t);
} else {
t = Yap_MkNewApplTerm(ff, arity);
tmp = RepAppl(t)+1;
}
for (i = 0; i < arity; i++) {
Yap_unify(tmp[i] , Yap_GetFromSlot(a0 PASS_REGS) );
a0++;
}
Yap_PutInSlot(d,t PASS_REGS);
return TRUE;
}
X_API int PL_cons_list(term_t d, term_t h, term_t t)
{
CACHE_REGS
if (Unsigned(HR) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
return FALSE;
}
}
Yap_PutInSlot(d,MkPairTerm(Yap_GetFromSlot(h PASS_REGS),Yap_GetFromSlot(t PASS_REGS)) PASS_REGS);
return TRUE;
}
X_API int PL_put_atom(term_t t, atom_t a)
{
CACHE_REGS
Yap_PutInSlot(t,MkAtomTerm(SWIAtomToAtom(a)) PASS_REGS);
return TRUE;
}
X_API int PL_put_atom_chars(term_t t, const char *s)
{
CACHE_REGS
Atom at;
while((at = Yap_CharsToAtom(s PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_atom_nchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
Yap_PutInSlot(t,MkAtomTerm(at) PASS_REGS);
return TRUE;
}
X_API int PL_put_atom_nchars(term_t t, size_t len, const char *s)
{
CACHE_REGS
Atom at;
while((at = Yap_NCharsToAtom(s, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_atom_nchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
Yap_PutInSlot(t,MkAtomTerm(at) PASS_REGS);
return TRUE;
}
X_API int PL_put_float(term_t t, double fl)
{
CACHE_REGS
Yap_PutInSlot(t,YAP_MkFloatTerm(fl) PASS_REGS);
return TRUE;
}
X_API int PL_put_functor(term_t t, functor_t f)
{
long int arity;
Functor ff = SWIFunctorToFunctor(f);
CACHE_REGS
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(t,(Term)ff PASS_REGS);
} else {
arity = ArityOfFunctor(ff);
if (Unsigned(HR)+arity > Unsigned(ASP)-CreepFlag) {
if (!do_gc(arity*sizeof(CELL))) {
return FALSE;
}
}
if (arity == 2 && ff == FunctorDot)
Yap_PutInSlot(t,YAP_MkNewPairTerm() PASS_REGS);
else
Yap_PutInSlot(t,YAP_MkNewApplTerm((YAP_Functor)ff,arity) PASS_REGS);
}
return TRUE;
}
X_API int PL_put_integer(term_t t, long n)
{
CACHE_REGS
Yap_PutInSlot(t,YAP_MkIntTerm(n) PASS_REGS);
return TRUE;
}
X_API int PL_put_int64(term_t t, int64_t n)
{
CACHE_REGS
#if SIZEOF_INT_P==8
Yap_PutInSlot(t,MkIntegerTerm(n) PASS_REGS);
return TRUE;
#elif USE_GMP
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", (long long int)n);
#else
sprintf(s, "%lld", (long long int)n);
#endif
mpz_init_set_str (&rop, s, 10);
Yap_PutInSlot(t,YAP_MkBigNumTerm((void *)&rop) PASS_REGS);
return TRUE;
#else
// use a double, but will mess up writing.
Int x = n;
if (x == n)
return PL_put_integer(t, x);
else {
union {
int64_t i;
double d;
} udi_;
udi_.i = n;
return PL_put_float(t, udi_.d);
}
#endif
}
X_API int PL_put_list(term_t t)
{
CACHE_REGS
Yap_PutInSlot(t,YAP_MkNewPairTerm() PASS_REGS);
if (Unsigned(HR) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
return FALSE;
}
}
return TRUE;
}
X_API int PL_put_list_chars(term_t t, const char *s)
{
CACHE_REGS
Term nt;
while((nt = Yap_CharsToListOfAtoms(s PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_put_string_nchars" ))
return FALSE;
}
Yap_PutInSlot(t, nt PASS_REGS);
return TRUE;
}
X_API void PL_put_nil(term_t t)
{
CACHE_REGS
Yap_PutInSlot(t,TermNil PASS_REGS);
}
/* SWI: void PL_put_pointer(term_t -t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_put_pointer(term_t t, void *ptr)
{
CACHE_REGS
YAP_Term tptr = YAP_MkIntTerm((YAP_Int)ptr);
Yap_PutInSlot(t,tptr PASS_REGS);
return TRUE;
}
X_API int PL_put_string_nchars(term_t t, size_t len, const char *chars)
{
CACHE_REGS
Term nt;
while((nt = Yap_NCharsToString(chars, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_put_string_nchars" ))
return FALSE;
}
Yap_PutInSlot(t, nt PASS_REGS);
return TRUE;
}
X_API int PL_put_term(term_t d, term_t s)
{
CACHE_REGS
Yap_PutInSlot(d,Yap_GetFromSlot(s PASS_REGS) PASS_REGS);
return TRUE;
}
X_API int PL_put_variable(term_t t)
{
CACHE_REGS
Yap_PutInSlot(t,MkVarTerm() PASS_REGS);
return TRUE;
}
/* end PL_put_* functions =============================*/
/* SWI: int PL_raise_exception(term_t exception)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_raise_exception(term_t exception)
{
CACHE_REGS
EX = Yap_StoreTermInDB(Yap_GetFromSlot(exception PASS_REGS),0);
return 0;
}
X_API int PL_throw(term_t exception)
{
CACHE_REGS
YAP_Throw(Yap_GetFromSlot(exception PASS_REGS));
if (LOCAL_execution)
longjmp(LOCAL_execution->q_env, 0);
return 0;
}
X_API void PL_fatal_error(const char *msg)
{
fprintf(stderr,"[ FATAL ERROR: %s ]\n",msg);
Yap_exit(1);
}
X_API int PL_warning(const char *msg, ...) {
va_list args;
va_start(args, msg);
// just print the warning message and return?
fprintf(stderr,"[Warning:");
fprintf(stderr,msg,args);
fprintf(stderr,"]\n");
va_end(args);
PL_fail;
}
/* begin PL_unify_* functions =============================*/
X_API int PL_unify(term_t t1, term_t t2)
{
CACHE_REGS
return Yap_unify(Yap_GetFromSlot(t1 PASS_REGS),Yap_GetFromSlot(t2 PASS_REGS));
}
/* SWI: int PL_unify_atom(term_t ?t, atom *at)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom(term_t t, atom_t at)
{
CACHE_REGS
YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at));
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS),cterm);
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_chars(term_t t, const char *s)
{
CACHE_REGS
Atom at;
while((at = Yap_CharsToAtom(s PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_atom_nchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), MkAtomTerm(at));
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s)
{
CACHE_REGS
Atom at;
while((at = Yap_NCharsToAtom(s, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_atom_nchars" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), MkAtomTerm(at));
}
/* SWI: int PL_unify_float(term_t ?t, double f)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_float(term_t t, double f)
{
CACHE_REGS
Term fterm = MkFloatTerm(f);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),fterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_integer(term_t t, long n)
{
CACHE_REGS
Term iterm = MkIntegerTerm(n);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_functor(term_t t, functor_t f)
{
CACHE_REGS
Term tt = Yap_GetFromSlot(t PASS_REGS);
Functor ff = SWIFunctorToFunctor(f);
if (IsVarTerm(tt)) {
if (Unsigned(HR)+ArityOfFunctor(ff) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
return FALSE;
}
}
return Yap_unify(tt, Yap_MkNewApplTerm(ff,ArityOfFunctor(ff)));
}
if (IsPairTerm(tt))
return ff == FunctorDot;
if (!IsApplTerm(tt))
return FALSE;
return ff == FunctorOfTerm(tt);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_int64(term_t t, int64_t n)
{
CACHE_REGS
#if SIZEOF_INT_P==8
Term iterm = MkIntegerTerm(n);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
#elif USE_GMP
YAP_Term iterm;
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", (long long int)n);
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", (long long int)n);
#else
sprintf(s, "%lld", (long long int)n);
#endif
mpz_init_set_str (&rop, s, 10);
iterm = YAP_MkBigNumTerm((void *)&rop);
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS),iterm);
#else
if ((long)n == n)
return PL_unify_integer(t, n);
// use a double, but will mess up writing.
else {
union {
int64_t i;
double d;
} udi_;
udi_.i = n;
return PL_unify_float(t, udi_.d);
}
#endif
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list(term_t tt, term_t h, term_t tail)
{
CACHE_REGS
Term t;
if (Unsigned(HR) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
return FALSE;
}
}
t = Deref(Yap_GetFromSlot(tt PASS_REGS));
if (IsVarTerm(t)) {
Term pairterm = Yap_MkNewPairTerm();
Yap_unify(t, pairterm);
/* avoid calling deref */
t = pairterm;
} else if (!IsPairTerm(t)) {
return FALSE;
}
Yap_PutInSlot(h,HeadOfTerm(t) PASS_REGS);
Yap_PutInSlot(tail,TailOfTerm(t) PASS_REGS);
return TRUE;
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_arg(int index, term_t tt, term_t arg)
{
CACHE_REGS
Term t = Deref(Yap_GetFromSlot(tt PASS_REGS)), to;
if (index < 0)
return FALSE;
if (IsVarTerm(t) || IsAtomOrIntTerm(t)) {
return FALSE;
} else if (IsPairTerm(t)) {
if (index == 1)
to = HeadOfTerm(t);
else if (index == 2)
to = TailOfTerm(t);
else
return FALSE;
} else {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f))
return FALSE;
if (index > ArityOfFunctor(f))
return FALSE;
to = ArgOfTerm(index, t);
}
return Yap_unify(Yap_GetFromSlot(arg PASS_REGS),to);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_chars(term_t t, const char *chars)
{
CACHE_REGS
Term chterm;
while((chterm = Yap_CharsToListOfAtoms(chars PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_list_chars" ))
return FALSE;
}
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_ncodes(term_t t, size_t len, const char *chars)
{
CACHE_REGS
Term chterm;
while((chterm = Yap_NCharsToListOfCodes(chars, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_list_ncodes" ))
return FALSE;
}
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
X_API int
PL_unify_list_codes(term_t t, const char *chars)
{
CACHE_REGS
Term chterm;
while((chterm = Yap_CharsToListOfCodes(chars PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_list_codes" ))
return FALSE;
}
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
/* SWI: int PL_unify_nil(term_t ?l)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_nil(term_t t)
{
CACHE_REGS
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), TermNil);
}
/* SWI: int PL_unify_pointer(term_t ?t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_unify_pointer(term_t t, void *ptr)
{
CACHE_REGS
YAP_Term ptrterm = YAP_MkIntTerm((YAP_Int)ptr);
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS), ptrterm);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_string_chars(term_t t, const char *chars)
{
CACHE_REGS
Term chterm;
while((chterm = Yap_CharsToString(chars PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_list_ncodes" ))
return FALSE;
}
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
X_API int PL_unify_string_nchars(term_t t, size_t len, const char *chars)
{
CACHE_REGS
Term chterm;
while((chterm = Yap_NCharsToString(chars, len PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_list_ncodes" ))
return FALSE;
}
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
/* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
*/
X_API int PL_unify_wchars(term_t t, int type, size_t len, const pl_wchar_t *chars)
{
CACHE_REGS
YAP_Term chterm;
while (TRUE) {
switch (type) {
case PL_ATOM:
{
Atom at;
at = Yap_NWCharsToAtom(chars, len PASS_REGS);
if (at) {
Yap_AtomIncreaseHold(at);
chterm = MkAtomTerm(at);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
}
break;
case PL_UTF8_STRING:
case PL_STRING:
if ((chterm = Yap_NWCharsToString(chars, len PASS_REGS)) != 0) {
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
break;
case PL_CODE_LIST:
if ((chterm = Yap_NWCharsToListOfCodes(chars, len PASS_REGS)) != 0) {
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
break;
case PL_CHAR_LIST:
if ((chterm = Yap_NWCharsToListOfAtoms(chars, len PASS_REGS)) != 0) {
return YAP_Unify(Yap_GetFromSlot(t PASS_REGS), chterm);
}
break;
default:
/* should give error?? */
return FALSE;
}
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_wchars" ))
return FALSE;
}
return FALSE;
}
typedef struct {
int type;
union {
functor_t f;
term_t t;
atom_t a;
long l;
int i;
double dbl;
char *s;
struct {
size_t n;
char *s;
} ns;
struct {
size_t n;
wchar_t *w;
} nw;
void *p;
wchar_t *w;
} arg;
} arg_types;
static YAP_Term
MkBoolTerm(int b)
{
if (b)
return MkAtomTerm(AtomTrue);
else
return MkAtomTerm(AtomFalse);
}
#define MAX_DEPTH 64
typedef struct {
int nels;
CELL *ptr;
} stack_el;
/* SWI: int PL_unify_term(term_t ?t1, term_t ?t2)
YAP long int YAP_Unify(YAP_Term* a, Term* b) */
int PL_unify_termv(term_t l, va_list ap)
{
CACHE_REGS
int type, res;
int nels = 1;
int depth = 1;
Term a[1], *pt;
stack_el stack[MAX_DEPTH];
BACKUP_MACHINE_REGS();
if (Unsigned(HR) > Unsigned(ASP)-CreepFlag) {
if (!do_gc(0)) {
RECOVER_MACHINE_REGS();
return FALSE;
}
}
pt = a;
while (depth > 0) {
while (nels > 0) {
type = va_arg(ap, int);
nels--;
switch(type) {
case PL_VARIABLE:
*pt++ = MkVarTerm();
break;
case PL_BOOL:
*pt++ = MkBoolTerm(va_arg(ap, int));
break;
case PL_ATOM:
*pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t)));
break;
case PL_INTEGER:
*pt++ = MkIntegerTerm(va_arg(ap, long));
break;
case PL_SHORT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_LONG:
*pt++ = MkIntegerTerm(va_arg(ap, long));
break;
case PL_INT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_FLOAT:
*pt++ = MkFloatTerm(va_arg(ap, double));
break;
case PL_STRING:
{
Term chterm;
const char *chars = va_arg(ap, char *);
while((chterm = Yap_CharsToString(chars PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_term" ))
return FALSE;
}
*pt++ = chterm;
}
break;
case PL_CHARS:
{
Atom at;
const char *chars = va_arg(ap, char *);
while((at = Yap_CharsToAtom(chars PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_term" ))
return FALSE;
}
*pt++ = MkAtomTerm(at);
Yap_AtomIncreaseHold(at);
}
break;
case PL_NCHARS:
{
Atom at;
size_t sz = va_arg(ap, size_t);
const char *chars = va_arg(ap, char *);
while((at = Yap_NCharsToAtom(chars, sz PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_term" ))
return FALSE;
}
*pt++ = MkAtomTerm(at);
Yap_AtomIncreaseHold(at);
}
break;
case PL_NWCHARS:
{
Atom at;
size_t sz = va_arg(ap, size_t);
const wchar_t *chars = va_arg(ap, wchar_t *);
while((at = Yap_NWCharsToAtom(chars, sz PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_term" ))
return FALSE;
}
*pt++ = MkAtomTerm(at);
Yap_AtomIncreaseHold(at);
}
break;
case PL_TERM:
{
Term t = Yap_GetFromSlot(va_arg(ap, size_t) PASS_REGS);
if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) {
Yap_unify(*pt++, t);
}
else {
*pt++ = t;
}
}
break;
case PL_POINTER:
*pt++ = MkIntegerTerm((Int)va_arg(ap, void *));
break;
case PL_INTPTR:
*pt++ = MkIntegerTerm((Int)va_arg(ap, intptr_t));
break;
case PL_INT64:
#if SIZEOF_INT_P==8
*pt++ = MkIntegerTerm((Int)va_arg(ap, long int));
#elif USE_GMP
{
char s[64];
MP_INT rop;
#ifdef _WIN32
snprintf(s, 64, "%I64d", va_arg(ap, long long int));
#elif HAVE_SNPRINTF
snprintf(s, 64, "%lld", va_arg(ap, long long int));
#else
sprintf(s, "%lld", va_arg(ap, long long int));
#endif
mpz_init_set_str (&rop, s, 10);
*pt++ = YAP_MkBigNumTerm((void *)&rop);
}
#else
{
int64_t i = (Int)va_arg(ap, int64_t);
intptr_t x = i;
if (x == i)
*pt++ = MkIntegerTerm( x );
else {
// use a double, but will mess up writing.
union {
int64_t i;
double d;
} udi_;
udi_.i = i;
*pt++ = MkFloatTerm(udi_.d);
}
}
#endif
break;
case PL_FUNCTOR:
{
functor_t f = va_arg(ap, functor_t);
Functor ff = SWIFunctorToFunctor(f);
UInt arity = ArityOfFunctor(ff);
if (!arity) {
*pt++ = MkAtomTerm((Atom)f);
} else {
Term t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"ERROR: very deep term in PL_unify_term, change MAX_DEPTH from %d\n", MAX_DEPTH);
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_FUNCTOR_CHARS:
{
char *fname = va_arg(ap, char *);
size_t arity = va_arg(ap, size_t);
Atom at;
while((at = Yap_CharsToAtom(fname PASS_REGS)) == 0L) {
if (LOCAL_Error_TYPE && !Yap_SWIHandleError( "PL_unify_term" ))
return FALSE;
}
Yap_AtomIncreaseHold(at);
if (!arity) {
*pt++ = MkAtomTerm(at);
} else {
Functor ff;
Term t;
ff = Yap_MkFunctor(at,arity);
t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_LIST:
{
Term t = Yap_MkNewPairTerm();
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth].ptr = pt+1;
depth++;
}
*pt = t;
pt = RepPair(t);
nels = 2;
}
break;
default:
fprintf(stderr, "PL_unify_term: %d not supported\n", type);
exit(1);
}
}
depth--;
if (depth) {
pt = stack[depth-1].ptr;
nels = stack[depth-1].nels;
}
}
res = Yap_unify(Yap_GetFromSlot(l PASS_REGS),a[0]);
RECOVER_MACHINE_REGS();
return res;
}
int
PL_unify_term(term_t t, ...)
{ va_list args;
int rval;
va_start(args, t);
rval = PL_unify_termv(t, args);
va_end(args);
return rval;
}
/* end PL_unify_* functions =============================*/
/* SWI: void PL_register_atom(atom_t atom) */
X_API void PL_register_atom(atom_t atom)
{
Yap_AtomIncreaseHold(SWIAtomToAtom(atom));
}
/* SWI: void PL_unregister_atom(atom_t atom) */
X_API void PL_unregister_atom(atom_t atom)
{
Yap_AtomDecreaseHold(SWIAtomToAtom(atom));
}
X_API int PL_term_type(term_t t)
{
CACHE_REGS
/* YAP_ does not support strings as different objects */
YAP_Term v = Yap_GetFromSlot(t PASS_REGS);
if (IsVarTerm(v)) {
return PL_VARIABLE;
} else if (IsAtomTerm(v)) {
return PL_ATOM;
} else if (IsIntegerTerm(v)) {
return PL_INTEGER;
} else if (IsStringTerm(v)) {
return PL_STRING;
} else if (IsFloatTerm(v)) {
return PL_FLOAT;
} else {
return PL_TERM;
}
}
X_API int PL_is_atom(term_t t)
{
CACHE_REGS
return IsAtomTerm(Yap_GetFromSlot(t PASS_REGS));
}
X_API int PL_is_ground(term_t t)
{
CACHE_REGS
return Yap_IsGroundTerm(Yap_GetFromSlot(t PASS_REGS));
}
X_API int PL_is_acyclic(term_t t)
{
CACHE_REGS
return Yap_IsAcyclicTerm(Yap_GetFromSlot(t PASS_REGS));
}
X_API int PL_is_callable(term_t t)
{
CACHE_REGS
YAP_Term t1 = Yap_GetFromSlot(t PASS_REGS);
if (IsVarTerm(t1))
return FALSE;
if (IsAtomTerm(t1) || IsPairTerm(t1))
return TRUE;
if (IsApplTerm(t1) && !IsExtensionFunctor(FunctorOfTerm(t1)))
return TRUE;
return FALSE;
}
X_API int PL_is_atomic(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return !IsVarTerm(t) || !IsApplTerm(t) || !IsPairTerm(t);
}
X_API int PL_is_compound(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return (IsApplTerm(t) || IsPairTerm(t));
}
X_API int PL_is_functor(term_t ts, functor_t f)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
Functor ff = SWIFunctorToFunctor(f);
if (YAP_IsApplTerm(t)) {
return FunctorOfTerm(t) == (Functor)ff;
} else if (YAP_IsPairTerm(t)) {
return ff == FunctorDot;
} else
return 0;
}
X_API int PL_is_float(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return !IsVarTerm(t) && IsFloatTerm(t);
}
X_API int PL_is_integer(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm(t)) return FALSE;
if (IsIntTerm(t)) return TRUE;
if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (f == FunctorLongInt)
return TRUE;
if (f == FunctorBigInt) {
CELL mask = RepAppl(t)[1];
return ( mask == BIG_INT );
}
}
return FALSE;
}
X_API int PL_is_list(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return !IsVarTerm(t) && (t == TermNil || IsPairTerm(t));
}
X_API int PL_is_pair(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return !IsVarTerm(t) && IsPairTerm(t);
}
X_API int
PL_skip_list(term_t list, term_t tail, size_t *len)
{
CACHE_REGS
Term *l = Yap_AddressFromSlot(list PASS_REGS);
Term *t;
intptr_t length;
length = Yap_SkipList(l, &t);
if ( len )
*len = length;
if ( tail )
{ Term t2 = Yap_GetFromSlot(tail PASS_REGS);
Yap_unify(t2, *t);
}
if ( *t == TermNil )
return PL_LIST;
else if ( IsVarTerm(*t) )
return PL_PARTIAL_LIST;
else if ( IsPairTerm(*t) )
return PL_CYCLIC_TERM;
else
return PL_NOT_A_LIST;
}
X_API int PL_is_number(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return IsIntegerTerm(t) || IsBigIntTerm(t) || IsFloatTerm(t);
}
X_API int PL_is_string(term_t ts)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
return IsStringTerm(t);
}
X_API int PL_is_variable(term_t ts)
{
CACHE_REGS
YAP_Term t = Yap_GetFromSlot(ts PASS_REGS);
return YAP_IsVarTerm(t);
}
X_API int PL_compare(term_t ts1, term_t ts2)
{
CACHE_REGS
YAP_Term t1 = Yap_GetFromSlot(ts1 PASS_REGS);
YAP_Term t2 = Yap_GetFromSlot(ts2 PASS_REGS);
return YAP_CompareTerms(t1, t2);
}
X_API char *
PL_record_external
(term_t ts, size_t *sz)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
size_t len = 512, nsz;
char *s;
while(TRUE) {
if (!(s = Yap_AllocCodeSpace(len)))
return NULL;
if ((nsz = Yap_ExportTerm(t, s, len, 0))) {
*sz = nsz;
return (char *)s;
} else {
if (len < 16*1024)
len = len *2;
else
len += 16*1024;
}
}
return NULL;
}
/*
partial implementation of recorded_external, does not guarantee endianness nor portability, and does not
support constraints.
*/
X_API int
PL_recorded_external
(const char *tp, term_t ts)
{
CACHE_REGS
Term t = Yap_ImportTerm((void *)tp);
if (t == 0)
return FALSE;
Yap_PutInSlot(ts, t PASS_REGS);
return TRUE;
}
X_API int
PL_erase_external
(char *tp)
{
Yap_FreeCodeSpace(tp);
return TRUE;
}
X_API record_t
PL_record(term_t ts)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
return (record_t)YAP_Record(t);
}
X_API int
PL_recorded(record_t db, term_t ts)
{
CACHE_REGS
Term t = YAP_Recorded((void *)db);
if (t == ((CELL)0))
return FALSE;
Yap_PutInSlot(ts,t PASS_REGS);
return TRUE;
}
X_API record_t
PL_duplicate_record(record_t db)
{
Term t = YAP_Recorded((void *)db);
if (t == ((CELL)0))
return FALSE;
return (record_t)YAP_Record(t);
}
X_API void
PL_erase(record_t db)
{
YAP_Erase((void *)db);
}
X_API void PL_halt(int e)
{
YAP_Halt(e);
}
X_API int PL_action(int action,...)
{
va_list ap;
va_start (ap, action);
switch (action) {
case PL_ACTION_TRACE:
fprintf(stderr, "PL_ACTION_TRACE not supported\n");
break;
case PL_ACTION_DEBUG:
fprintf(stderr, "PL_ACTION_DEBUG not supported\n");
break;
case PL_ACTION_BACKTRACE:
fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n");
break;
case PL_ACTION_HALT:
{
int halt_arg = va_arg(ap, int);
YAP_Halt(halt_arg);
}
break;
case PL_ACTION_ABORT:
{
YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort")));
}
break;
case PL_ACTION_BREAK:
fprintf(stderr, "PL_ACTION_BREAK not supported\n");
break;
case PL_ACTION_GUIAPP:
fprintf(stderr, "PL_ACTION_GUIAPP not supported\n");
break;
case PL_ACTION_WRITE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_FLUSH:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_ATTACH_CONSOLE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
}
va_end (ap);
return 0;
}
X_API term_t
PL_exception(qid_t q)
{
YAP_Term t;
if (YAP_GoalHasException(&t)) {
CACHE_REGS
term_t to = Yap_NewSlots(1 PASS_REGS);
Yap_PutInSlot(to,t PASS_REGS);
return to;
} else {
return 0L;
}
}
X_API void
PL_clear_exception(void)
{
CACHE_REGS
EX = NULL;
}
X_API int
PL_initialise(int myargc, char **myargv)
{
YAP_init_args init_args;
memset((void *)&init_args,0,sizeof(init_args));
init_args.Argv = myargv;
init_args.Argc = myargc;
#if BOOT_FROM_SAVED_STATE
init_args.SavedState = "startup.yss";
#else
init_args.SavedState = NULL;
#endif
init_args.YapLibDir = NULL;
init_args.YapPrologBootFile = NULL;
init_args.HaltAfterConsult = FALSE;
init_args.FastBoot = FALSE;
init_args.MaxTableSpaceSize = 0;
init_args.NumberWorkers = 1;
init_args.SchedulerLoop = 10;
init_args.DelayedReleaseLoad = 3;
YAP_parse_yap_arguments(myargc,myargv,&init_args);
GLOBAL_PL_Argc = myargc;
GLOBAL_PL_Argv = myargv;
GLOBAL_InitialisedFromPL = TRUE;
int rc = YAP_Init(&init_args) != YAP_BOOT_ERROR;
return rc;
}
X_API int
PL_is_initialised(int *argcp, char ***argvp)
{
if (GLOBAL_InitialisedFromPL) {
if (argcp)
*argcp = GLOBAL_PL_Argc;
if (argvp)
*argvp = GLOBAL_PL_Argv;
}
return GLOBAL_InitialisedFromPL;
}
X_API module_t
PL_context(void)
{
CACHE_REGS
return Yap_GetModuleEntry(LOCAL_SourceModule);
}
X_API int
PL_strip_module(term_t raw, module_t *m, term_t plain)
{
CACHE_REGS
Term m0, t;
if (m) {
if (*m)
m0 = MkAtomTerm((*m)->AtomOfME);
else
m0 = MkAtomTerm(AtomProlog);
} else
m0 = USER_MODULE;
t = Yap_StripModule(Yap_GetFromSlot(raw PASS_REGS), &m0);
if (!t)
return FALSE;
*m = Yap_GetModuleEntry(m0);
Yap_PutInSlot(plain, t PASS_REGS);
return TRUE;
}
X_API atom_t PL_module_name(module_t m)
{
Atom at = m->AtomOfME;
return AtomToSWIAtom(at);
}
X_API predicate_t PL_pred(functor_t f, module_t m)
{
Functor ff = SWIFunctorToFunctor(f);
Term mod = SWIModuleToModule(m);
if (IsAtomTerm((Term)f)) {
return YAP_Predicate(YAP_AtomOfTerm((Term)f),0,mod);
} else {
return YAP_Predicate((YAP_Atom)NameOfFunctor(ff),ArityOfFunctor(ff),mod);
}
}
X_API predicate_t PL_predicate(const char *name, int arity, const char *m)
{
CACHE_REGS
Term mod;
Atom at;
if (m == NULL) {
mod = CurrentModule;
if (!mod) mod = USER_MODULE;
} else {
Atom at;
while (!(at = Yap_LookupAtom((char *)m))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, LOCAL_ErrorMessage);
return NULL;
}
}
mod = MkAtomTerm(at);
}
while (!(at = Yap_LookupAtom((char *)name))) {
if (!Yap_growheap(FALSE, 0L, NULL)) {
Yap_Error(OUT_OF_HEAP_ERROR, TermNil, LOCAL_ErrorMessage);
return NULL;
}
}
return YAP_Predicate((YAP_Atom)at, arity, mod);
}
X_API int PL_unify_predicate(term_t head, predicate_t pred, int how)
{
CACHE_REGS
PredEntry *pe = (PredEntry *)pred;
Term ts[2], nt;
if (!pe->ModuleOfPred) {
ts[0] = pe->ModuleOfPred;
} else {
ts[0] = TermProlog;
}
if (how == GP_NAMEARITY) {
Term nts[2];
nts[1] = MkIntegerTerm(pe->ArityOfPE);
if (pe->ArityOfPE) {
nts[0] = MkAtomTerm(NameOfFunctor(pe->FunctorOfPred));
} else {
nts[0] = MkAtomTerm((Atom)pe->FunctorOfPred);
}
ts[1] = Yap_MkApplTerm(FunctorSlash, 2, nts);
} else {
if (pe->ArityOfPE) {
ts[1] = Yap_MkNewApplTerm(pe->FunctorOfPred, pe->ArityOfPE);
} else {
ts[1] = MkAtomTerm((Atom)pe->FunctorOfPred);
}
}
nt = Yap_MkApplTerm(FunctorModule, 2, ts);
return Yap_unify(Yap_GetFromSlot(head PASS_REGS),nt);
}
X_API void PL_predicate_info(predicate_t p,atom_t *name, int *arity, module_t *m)
{
PredEntry *pd = (PredEntry *)p;
Atom aname;
if (pd->ArityOfPE) {
if (arity)
*arity = pd->ArityOfPE;
aname = NameOfFunctor(pd->FunctorOfPred);
} else {
if (arity)
*arity = 0;
aname = (Atom)(pd->FunctorOfPred);
}
if (pd->ModuleOfPred && m)
*m = Yap_GetModuleEntry(pd->ModuleOfPred);
else if (m)
*m = Yap_GetModuleEntry(TermProlog);
if (name)
*name = AtomToSWIAtom(aname);
}
#undef S_YREG
X_API fid_t
PL_open_foreign_frame(void)
{
CACHE_REGS
/* initialise a new marker choicepoint */
choiceptr cp_b = ((choiceptr)(ASP-1))-1;
cp_b->cp_tr = TR;
cp_b->cp_h = HR;
cp_b->cp_b = B;
cp_b->cp_cp = CP;
cp_b->cp_env = ENV;
cp_b->cp_ap = NOCODE;
#ifdef DEPTH_LIMIT
cp_b->cp_depth = DEPTH;
#endif /* DEPTH_LIMIT */
cp_b->cp_a1 = MkIntTerm(LOCAL_CurSlot);
HB = HR;
B = cp_b;
ASP = (CELL *)B;
Yap_StartSlots( PASS_REGS1 );
return (fid_t)(LCL0-(CELL*)cp_b);
}
X_API void
PL_close_foreign_frame(fid_t f)
{
CACHE_REGS
choiceptr cp_b = (choiceptr)(LCL0-(UInt)f);
LOCAL_CurSlot = IntOfTerm(cp_b->cp_a1);
B = cp_b;
HB = B->cp_h;
Yap_TrimTrail();
B = cp_b->cp_b;
CP = cp_b->cp_cp;
ENV = cp_b->cp_env;
#ifdef DEPTH_LIMIT
DEPTH = cp_b->cp_depth;
#endif /* DEPTH_LIMIT */
HB = B->cp_h;
if (LOCAL_CurSlot) {
/* we can assume there was a slot before */
CELL *old_slot;
old_slot = LCL0-(LOCAL_CurSlot);
ASP = old_slot-(2+IntOfTerm(old_slot[-1]));
} else {
ASP = ((CELL *)(cp_b+1))+1;
}
}
static void
backtrack(void)
{
CACHE_REGS
P = FAILCODE;
Yap_absmi(0);
TR = B->cp_tr;
}
X_API void
PL_rewind_foreign_frame(fid_t f)
{
CACHE_REGS
choiceptr cp_b = (choiceptr)(LCL0-(UInt)f);
if (B != cp_b) {
while (B->cp_b != cp_b)
B = B->cp_b;
}
backtrack();
// restore to original location
ASP = (CELL *)B;
LOCAL_CurSlot = IntOfTerm(B->cp_a1);
Yap_StartSlots( PASS_REGS1 );
}
X_API void
PL_discard_foreign_frame(fid_t f)
{
CACHE_REGS
choiceptr cp_b = (choiceptr)(LCL0-(UInt)f);
if (B != cp_b) {
while (B->cp_b != cp_b)
B = B->cp_b;
backtrack();
}
LOCAL_CurSlot = IntOfTerm(cp_b->cp_a1);
B = cp_b->cp_b;
CP = cp_b->cp_cp;
ENV = cp_b->cp_env;
HB = B->cp_h;
#ifdef DEPTH_LIMIT
DEPTH = cp_b->cp_depth;
#endif /* DEPTH_LIMIT */
/* we can assume there was a slot before */
if (LOCAL_CurSlot) {
CELL *old_slot;
old_slot = LCL0-(LOCAL_CurSlot);
ASP = old_slot-(2+IntOfTerm(old_slot[-1]));
} else {
ASP = ((CELL *)(cp_b+1))+1;
}
}
X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0)
{
CACHE_REGS
YAP_Term *t = NULL;
if (t0)
t = Yap_AddressFromSlot(t0 PASS_REGS);
/* ignore flags and module for now */
qid_t new = (qid_t)Yap_AllocCodeSpace(sizeof(struct open_query_struct));
new->oq = LOCAL_execution;
LOCAL_execution = new;
new->q_open=1;
new->q_state=0;
new->q_flags = flags;
new->q_pe = (PredEntry *)p;
new->q_g = t;
return new;
}
X_API int PL_next_solution(qid_t qi)
{
CACHE_REGS
int result;
if (qi->q_open != 1) return 0;
if (setjmp(LOCAL_execution->q_env))
return 0;
// don't forget, on success these guys must create slots
if (qi->q_state == 0) {
result = YAP_EnterGoal((YAP_PredEntryPtr)qi->q_pe, qi->q_g, &qi->q_h);
} else {
LOCAL_AllowRestart = qi->q_open;
result = YAP_RetryGoal(&qi->q_h);
}
qi->q_state = 1;
if (result == 0) {
YAP_LeaveGoal(FALSE, &qi->q_h);
qi->q_open = 0;
}
return result;
}
X_API void PL_cut_query(qid_t qi)
{
CACHE_REGS
if (qi->q_open != 1 || qi->q_state == 0) return;
YAP_LeaveGoal(FALSE, &qi->q_h);
qi->q_open = 0;
LOCAL_execution = qi->oq;
Yap_FreeCodeSpace( (char *)qi );
}
X_API void PL_close_query(qid_t qi)
{
CACHE_REGS
if (EX && !(qi->q_flags & (PL_Q_CATCH_EXCEPTION))) {
EX = NULL;
}
/* need to implement backtracking here */
if (qi->q_open != 1 || qi->q_state == 0) {
return;
}
YAP_LeaveGoal(FALSE, &qi->q_h);
qi->q_open = 0;
LOCAL_execution = qi->oq;
Yap_FreeCodeSpace( (char *)qi );
}
X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0)
{
fid_t f = PL_open_foreign_frame();
qid_t qi = PL_open_query(ctx, flags, p, t0);
int ret = PL_next_solution(qi);
PL_cut_query(qi);
PL_close_foreign_frame(f);
return ret;
}
X_API int PL_toplevel(void)
{
while (TRUE) {
if (YAP_RunGoal(MkAtomTerm(Yap_FullLookupAtom("$live")))) {
return TRUE;
}
}
return TRUE;
}
X_API int PL_call(term_t tp, module_t m)
{
CACHE_REGS
int out;
BACKUP_B();
BACKUP_H();
Term t[2], g;
t[0] = SWIModuleToModule(m);
t[1] = Yap_GetFromSlot(tp PASS_REGS);
g = Yap_MkApplTerm(FunctorModule,2,t);
out = YAP_RunGoal(g);
RECOVER_H();
RECOVER_B();
return out;
}
X_API void PL_register_foreign_in_module(const char *module, const char *name, int arity, pl_function_t function, int flags)
{
CACHE_REGS
Term tmod;
Int nflags = 0;
#ifdef DEBUG
if (flags & (PL_FA_CREF)) {
fprintf(stderr,"PL_register_foreign_in_module called with non-implemented flag %x when creating predicate %s:%s/%d\n", flags, module, name, arity);
}
#endif
if (module == NULL) {
tmod = CurrentModule;
} else {
tmod = MkAtomTerm(Yap_LookupAtom((char *)module));
}
if (flags & PL_FA_VARARGS) {
nflags = SWIEnvPredFlag;
}
if (flags & PL_FA_TRANSPARENT) {
nflags |= ModuleTransparentPredFlag;
} else {
nflags |= CArgsPredFlag;
}
if (flags & PL_FA_NONDETERMINISTIC) {
Yap_InitCPredBackCut((char *)name, arity, sizeof(struct foreign_context)/sizeof(CELL), (CPredicate)function, (CPredicate)function, (CPredicate)function, UserCPredFlag|nflags);
} else {
UserCPredicate((char *)name,(CPredicate)function,arity,tmod,nflags);
}
if (flags & PL_FA_NOTRACE) {
Yap_SetNoTrace((char *)name, arity, tmod);
}
}
X_API void PL_register_extensions(const PL_extension *ptr)
{
// implemented as register foreign
// may cause problems during initialization?
PL_load_extensions(ptr);
}
X_API void
PL_register_extensions_in_module(const char *module, const PL_extension *e)
{
// implemented as register foreign
/* ignore flags for now */
while(e->predicate_name != NULL) {
PL_register_foreign_in_module(module, e->predicate_name, e->arity, e->function, e->flags);
e++;
}
}
X_API void PL_register_foreign(const char *name, int arity, pl_function_t function, int flags)
{
PL_register_foreign_in_module(NULL, name, arity, function, flags);
}
X_API void PL_load_extensions(const PL_extension *ptr)
{
/* ignore flags for now */
while(ptr->predicate_name != NULL) {
PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity, ptr->function, ptr->flags);
ptr++;
}
}
X_API int PL_is_inf(term_t st)
{
CACHE_REGS
Term t = Deref(Yap_GetFromSlot(st PASS_REGS));
if (IsVarTerm(t)) return FALSE;
if (!IsFloatTerm(t)) return FALSE;
#if HAVE_ISINF
Float fl;
fl = FloatOfTerm(t);
return isinf(fl);
#elif HAVE_FPCLASS
Float fl;
fl = FloatOfTerm(t);
return (fpclass(fl) == FP_NINF || fpclass(fl) == FP_PINF);
#else
return FALSE;
#endif
}
X_API int PL_thread_self(void)
{
CACHE_REGS
#if THREADS
if (pthread_getspecific(Yap_yaamregs_key) == NULL)
return -1;
return (worker_id+1)<<3;
#else
return -2;
#endif
}
#if THREADS
static int
alertThread(int tid)
{
#if _WIN32
return pthread_kill(REMOTE_ThreadHandle(tid).pthread_handle, YAP_WINTIMER_SIGNAL) == 0;
#else
return pthread_kill(REMOTE_ThreadHandle(tid).pthread_handle, YAP_ALARM_SIGNAL) == 0;
#endif
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PL_thread_raise() is used for re-routing interrupts in the Windows
version, where the signal handler is running from a different thread as
Prolog.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
int
PL_thread_raise(int tid, int sig)
{
PL_LOCK(L_THREAD);
if ( tid < 1 )
{ error:
PL_UNLOCK(L_THREAD);
return FALSE;
}
if ( !REMOTE_ThreadHandle(tid).in_use )
goto error;
if ( !raiseSignal(REMOTE_PL_local_data_p(tid), sig) ||
!alertThread(tid) )
goto error;
PL_UNLOCK(L_THREAD);
return TRUE;
}
#else
int
PL_thread_raise(int tid, int sig)
{
if ( !raiseSignal(NULL, sig) )
return FALSE;
return TRUE;
}
#endif
X_API int PL_unify_thread_id(term_t t, int i)
{
CACHE_REGS
Term iterm = MkIntegerTerm(i);
return Yap_unify(Yap_GetFromSlot(t PASS_REGS),iterm);
}
static int
pl_thread_self(void)
{
CACHE_REGS
#if THREADS
if (pthread_getspecific(Yap_yaamregs_key) == NULL)
return -1;
return worker_id;
#else
return -2;
#endif
}
X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr)
{
int wid = pl_thread_self();
if (wid < 0) {
/* we do not have an engine */
if (attr) {
YAP_thread_attr yapt;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias));
yapt.cancel = attr->cancel;
wid = YAP_ThreadCreateEngine(&yapt);
} else {
wid = YAP_ThreadCreateEngine(NULL);
}
if (wid < 0)
return -1;
if (YAP_ThreadAttachEngine(wid)) {
return wid;
}
return -1;
} else {
/* attach myself again */
return YAP_ThreadAttachEngine(wid);
}
}
X_API int PL_thread_destroy_engine(void)
{
int wid = pl_thread_self();
if (wid < 0) {
/* we do not have an engine */
return FALSE;
}
YAP_ThreadDetachEngine(wid);
return YAP_ThreadDestroyEngine(wid);
}
X_API int
PL_thread_at_exit(void (*function)(void *), void *closure, int global)
{
/* don't do nothing for now */
fprintf(stderr,"%% YAP ERROR: PL_thread_at_exit not implemented yet\n");
return TRUE;
}
X_API PL_engine_t
PL_create_engine(const PL_thread_attr_t *attr)
{
#if THREADS
int eng;
if (attr) {
YAP_thread_attr yapt;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = MkAtomTerm(Yap_LookupAtom(attr->alias));
yapt.cancel = attr->cancel;
eng = YAP_ThreadCreateEngine(&yapt);
} else {
eng = YAP_ThreadCreateEngine(NULL);
}
if (eng >= 0)
return Yap_local[eng];
#endif
return NULL;
}
X_API int
PL_destroy_engine(PL_engine_t e)
{
#if THREADS
return YAP_ThreadDestroyEngine(((struct worker_local *)e)->ThreadHandle_.current_yaam_regs->worker_id_);
#else
return FALSE;
#endif
}
X_API int
PL_set_engine(PL_engine_t engine, PL_engine_t *old)
{
CACHE_REGS
#if THREADS
int cwid = pl_thread_self(), nwid;
if (cwid >= 0) {
if (old) *old = (PL_engine_t)(Yap_local[cwid]);
}
if (!engine) {
if (cwid < 0)
return PL_ENGINE_INVAL;
if (!YAP_ThreadDetachEngine(worker_id)) {
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
}
if (engine == PL_ENGINE_MAIN) {
nwid = 0;
} else if (engine == PL_ENGINE_CURRENT) {
if (cwid < 0) {
if (old) *old = NULL;
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
} else {
nwid = ((struct worker_local *)engine)->ThreadHandle_.id;
}
MUTEX_LOCK(&(REMOTE_ThreadHandle(nwid).tlock));
if (REMOTE_ThreadHandle(nwid).ref_count) {
MUTEX_UNLOCK(&(REMOTE_ThreadHandle(nwid).tlock));
if (cwid != nwid) {
return PL_ENGINE_INUSE;
}
return PL_ENGINE_SET;
}
if (!YAP_ThreadAttachEngine(nwid)) {
return PL_ENGINE_INVAL;
}
return PL_ENGINE_SET;
#else
if (old) *old = (PL_engine_t)&Yap_local;
return FALSE;
#endif
}
X_API void *
PL_malloc(size_t sz)
{
if ( sz == 0 )
return NULL;
return (void *)malloc((long unsigned int)sz);
}
X_API void *
PL_realloc(void *ptr, size_t sz)
{
if (ptr) {
if (sz) {
return realloc((char *)ptr,(long unsigned int)sz);
} else {
free(ptr);
return NULL;
}
} else {
return PL_malloc(sz);
}
}
X_API void
PL_free(void *obj)
{
if (obj)
free(obj);
}
X_API int
PL_eval_expression_to_int64_ex(term_t t, int64_t *val)
{
CACHE_REGS
Term res = Yap_Eval(Yap_GetFromSlot(t PASS_REGS));
if (!res) {
return FALSE;
}
if (IsIntegerTerm(res)) {
*val = IntegerOfTerm(res);
return TRUE;
#if SIZEOF_INT_P==4 && USE_GMP
} else if (YAP_IsBigNumTerm(res)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return PL_error(NULL,0,NULL, ERR_EVALUATION, AtomToSWIAtom(Yap_LookupAtom("int_overflow")));
}
mpz_get_str (s, 10, &g);
#ifdef _WIN32
sscanf(s, "%I64d", (long long int *)val);
#else
sscanf(s, "%lld", (long long int *)val);
#endif
return 1;
#endif
}
PL_error(NULL,0,NULL, ERR_TYPE, AtomToSWIAtom(Yap_LookupAtom("integer_expression")));
return FALSE;
}
foreign_t
_PL_retry(intptr_t v)
{
return (((uintptr_t)(v)<<FRG_REDO_BITS)|REDO_INT);
}
foreign_t
_PL_retry_address(void *addr)
{
return (((uintptr_t)(addr))|REDO_PTR);
}
X_API int
PL_foreign_control(control_t ctx)
{
switch (ctx->control) {
case FRG_REDO:
return PL_REDO;
case FRG_FIRST_CALL:
return PL_FIRST_CALL;
default:
return PL_CUTTED;
}
}
X_API intptr_t
PL_foreign_context(control_t ctx)
{
switch (ctx->control) {
case FRG_FIRST_CALL:
return 0L;
default:
return (intptr_t)(ctx->context);
}
}
X_API void *
PL_foreign_context_address(control_t ctx)
{
switch (ctx->control) {
case FRG_FIRST_CALL:
return NULL;
default:
return (void *)(ctx->context);
}
}
X_API int
PL_get_signum_ex(term_t sig, int *n)
{
char *s;
int i = -1;
if ( PL_get_integer(sig, &i) )
{
} else if ( PL_get_chars(sig, &s, CVT_ATOM) )
{ i = Yap_signal_index(s);
} else
{ return PL_error(NULL, 0, NULL, ERR_TYPE, ATOM_signal, sig);
}
if ( i > 0 && i < 32 ) /* where to get these? */
{ *n = i;
return TRUE;
}
return PL_error(NULL, 0, NULL, ERR_DOMAIN, ATOM_signal, sig);
}
typedef struct blob {
Functor f;
CELL type;
MP_INT blinfo; /* total size should go here */
PL_blob_t *blb;
size_t size;
CELL blob_data[1];
} blob_t;
X_API intptr_t
PL_query(int query)
{
switch(query) {
case PL_QUERY_ARGC:
return (intptr_t)GLOBAL_argc;
case PL_QUERY_ARGV:
return (intptr_t)GLOBAL_argv;
case PL_QUERY_USER_CPU:
return (intptr_t)Yap_cputime();
case PL_QUERY_VERSION:
return (intptr_t)60300;
default:
fprintf(stderr,"Unimplemented PL_query %d\n",query);
return (intptr_t)0;
}
}
X_API void
PL_cleanup_fork(void)
{
}
X_API void (*PL_signal(int sig, void (*func)(int)))(int)
{
// return Yap_signal2(sig,func);
return NULL;
}
X_API void PL_on_halt(int (*f)(int, void *), void *closure)
{
Yap_HaltRegisterHook((HaltHookFunc)f,closure);
}
#define is_signalled() unlikely(LD && LD->signal.pending != 0)
#ifdef O_PLMT
#include <pthread.h>
static pthread_key_t atomgen_key;
#endif
typedef struct scan_atoms {
Int pos;
Atom atom;
} scan_atoms_t;
static inline int
str_prefix(const char *p0, char *s)
{
char *p = (char *)p0;
while (*p && *p == *s) { p++; s++; }
return p[0] == '\0';
}
static int
atom_generator(const char *prefix, char **hit, int state)
{
struct scan_atoms *index;
Atom catom;
Int i;
#ifdef O_PLMT
if ( !atomgen_key ) {
pthread_key_create(&atomgen_key, NULL);
state = FALSE;
}
#endif
if ( !state )
{ index = (struct scan_atoms *)malloc(sizeof(struct scan_atoms));
i = 0;
catom = NIL;
} else
{
#ifdef O_PLMT
index = (struct scan_atoms *)pthread_getspecific(atomgen_key);
#else
index = LOCAL_search_atoms;
#endif
catom = index->atom;
i = index->pos;
}
while (catom != NIL || i < AtomHashTableSize) {
// if ( is_signalled() ) /* Notably allow windows version */
// PL_handle_signals(); /* to break out on ^C */
AtomEntry *ap;
if (catom == NIL) {
/* move away from current hash table line */
READ_LOCK(HashChain[i].AERWLock);
catom = HashChain[i].Entry;
READ_UNLOCK(HashChain[i].AERWLock);
i++;
} else {
ap = RepAtom(catom);
READ_LOCK(ap->ARWLock);
if ( str_prefix(prefix, ap->StrOfAE) ) {
index->pos = i;
index->atom = ap->NextOfAE;
#ifdef O_PLMT
pthread_setspecific(atomgen_key,index);
#else
LOCAL_search_atoms = index;
#endif
*hit = ap->StrOfAE;
READ_UNLOCK(ap->ARWLock);
return TRUE;
}
catom = ap->NextOfAE;
READ_UNLOCK(ap->ARWLock);
}
}
#ifdef O_PLMT
pthread_setspecific(atomgen_key,NULL);
#else
LOCAL_search_atoms = NULL;
#endif
free(index);
return FALSE;
}
char *
PL_atom_generator(const char *prefix, int state)
{
char * hit = NULL;
if (atom_generator(prefix, &hit, state)) {
return hit;
}
return NULL;
}
X_API pl_wchar_t *PL_atom_generator_w(const pl_wchar_t *pref, pl_wchar_t *buffer, size_t buflen, int state)
{
return NULL;
}
const char *Yap_GetCurrentPredName(void);
Int Yap_GetCurrentPredArity(void);
const char *
Yap_GetCurrentPredName(void)
{
CACHE_REGS
if (!PP)
return NULL;
if (PP->ArityOfPE)
return NameOfFunctor(PP->FunctorOfPred)->StrOfAE;
return RepAtom((Atom)(PP->FunctorOfPred))->StrOfAE;
}
Int
Yap_GetCurrentPredArity(void)
{
CACHE_REGS
if (!PP)
return (Int)0;
return PP->ArityOfPE;
}
void
Yap_swi_install(void)
{
Yap_install_blobs();
}
extern atom_t fileNameStream(IOSTREAM *s);
extern Atom Yap_FileName(IOSTREAM *s);
Atom
Yap_FileName(IOSTREAM *s)
{
atom_t a = fileNameStream(s);
if (!a) {
return AtomEmptyAtom;
}
return SWIAtomToAtom(a);
}
extern void closeFiles(int);
void
Yap_CloseStreams(int loud)
{
closeFiles(FALSE);
}
Int Yap_StreamToFileNo(Term t) {
CACHE_REGS
IOSTREAM *s;
int rc;
if ( (rc=PL_get_stream_handle(Yap_InitSlot(t PASS_REGS), &s)) ) {
return Sfileno(s);
}
return -1;
}
FILE *Yap_FileDescriptorFromStream(Term t)
{
CACHE_REGS
IOSTREAM *s;
int rc;
if ( (rc=PL_get_stream_handle(Yap_InitSlot(t PASS_REGS), &s)) ) {
fprintf(stderr,"Unimplemented\n");
// return Sfileno(s);
}
return NULL;
}
X_API int
PL_raise(int sig)
{
CACHE_REGS
LOCK(LOCAL_SignalLock);
if (sig < SIG_PROLOG_OFFSET) {
Yap_signal(YAP_INT_SIGNAL);
UNLOCK(LOCAL_SignalLock);
return 1;
} else if (sig == SIG_PLABORT) {
Yap_signal(0x40); /* YAP_INT_SIGNAL */
LOCK(LOCAL_SignalLock);
return 1;
}
UNLOCK(LOCAL_SignalLock);
return 0;
}
int
raiseSignal(PL_local_data_t *ld, int sig)
{
#if THREADS
CACHE_REGS
if (sig == SIG_THREAD_SIGNAL) {
LOCK(LOCAL_SignalLock);
Yap_signal(YAP_ITI_SIGNAL);
UNLOCK(LOCAL_SignalLock);
return TRUE;
}
#endif
fprintf(stderr, "Unsupported signal %d\n", sig);
return FALSE;
}
#if THREADS
void Yap_LockStream(IOSTREAM *s)
{
if ( s->mutex ) recursiveMutexLock(s->mutex);
}
void Yap_UnLockStream(IOSTREAM *s)
{
if ( s->mutex ) recursiveMutexUnlock(s->mutex);
}
#endif
extern term_t Yap_CvtTerm(term_t ts);
term_t Yap_CvtTerm(term_t ts)
{
CACHE_REGS
Term t = Yap_GetFromSlot(ts PASS_REGS);
if (IsVarTerm(t)) return ts;
if (IsPairTerm(t)) return ts;
if (IsAtomTerm(t)) return ts;
if (IsIntTerm(t)) return ts;
if (IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
if (IsExtensionFunctor(f)) {
if (f == FunctorBigInt) {
big_blob_type flag = RepAppl(t)[1];
switch (flag) {
case BIG_INT:
return ts;
case BIG_RATIONAL:
#if USE_GMP
{
MP_RAT *b = Yap_BigRatOfTerm(t);
Term ta[2];
ta[0] = Yap_MkBigIntTerm(mpq_numref(b));
if (ta[0] == TermNil)
return ts;
ta[1] = Yap_MkBigIntTerm(mpq_denref(b));
if (ta[1] == TermNil)
return ts;
return Yap_InitSlot(Yap_MkApplTerm(FunctorRDiv, 2, ta) PASS_REGS);
}
#endif
case EMPTY_ARENA:
case ARRAY_INT:
case ARRAY_FLOAT:
case CLAUSE_LIST:
case EXTERNAL_BLOB:
return Yap_InitSlot(MkIntTerm(0) PASS_REGS);
default:
return ts;
}
} else if (f == FunctorDBRef) {
Term ta[0];
ta[0] = MkIntegerTerm((Int)DBRefOfTerm(t));
return Yap_InitSlot(Yap_MkApplTerm(FunctorDBREF, 1, ta) PASS_REGS);
}
}
}
return ts;
}
#ifdef _WIN32
#include <windows.h>
int WINAPI PROTO(win_yap2swi, (HANDLE, DWORD, LPVOID));
int WINAPI win_yap2swi(HANDLE hinst, DWORD reason, LPVOID reserved)
{
switch (reason)
{
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
}
return 1;
}
#endif
/**
* @}
* @}
*/