741 lines
31 KiB
C++
Executable File
741 lines
31 KiB
C++
Executable File
/****************************************************************************************[Solver.h]
|
|
MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
|
|
CryptoMiniSat -- Copyright (c) 2009 Mate Soos
|
|
glucose -- Gilles Audemard, Laurent Simon (2008)
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
|
associated documentation files (the "Software"), to deal in the Software without restriction,
|
|
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
|
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all copies or
|
|
substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
|
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
|
|
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
**************************************************************************************************/
|
|
|
|
#ifndef SOLVER_H
|
|
#define SOLVER_H
|
|
|
|
#include <cstdio>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#ifdef _MSC_VER
|
|
#include <msvc/stdint.h>
|
|
#else
|
|
#include <stdint.h>
|
|
#endif //_MSC_VER
|
|
|
|
#include "Vec.h"
|
|
#include "Heap.h"
|
|
#include "Alg.h"
|
|
#include "MersenneTwister.h"
|
|
#include "SolverTypes.h"
|
|
#include "Clause.h"
|
|
#include "constants.h"
|
|
#include "BoundedQueue.h"
|
|
|
|
#ifdef STATS_NEEDED
|
|
#include "Logger.h"
|
|
#endif //STATS_NEEDED
|
|
|
|
#ifdef USE_GAUSS
|
|
#include "GaussianConfig.h"
|
|
#endif //USE_GAUSS
|
|
|
|
#ifdef USE_GAUSS
|
|
class Gaussian;
|
|
class MatrixFinder;
|
|
#endif //USE_GAUSS
|
|
class Conglomerate;
|
|
class VarReplacer;
|
|
class XorFinder;
|
|
class FindUndef;
|
|
class ClauseCleaner;
|
|
class FailedVarSearcher;
|
|
class Subsumer;
|
|
class XorSubsumer;
|
|
class PartHandler;
|
|
class RestartTypeChooser;
|
|
class StateSaver;
|
|
|
|
#ifdef VERBOSE_DEBUG
|
|
#define DEBUG_UNCHECKEDENQUEUE_LEVEL0
|
|
using std::cout;
|
|
using std::endl;
|
|
#endif
|
|
|
|
//=================================================================================================
|
|
// Solver -- the main class:
|
|
|
|
struct reduceDB_ltMiniSat
|
|
{
|
|
bool operator () (const Clause* x, const Clause* y);
|
|
};
|
|
|
|
struct reduceDB_ltGlucose
|
|
{
|
|
bool operator () (const Clause* x, const Clause* y);
|
|
};
|
|
|
|
|
|
class Solver
|
|
{
|
|
public:
|
|
|
|
// Constructor/Destructor:
|
|
//
|
|
Solver();
|
|
~Solver();
|
|
|
|
// Problem specification:
|
|
//
|
|
Var newVar (bool dvar = true); // Add a new variable with parameters specifying variable mode.
|
|
template<class T>
|
|
bool addClause (T& ps, const uint group = 0, char* group_name = NULL); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
|
|
template<class T>
|
|
bool addXorClause (T& ps, bool xor_clause_inverted, const uint group = 0, char* group_name = NULL); // Add a xor-clause to the solver. NOTE! 'ps' may be shrunk by this method!
|
|
|
|
// Solving:
|
|
//
|
|
lbool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
|
|
lbool solve (); // Search without assumptions.
|
|
bool okay () const; // FALSE means solver is in a conflicting state
|
|
|
|
// Variable mode:
|
|
//
|
|
void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
|
|
void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
|
|
void setSeed (const uint32_t seed); // Sets the seed to be the given number
|
|
void setMaxRestarts(const uint num); //sets the maximum number of restarts to given value
|
|
|
|
// Read state:
|
|
//
|
|
lbool value (const Var& x) const; // The current value of a variable.
|
|
lbool value (const Lit& p) const; // The current value of a literal.
|
|
lbool modelValue (const Lit& p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
|
|
uint32_t nAssigns () const; // The current number of assigned literals.
|
|
uint32_t nClauses () const; // The current number of original clauses.
|
|
uint32_t nLiterals () const; // The current number of total literals.
|
|
uint32_t nLearnts () const; // The current number of learnt clauses.
|
|
uint32_t nVars () const; // The current number of variables.
|
|
|
|
// Extra results: (read-only member variable)
|
|
//
|
|
vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
|
|
vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
|
|
// this vector represent the final conflict clause expressed in the assumptions.
|
|
|
|
// Mode of operation:
|
|
//
|
|
double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
|
|
double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
|
|
int restart_first; // The initial restart limit. (default 100)
|
|
double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
|
|
double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
|
|
double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
|
|
bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
|
|
int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
|
|
int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
|
|
Var restrictedPickBranch; // Pick variables to branch on preferentally from the highest [0, restrictedPickBranch]. If set to 0, preferentiality is turned off (i.e. picked randomly between [0, all])
|
|
bool findNormalXors; // Automatically find non-binary xor-clauses and convert them
|
|
bool findBinaryXors; // Automatically find binary xor-clauses and convert them
|
|
bool regularlyFindBinaryXors; // Regularly find binary xor-clauses and convert them
|
|
bool performReplace; // Should var-replacing be performed?
|
|
bool conglomerateXors; // Conglomerate XORs
|
|
bool heuleProcess; // Process XORs according to Heule
|
|
bool schedSimplification;// Schedule simplification
|
|
bool doSubsumption; // Should try to subsume clauses
|
|
bool doXorSubsumption; // Should try to subsume xor clauses
|
|
bool doPartHandler; // Should try to subsume clauses
|
|
bool doHyperBinRes; // Should try carry out hyper-binary resolution
|
|
bool doBlockedClause; // Should try to remove blocked clauses
|
|
bool doVarElim; // Perform variable elimination
|
|
bool doSubsume1; // Perform clause contraction through resolution
|
|
bool failedVarSearch; // Should search for failed vars and doulbly propagated vars
|
|
bool readdOldLearnts; // Should re-add old learnts for failed variable searching
|
|
bool addExtraBins; // Should add extra binaries in failed literal probing
|
|
bool removeUselessBins; // Should try to remove useless binary clauses
|
|
bool regularRemoveUselessBins; // Should try to remove useless binary clauses regularly
|
|
bool subsumeWithNonExistBinaries;
|
|
bool regularSubsumeWithNonExistBinaries;
|
|
bool libraryUsage; // Set true if not used as a library
|
|
friend class FindUndef;
|
|
bool greedyUnbound; //If set, then variables will be greedily unbounded (set to l_Undef)
|
|
RestartType fixRestartType; // If set, the solver will always choose the given restart strategy
|
|
#ifdef USE_GAUSS
|
|
GaussianConfig gaussconfig;
|
|
#endif //USE_GAUSS
|
|
|
|
|
|
enum { polarity_true = 0, polarity_false = 1, polarity_rnd = 3, polarity_auto = 4};
|
|
|
|
// Statistics: (read-only member variable)
|
|
//
|
|
uint64_t starts, dynStarts, staticStarts, fullStarts, decisions, rnd_decisions, propagations, conflicts;
|
|
uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
|
|
uint64_t nbDL2, nbBin, lastNbBin, becameBinary, lastSearchForBinaryXor, nbReduceDB;
|
|
uint64_t improvedClauseNo, improvedClauseSize;
|
|
|
|
//Logging
|
|
void needStats(); // Prepares the solver to output statistics
|
|
void needProofGraph(); // Prepares the solver to output proof graphs during solving
|
|
void setVariableName(Var var, char* name); // Sets the name of the variable 'var' to 'name'. Useful for statistics and proof logs (i.e. used by 'logger')
|
|
const vec<Clause*>& get_sorted_learnts(); //return the set of learned clauses, sorted according to the logic used in MiniSat to distinguish between 'good' and 'bad' clauses
|
|
const vec<Clause*>& get_learnts() const; //Get all learnt clauses that are >1 long
|
|
const vector<Lit> get_unitary_learnts() const; //return the set of unitary learnt clauses
|
|
const uint get_unitary_learnts_num() const; //return the number of unitary learnt clauses
|
|
void dumpSortedLearnts(const char* file, const uint32_t maxSize); // Dumps all learnt clauses (including unitary ones) into the file
|
|
void needLibraryCNFFile(const char* fileName); //creates file in current directory with the filename indicated, and puts all calls from the library into the file.
|
|
|
|
#ifdef USE_GAUSS
|
|
const uint32_t get_sum_gauss_called() const;
|
|
const uint32_t get_sum_gauss_confl() const;
|
|
const uint32_t get_sum_gauss_prop() const;
|
|
const uint32_t get_sum_gauss_unit_truths() const;
|
|
#endif //USE_GAUSS
|
|
|
|
//Printing statistics
|
|
const uint32_t getNumElimSubsume() const; // Get variable elimination stats from Subsumer
|
|
const uint32_t getNumElimXorSubsume() const; // Get variable elimination stats from XorSubsumer
|
|
const uint32_t getNumXorTrees() const; // Get the number of trees built from 2-long XOR-s. This is effectively the number of variables that replace other variables
|
|
const uint32_t getNumXorTreesCrownSize() const; // Get the number of variables being replaced by other variables
|
|
const double getTotalTimeSubsumer() const;
|
|
const double getTotalTimeXorSubsumer() const;
|
|
|
|
protected:
|
|
#ifdef USE_GAUSS
|
|
void print_gauss_sum_stats();
|
|
void clearGaussMatrixes();
|
|
vector<Gaussian*> gauss_matrixes;
|
|
|
|
//stats
|
|
uint32_t sum_gauss_called;
|
|
uint32_t sum_gauss_confl;
|
|
uint32_t sum_gauss_prop;
|
|
uint32_t sum_gauss_unit_truths;
|
|
friend class Gaussian;
|
|
#endif //USE_GAUSS
|
|
|
|
template <class T>
|
|
Clause* addClauseInt(T& ps, uint group);
|
|
template<class T>
|
|
XorClause* addXorClauseInt(T& ps, bool xor_clause_inverted, const uint32_t group);
|
|
template<class T>
|
|
bool addLearntClause(T& ps, const uint group, const uint32_t activity);
|
|
template<class T>
|
|
void removeWatchedCl(vec<T> &ws, const Clause *c);
|
|
template<class T>
|
|
bool findWatchedCl(const vec<T>& ws, const Clause *c) const;
|
|
template<class T>
|
|
void removeWatchedBinCl(vec<T> &ws, const Clause *c);
|
|
template<class T>
|
|
bool findWatchedBinCl(const vec<T>& ws, const Clause *c) const;
|
|
|
|
// Helper structures:
|
|
//
|
|
struct VarOrderLt {
|
|
const vec<uint32_t>& activity;
|
|
bool operator () (Var x, Var y) const {
|
|
return activity[x] > activity[y];
|
|
}
|
|
VarOrderLt(const vec<uint32_t>& act) : activity(act) { }
|
|
};
|
|
|
|
friend class VarFilter;
|
|
struct VarFilter {
|
|
const Solver& s;
|
|
VarFilter(const Solver& _s) : s(_s) {}
|
|
bool operator()(Var v) const {
|
|
return s.assigns[v].isUndef() && s.decision_var[v];
|
|
}
|
|
};
|
|
|
|
// Solver state:
|
|
//
|
|
bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
|
|
vec<Clause*> clauses; // List of problem clauses.
|
|
vec<Clause*> binaryClauses; // Binary clauses are regularly moved here
|
|
vec<XorClause*> xorclauses; // List of problem xor-clauses. Will be freed
|
|
vec<Clause*> learnts; // List of learnt clauses.
|
|
vec<Clause*> removedLearnts; // Clauses that have been learnt, then removed
|
|
vec<XorClause*> freeLater; // xor clauses that need to be freed later due to Gauss
|
|
vec<uint32_t> activity; // A heuristic measurement of the activity of a variable.
|
|
uint32_t var_inc; // Amount to bump next variable with.
|
|
double cla_inc; // Amount to bump learnt clause oldActivity with
|
|
vec<vec<Watched> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
|
|
vec<vec<XorClausePtr> > xorwatches; // 'xorwatches[var]' is a list of constraints watching var in XOR clauses.
|
|
vec<vec<WatchedBin> > binwatches;
|
|
vec<lbool> assigns; // The current assignments
|
|
vector<bool> polarity; // The preferred polarity of each variable.
|
|
#ifdef USE_OLD_POLARITIES
|
|
vector<bool> oldPolarity; // The polarity before the last setting. Good for unsetting polairties that have been changed since the last conflict
|
|
#endif //USE_OLD_POLARITIES
|
|
vector<bool> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
|
|
vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
|
|
vec<uint32_t> trail_lim; // Separator indices for different decision levels in 'trail'.
|
|
vec<ClausePtr> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
|
|
vec<int32_t> level; // 'level[var]' contains the level at which the assignment was made.
|
|
uint64_t curRestart;
|
|
uint32_t nbclausesbeforereduce;
|
|
uint32_t nbCompensateSubsumer; // Number of learnt clauses that subsumed normal clauses last time subs. was executed
|
|
uint32_t qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
|
|
uint32_t simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
|
|
int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
|
|
vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
|
|
Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
|
|
double progress_estimate;// Set by 'search()'.
|
|
bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
|
|
bqueue<uint> nbDecisionLevelHistory; // Set of last decision level in conflict clauses
|
|
double totalSumOfDecisionLevel;
|
|
uint64_t conflictsAtLastSolve;
|
|
#ifdef RANDOM_LOOKAROUND_SEARCHSPACE
|
|
bqueue<uint> avgBranchDepth; // Avg branch depth
|
|
#endif //RANDOM_LOOKAROUND_SEARCHSPACE
|
|
MTRand mtrand; // random number generaton
|
|
RestartType restartType; // Used internally to determine which restart strategy to choose
|
|
RestartType lastSelectedRestartType; //the last selected restart type
|
|
friend class Logger;
|
|
#ifdef STATS_NEEDED
|
|
Logger logger; // dynamic logging, statistics
|
|
bool dynamic_behaviour_analysis; // Is logger running?
|
|
#endif
|
|
uint maxRestarts; // More than this number of restarts will not be performed
|
|
|
|
// Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
|
|
// used, exept 'seen' wich is used in several places.
|
|
//
|
|
vector<bool> seen;
|
|
vec<Lit> analyze_stack;
|
|
vec<Lit> analyze_toclear;
|
|
vec<Lit> add_tmp;
|
|
|
|
|
|
uint64_t MYFLAG;
|
|
template<class T>
|
|
const uint32_t calcNBLevels(const T& ps);
|
|
vec<uint64_t> permDiff; // LS: permDiff[var] contains the current conflict number... Used to count the number of different decision level variables in learnt clause
|
|
#ifdef UPDATEVARACTIVITY
|
|
vec<Var> lastDecisionLevel;
|
|
#endif
|
|
|
|
//Logging
|
|
uint learnt_clause_group; //the group number of learnt clauses. Incremented at each added learnt clause
|
|
FILE *libraryCNFFile; //The file that all calls from the library are logged
|
|
|
|
// Main internal methods:
|
|
//
|
|
const bool simplify (); // Removes already satisfied clauses.
|
|
//int nbPropagated (int level);
|
|
void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
|
|
Lit pickBranchLit (); // Return the next decision variable.
|
|
void newDecisionLevel (); // Begins a new decision level.
|
|
void uncheckedEnqueue (Lit p, ClausePtr from = (Clause*)NULL); // Enqueue a literal. Assumes value of literal is undefined.
|
|
void uncheckedEnqueueLight (const Lit p);
|
|
bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
|
|
Clause* propagate (const bool update = true); // Perform unit propagation. Returns possibly conflicting clause.
|
|
Clause* propagateLight();
|
|
Clause* propagateBin();
|
|
Clause* propagateBinNoLearnts();
|
|
template<bool dontCareLearnt>
|
|
Clause* propagateBinExcept(const Lit& exceptLit);
|
|
template<bool dontCareLearnt>
|
|
Clause* propagateBinOneLevel();
|
|
Clause* propagate_xors (const Lit& p);
|
|
void cancelUntil (int level); // Backtrack until a certain level.
|
|
Clause* analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel, uint32_t &nblevels, const bool update); // (bt = backtrack)
|
|
void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
|
|
bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
|
|
lbool search (int nof_conflicts, int nof_conflicts_fullrestart, const bool update = true); // Search for a given number of conflicts.
|
|
void reduceDB (); // Reduce the set of learnt clauses.
|
|
llbool handle_conflict (vec<Lit>& learnt_clause, Clause* confl, int& conflictC, const bool update);// Handles the conflict clause
|
|
llbool new_decision (const int& nof_conflicts, const int& nof_conflicts_fullrestart, int& conflictC); // Handles the case when all propagations have been made, and now a decision must be made
|
|
|
|
// Maintaining Variable/Clause activity:
|
|
//
|
|
void claBumpActivity (Clause& c);
|
|
void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
|
|
void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
|
|
void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
|
|
|
|
// Operations on clauses:
|
|
//
|
|
void attachClause (XorClause& c);
|
|
void attachClause (Clause& c); // Attach a clause to watcher lists.
|
|
void detachClause (const XorClause& c);
|
|
void detachClause (const Clause& c); // Detach a clause to watcher lists.
|
|
void detachModifiedClause(const Lit lit1, const Lit lit2, const uint size, const Clause* address);
|
|
void detachModifiedClause(const Var var1, const Var var2, const uint origSize, const XorClause* address);
|
|
template<class T>
|
|
void removeClause(T& c); // Detach and free a clause.
|
|
bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
|
|
void reverse_binary_clause(Clause& c) const; // Binary clauses --- the first Lit has to be true
|
|
void testAllClauseAttach() const;
|
|
void findAllAttach() const;
|
|
const bool findClause(XorClause* c) const;
|
|
const bool findClause(Clause* c) const;
|
|
|
|
// Misc:
|
|
//
|
|
uint32_t decisionLevel () const; // Gives the current decisionlevel.
|
|
uint32_t abstractLevel (const Var& x) const; // Used to represent an abstraction of sets of decision levels.
|
|
|
|
//Xor-finding related stuff
|
|
friend class XorFinder;
|
|
friend class Conglomerate;
|
|
friend class MatrixFinder;
|
|
friend class PartFinder;
|
|
friend class VarReplacer;
|
|
friend class ClauseCleaner;
|
|
friend class RestartTypeChooser;
|
|
friend class FailedVarSearcher;
|
|
friend class Subsumer;
|
|
friend class XorSubsumer;
|
|
friend class PartHandler;
|
|
friend class StateSaver;
|
|
Conglomerate* conglomerate;
|
|
VarReplacer* varReplacer;
|
|
ClauseCleaner* clauseCleaner;
|
|
FailedVarSearcher* failedVarSearcher;
|
|
PartHandler* partHandler;
|
|
Subsumer* subsumer;
|
|
XorSubsumer* xorSubsumer;
|
|
RestartTypeChooser* restartTypeChooser;
|
|
MatrixFinder* matrixFinder;
|
|
const bool chooseRestartType(const uint& lastFullRestart);
|
|
void setDefaultRestartType();
|
|
const bool checkFullRestart(int& nof_conflicts, int& nof_conflicts_fullrestart, uint& lastFullRestart);
|
|
void performStepsBeforeSolve();
|
|
const lbool simplifyProblem(const uint32_t numConfls);
|
|
bool simplifying;
|
|
|
|
// Debug & etc:
|
|
void printLit (const Lit l) const;
|
|
void verifyModel ();
|
|
bool verifyClauses (const vec<Clause*>& cs) const;
|
|
bool verifyXorClauses (const vec<XorClause*>& cs) const;
|
|
void checkSolution();
|
|
void checkLiteralCount();
|
|
void printStatHeader () const;
|
|
void printRestartStat ();
|
|
void printEndSearchStat();
|
|
double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
|
|
const bool noLearntBinaries() const;
|
|
|
|
// Polarity chooser
|
|
void calculateDefaultPolarities(); //Calculates the default polarity for each var, and fills defaultPolarities[] with it
|
|
bool defaultPolarity(); //if polarity_mode is not polarity_auto, this returns the default polarity of the variable
|
|
void tallyVotes(const vec<Clause*>& cs, vector<double>& votes) const;
|
|
void tallyVotes(const vec<XorClause*>& cs, vector<double>& votes) const;
|
|
};
|
|
|
|
|
|
//=================================================================================================
|
|
// Implementation of inline methods:
|
|
|
|
|
|
inline void Solver::insertVarOrder(Var x)
|
|
{
|
|
if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x);
|
|
}
|
|
|
|
inline void Solver::varDecayActivity()
|
|
{
|
|
var_inc *= 11;
|
|
var_inc /= 10;
|
|
}
|
|
inline void Solver::varBumpActivity(Var v)
|
|
{
|
|
if ( (activity[v] += var_inc) > (0x1U) << 24 ) {
|
|
//printf("RESCALE!!!!!!\n");
|
|
//std::cout << "var_inc: " << var_inc << std::endl;
|
|
// Rescale:
|
|
for (Var var = 0; var != nVars(); var++) {
|
|
activity[var] >>= 14;
|
|
}
|
|
var_inc >>= 14;
|
|
//var_inc = 1;
|
|
//std::cout << "var_inc: " << var_inc << std::endl;
|
|
|
|
/*Heap<VarOrderLt> copy_order_heap2(order_heap);
|
|
while(!copy_order_heap2.empty()) {
|
|
Var v = copy_order_heap2.getmin();
|
|
if (decision_var[v])
|
|
std::cout << "var_" << v+1 << " act: " << activity[v] << std::endl;
|
|
}*/
|
|
}
|
|
|
|
// Update order_heap with respect to new activity:
|
|
if (order_heap.inHeap(v))
|
|
order_heap.decrease(v);
|
|
}
|
|
|
|
inline void Solver::claBumpActivity (Clause& c)
|
|
{
|
|
if ( (c.oldActivity() += cla_inc) > 1e20 ) {
|
|
// Rescale:
|
|
for (uint32_t i = 0; i < learnts.size(); i++)
|
|
learnts[i]->oldActivity() *= 1e-17;
|
|
cla_inc *= 1e-20;
|
|
}
|
|
}
|
|
|
|
inline void Solver::claDecayActivity()
|
|
{
|
|
//cla_inc *= clause_decay;
|
|
}
|
|
|
|
inline bool Solver::enqueue (Lit p, Clause* from)
|
|
{
|
|
return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true);
|
|
}
|
|
inline bool Solver::locked (const Clause& c) const
|
|
{
|
|
return reason[c[0].var()] == &c && value(c[0]) == l_True;
|
|
}
|
|
inline void Solver::newDecisionLevel()
|
|
{
|
|
trail_lim.push(trail.size());
|
|
#ifdef VERBOSE_DEBUG
|
|
cout << "New decision level: " << trail_lim.size() << endl;
|
|
#endif
|
|
}
|
|
/*inline int Solver::nbPropagated(int level) {
|
|
if (level == decisionLevel())
|
|
return trail.size() - trail_lim[level-1] - 1;
|
|
return trail_lim[level] - trail_lim[level-1] - 1;
|
|
}*/
|
|
inline uint32_t Solver::decisionLevel () const
|
|
{
|
|
return trail_lim.size();
|
|
}
|
|
inline uint32_t Solver::abstractLevel (const Var& x) const
|
|
{
|
|
return 1 << (level[x] & 31);
|
|
}
|
|
inline lbool Solver::value (const Var& x) const
|
|
{
|
|
return assigns[x];
|
|
}
|
|
inline lbool Solver::value (const Lit& p) const
|
|
{
|
|
return assigns[p.var()] ^ p.sign();
|
|
}
|
|
inline lbool Solver::modelValue (const Lit& p) const
|
|
{
|
|
return model[p.var()] ^ p.sign();
|
|
}
|
|
inline uint32_t Solver::nAssigns () const
|
|
{
|
|
return trail.size();
|
|
}
|
|
inline uint32_t Solver::nClauses () const
|
|
{
|
|
return clauses.size() + xorclauses.size()+binaryClauses.size();
|
|
}
|
|
inline uint32_t Solver::nLiterals () const
|
|
{
|
|
return clauses_literals + learnts_literals;
|
|
}
|
|
inline uint32_t Solver::nLearnts () const
|
|
{
|
|
return learnts.size();
|
|
}
|
|
inline uint32_t Solver::nVars () const
|
|
{
|
|
return assigns.size();
|
|
}
|
|
inline void Solver::setPolarity (Var v, bool b)
|
|
{
|
|
polarity [v] = (char)b;
|
|
}
|
|
inline void Solver::setDecisionVar(Var v, bool b)
|
|
{
|
|
decision_var[v] = b;
|
|
if (b) {
|
|
insertVarOrder(v);
|
|
}
|
|
}
|
|
inline lbool Solver::solve ()
|
|
{
|
|
vec<Lit> tmp;
|
|
return solve(tmp);
|
|
}
|
|
inline bool Solver::okay () const
|
|
{
|
|
return ok;
|
|
}
|
|
inline void Solver::setSeed (const uint32_t seed)
|
|
{
|
|
mtrand.seed(seed); // Set seed of the variable-selection and clause-permutation(if applicable)
|
|
}
|
|
#ifdef STATS_NEEDED
|
|
inline void Solver::needStats()
|
|
{
|
|
dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate statistics
|
|
logger.statistics_on = true;
|
|
}
|
|
inline void Solver::needProofGraph()
|
|
{
|
|
dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate proof graphs during solving
|
|
logger.proof_graph_on = true;
|
|
}
|
|
inline void Solver::setVariableName(Var var, char* name)
|
|
{
|
|
while (var >= nVars()) newVar();
|
|
if (dynamic_behaviour_analysis)
|
|
logger.set_variable_name(var, name);
|
|
} // Sets the varible 'var'-s name to 'name' in the logger
|
|
#else
|
|
inline void Solver::setVariableName(Var var, char* name)
|
|
{}
|
|
#endif
|
|
|
|
#ifdef USE_GAUSS
|
|
inline const uint32_t Solver::get_sum_gauss_unit_truths() const
|
|
{
|
|
return sum_gauss_unit_truths;
|
|
}
|
|
|
|
inline const uint32_t Solver::get_sum_gauss_called() const
|
|
{
|
|
return sum_gauss_called;
|
|
}
|
|
|
|
inline const uint32_t Solver::get_sum_gauss_confl() const
|
|
{
|
|
return sum_gauss_confl;
|
|
}
|
|
|
|
inline const uint32_t Solver::get_sum_gauss_prop() const
|
|
{
|
|
return sum_gauss_prop;
|
|
}
|
|
#endif
|
|
|
|
inline const uint Solver::get_unitary_learnts_num() const
|
|
{
|
|
if (decisionLevel() > 0)
|
|
return trail_lim[0];
|
|
else
|
|
return trail.size();
|
|
}
|
|
template <class T>
|
|
inline void Solver::removeWatchedCl(vec<T> &ws, const Clause *c) {
|
|
uint32_t j = 0;
|
|
for (; j < ws.size() && ws[j].clause != c; j++);
|
|
assert(j < ws.size());
|
|
for (; j < ws.size()-1; j++) ws[j] = ws[j+1];
|
|
ws.pop();
|
|
}
|
|
template <class T>
|
|
inline void Solver::removeWatchedBinCl(vec<T> &ws, const Clause *c) {
|
|
uint32_t j = 0;
|
|
for (; j < ws.size() && ws[j].clause != c; j++);
|
|
assert(j < ws.size());
|
|
for (; j < ws.size()-1; j++) ws[j] = ws[j+1];
|
|
ws.pop();
|
|
}
|
|
template<class T>
|
|
inline bool Solver::findWatchedCl(const vec<T>& ws, const Clause *c) const
|
|
{
|
|
uint32_t j = 0;
|
|
for (; j < ws.size() && ws[j].clause != c; j++);
|
|
return j < ws.size();
|
|
}
|
|
template<class T>
|
|
inline bool Solver::findWatchedBinCl(const vec<T>& ws, const Clause *c) const
|
|
{
|
|
uint32_t j = 0;
|
|
for (; j < ws.size() && ws[j].clause != c; j++);
|
|
return j < ws.size();
|
|
}
|
|
inline void Solver::reverse_binary_clause(Clause& c) const {
|
|
if (c.size() == 2 && value(c[0]) == l_False) {
|
|
assert(value(c[1]) == l_True);
|
|
std::swap(c[0], c[1]);
|
|
}
|
|
}
|
|
/*inline void Solver::calculate_xor_clause(Clause& c2) const {
|
|
if (c2.isXor() && ((XorClause*)&c2)->updateNeeded()) {
|
|
XorClause& c = *((XorClause*)&c2);
|
|
bool final = c.xor_clause_inverted();
|
|
for (int k = 0, size = c.size(); k != size; k++ ) {
|
|
const lbool& val = assigns[c[k].var()];
|
|
assert(val != l_Undef);
|
|
|
|
c[k] = c[k].unsign() ^ val.getBool();
|
|
final ^= val.getBool();
|
|
}
|
|
if (final)
|
|
c[0] = c[0].unsign() ^ !assigns[c[0].var()].getBool();
|
|
|
|
c.setUpdateNeeded(false);
|
|
}
|
|
}*/
|
|
|
|
template<class T>
|
|
inline void Solver::removeClause(T& c)
|
|
{
|
|
detachClause(c);
|
|
clauseFree(&c);
|
|
}
|
|
|
|
//=================================================================================================
|
|
// Debug + etc:
|
|
|
|
static inline void logLit(FILE* f, Lit l)
|
|
{
|
|
fprintf(f, "%sx%d", l.sign() ? "~" : "", l.var()+1);
|
|
}
|
|
|
|
static inline void logLits(FILE* f, const vec<Lit>& ls)
|
|
{
|
|
fprintf(f, "[ ");
|
|
if (ls.size() > 0) {
|
|
logLit(f, ls[0]);
|
|
for (uint32_t i = 1; i < ls.size(); i++) {
|
|
fprintf(f, ", ");
|
|
logLit(f, ls[i]);
|
|
}
|
|
}
|
|
fprintf(f, "] ");
|
|
}
|
|
|
|
static inline const char* showBool(bool b)
|
|
{
|
|
return b ? "true" : "false";
|
|
}
|
|
|
|
|
|
// Just like 'assert()' but expression will be evaluated in the release version as well.
|
|
static inline void check(bool expr)
|
|
{
|
|
assert(expr);
|
|
}
|
|
|
|
#ifndef DEBUG_ATTACH
|
|
inline void Solver::testAllClauseAttach() const
|
|
{
|
|
return;
|
|
}
|
|
inline void Solver::findAllAttach() const
|
|
{
|
|
return;
|
|
}
|
|
#endif //DEBUG_ATTACH
|
|
|
|
inline void Solver::uncheckedEnqueueLight(const Lit p)
|
|
{
|
|
assigns [p.var()] = boolToLBool(!p.sign());//lbool(!sign(p)); // <<== abstract but not uttermost effecient
|
|
trail.push(p);
|
|
}
|
|
|
|
//=================================================================================================
|
|
#endif //SOLVER_H
|