This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/inlines.c

960 lines
22 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: inlines.c *
* Last rev: *
* mods: *
* comments: C-version for inline code used in meta-calls *
* *
*************************************************************************/
#define IN_INLINES_C 1
#include "absmi.h"
#ifdef CUT_C
#include "cut_c.h"
#endif
static Int p_atom( USES_REGS1 );
static Int p_atomic( USES_REGS1 );
static Int p_integer( USES_REGS1 );
static Int p_nonvar( USES_REGS1 );
static Int p_number( USES_REGS1 );
static Int p_var( USES_REGS1 );
static Int p_db_ref( USES_REGS1 );
static Int p_primitive( USES_REGS1 );
static Int p_compound( USES_REGS1 );
static Int p_float( USES_REGS1 );
static Int p_equal( USES_REGS1 );
static Int p_dif( USES_REGS1 );
static Int p_eq( USES_REGS1 );
static Int p_arg( USES_REGS1 );
static Int p_functor( USES_REGS1 );
static Int
p_atom( USES_REGS1 )
{ /* atom(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, atom_unk);
atom_nvar:
if (IsAtomTerm(d0) && !IsBlob(AtomOfTerm(d0))) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, atom_unk, atom_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_atomic( USES_REGS1 )
{ /* atomic(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, atomic_unk);
atomic_nvar:
if (IsAtomicTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, atomic_unk, atomic_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_integer( USES_REGS1 )
{ /* integer(?,?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, integer_unk);
integer_nvar:
if (IsIntTerm(d0)) {
return(TRUE);
}
if (IsApplTerm(d0)) {
Functor f0 = FunctorOfTerm(d0);
if (IsExtensionFunctor(f0)) {
switch ((CELL)f0) {
case (CELL)FunctorBigInt:
{ CELL *pt = RepAppl(d0);
if ( pt[1] != BIG_RATIONAL || pt[1] != BIG_INT ) {
return FALSE;
}
}
case (CELL)FunctorLongInt:
return(TRUE);
default:
return(FALSE);
}
}
return(FALSE);
} else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, integer_unk, integer_nvar);
ENDP(pt0);
return(FALSE);
ENDD(d0);
}
static Int
p_number( USES_REGS1 )
{ /* number(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, number_unk);
number_nvar:
if (IsIntTerm(d0)) {
return(TRUE);
}
if (IsApplTerm(d0)) {
Functor f0 = FunctorOfTerm(d0);
if (IsExtensionFunctor(f0)) {
switch ((CELL)f0) {
case (CELL)FunctorBigInt:
{ CELL *pt = RepAppl(d0);
if ( pt[1] != BIG_RATIONAL || pt[1] != BIG_INT ) {
return FALSE;
}
}
case (CELL)FunctorLongInt:
case (CELL)FunctorDouble:
return(TRUE);
default:
return(FALSE);
}
}
return(FALSE);
} else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, number_unk, number_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_db_ref( USES_REGS1 )
{ /* db_reference(?,?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, db_ref_unk);
db_ref_nvar:
if (IsDBRefTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, db_ref_unk, db_ref_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_primitive( USES_REGS1 )
{ /* primitive(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, primitive_unk);
primitive_nvar:
if (IsPrimitiveTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, primitive_unk, primitive_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_float( USES_REGS1 )
{ /* float(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, float_unk);
float_nvar:
if (IsFloatTerm(d0)) {
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, float_unk, float_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_compound( USES_REGS1 )
{ /* compound(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, compound_unk);
compound_nvar:
if (IsPairTerm(d0)) {
return(TRUE);
}
else if (IsApplTerm(d0)) {
if (IsExtensionFunctor(FunctorOfTerm(d0))) {
return(FALSE);
}
return(TRUE);
}
else {
return(FALSE);
}
BEGP(pt0);
deref_body(d0, pt0, compound_unk, compound_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_nonvar( USES_REGS1 )
{ /* nonvar(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, nonvar_unk);
nonvar_nvar:
return(TRUE);
BEGP(pt0);
deref_body(d0, pt0, nonvar_unk, nonvar_nvar);
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_var( USES_REGS1 )
{ /* var(?) */
BEGD(d0);
d0 = ARG1;
deref_head(d0, var_unk);
var_nvar:
return(FALSE);
BEGP(pt0);
deref_body(d0, pt0, var_unk, var_nvar);
return(TRUE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_equal( USES_REGS1 )
{ /* ?=? */
return(Yap_IUnify(ARG1, ARG2));
}
static Int
eq(Term t1, Term t2 USES_REGS)
{ /* ? == ? */
BEGD(d0);
d0 = t1;
deref_head(d0, p_eq_unk1);
p_eq_nvar1:
/* first argument is bound */
BEGD(d1);
d1 = t2;
deref_head(d1, p_eq_nvar1_unk2);
p_eq_nvar1_nvar2:
/* both arguments are bound */
if (d0 == d1) {
return(TRUE);
}
if (IsPairTerm(d0)) {
if (!IsPairTerm(d1)) {
return(FALSE);
}
return(iequ_complex(RepPair(d0)-1, RepPair(d0)+1,RepPair(d1)-1));
}
if (IsApplTerm(d0)) {
Functor f0 = FunctorOfTerm(d0);
Functor f1;
if (!IsApplTerm(d1)) {
return(FALSE);
}
f1 = FunctorOfTerm(d1);
if (f0 != f1) {
return(FALSE);
}
if (IsExtensionFunctor(f0)) {
switch ((CELL)f0) {
case (CELL)FunctorDBRef:
return (d0 == d1);
case (CELL)FunctorLongInt:
return(LongIntOfTerm(d0) == LongIntOfTerm(d1));
case (CELL)FunctorString:
return(strcmp(StringOfTerm(d0), StringOfTerm(d1)) == 0);
#ifdef USE_GMP
case (CELL)FunctorBigInt:
return (Yap_gmp_tcmp_big_big(d0, d1) == 0);
#endif
case (CELL)FunctorDouble:
return(FloatOfTerm(d0) == FloatOfTerm(d1));
default:
return(FALSE);
}
}
return(iequ_complex(RepAppl(d0), RepAppl(d0)+ArityOfFunctor(f0), RepAppl(d1)));
}
return(FALSE);
BEGP(pt0);
deref_body(d1, pt0, p_eq_nvar1_unk2, p_eq_nvar1_nvar2);
ENDP(pt0);
/* first argument is bound */
/* second argument is unbound */
/* I don't need to worry about co-routining because an
unbound variable may never be == to a constrained variable!! */
return(FALSE);
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, p_eq_unk1, p_eq_nvar1);
BEGD(d1);
d1 = ARG2;
deref_head(d1, p_eq_var1_unk2);
p_eq_var1_nvar2:
/* I don't need to worry about co-routining because an
unbound variable may never be == to a constrained variable!! */
return(FALSE);
BEGP(pt1);
deref_body(d1, pt1, p_eq_var1_unk2, p_eq_var1_nvar2);
/* first argument is unbound */
/* second argument is unbound */
return(pt1 == pt0);
ENDP(pt1);
ENDD(d1);
ENDP(pt0);
ENDD(d0);
}
static Int
p_eq( USES_REGS1 )
{ /* ? == ? */
return eq(ARG1,ARG2 PASS_REGS);
}
int
Yap_eq(Term t1, Term t2)
{ /* ? == ? */
CACHE_REGS
return eq(t1,t2 PASS_REGS);
}
static Int
p_dif( USES_REGS1 )
{ /* ? \= ? */
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
BEGD(d0);
BEGD(d1);
d0 = ARG1;
deref_head(d0, dif_unk1);
dif_nvar1:
/* first argument is bound */
d1 = ARG2;
deref_head(d1, dif_nvar1_unk2);
dif_nvar1_nvar2:
/* both arguments are bound */
if (d0 == d1) {
return FALSE;
}
if (IsAtomOrIntTerm(d0) || IsAtomOrIntTerm(d1)) {
return TRUE;
} else {
#ifdef COROUTINING
/*
* We may wake up goals during our attempt to unify the
* two terms. If we are adding to the tail of a list of
* woken goals that should be ok, but otherwise we need
* to restore LOCAL_WokenGoals to its previous value.
*/
CELL OldWokenGoals = Yap_ReadTimedVar(LOCAL_WokenGoals);
#endif
register tr_fr_ptr pt0;
/* store the old value of TR for clearing bindings */
pt0 = TR;
BEGCHO(pt1);
pt1 = B;
/* make B and HB point to H to guarantee all bindings will
* be trailed
*/
HBREG = H;
B = (choiceptr) H;
B->cp_h = H;
SET_BB(B);
save_hb();
d0 = Yap_IUnify(d0, d1);
#ifdef COROUTINING
/* now restore Woken Goals to its old value */
Yap_UpdateTimedVar(LOCAL_WokenGoals, OldWokenGoals);
if (OldWokenGoals == TermNil) {
Yap_undo_signal(YAP_WAKEUP_SIGNAL);
}
#endif
/* restore B */
B = pt1;
SET_BB(PROTECT_FROZEN_B(pt1));
#ifdef COROUTINING
H = HBREG;
#endif
HBREG = B->cp_h;
/* untrail all bindings made by Yap_IUnify */
while (TR != pt0) {
BEGD(d1);
d1 = TrailTerm(--TR);
if (IsVarTerm(d1)) {
#if defined(YAPOR_SBA) && defined(YAPOR)
/* clean up the trail when we backtrack */
if (Unsigned((Int)(d1)-(Int)(H_FZ)) >
Unsigned((Int)(B_FZ)-(Int)(H_FZ))) {
RESET_VARIABLE(STACK_TO_SBA(d1));
} else
#endif
/* normal variable */
RESET_VARIABLE(d1);
#ifdef MULTI_ASSIGNMENT_VARIABLES
} else /* if (IsApplTerm(d1)) */ {
CELL *pt = RepAppl(d1);
/* AbsAppl means */
/* multi-assignment variable */
/* so the next cell is the old value */
#ifdef FROZEN_STACKS
pt[0] = TrailVal(--TR);
#else
pt[0] = TrailTerm(--TR);
TR--;
#endif /* FROZEN_STACKS */
#endif /* MULTI_ASSIGNMENT_VARIABLES */
}
ENDD(d1);
}
return !d0;
ENDP(pt0);
}
BEGP(pt0);
deref_body(d0, pt0, dif_unk1, dif_nvar1);
ENDP(pt0);
/* first argument is unbound */
return FALSE;
BEGP(pt0);
deref_body(d1, pt0, dif_nvar1_unk2, dif_nvar1_nvar2);
ENDP(pt0);
/* second argument is unbound */
return FALSE;
ENDD(d1);
ENDD(d0);
}
static Int
p_arg( USES_REGS1 )
{ /* arg(?,?,?) */
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
BEGD(d0);
d0 = ARG1;
deref_head(d0, arg_arg1_unk);
arg_arg1_nvar:
/* ARG1 is ok! */
if (IsIntTerm(d0))
d0 = IntOfTerm(d0);
else if (IsLongIntTerm(d0)) {
d0 = LongIntOfTerm(d0);
} else {
Yap_Error(TYPE_ERROR_INTEGER,d0,"arg 1 of arg/3");
return(FALSE);
}
/* d0 now got the argument we want */
BEGD(d1);
d1 = ARG2;
deref_head(d1, arg_arg2_unk);
arg_arg2_nvar:
/* d1 now got the structure we want to fetch the argument
* from */
if (IsApplTerm(d1)) {
BEGP(pt0);
pt0 = RepAppl(d1);
d1 = *pt0;
if (IsExtensionFunctor((Functor) d1)) {
return(FALSE);
}
save_hb();
if ((Int)d0 <= 0 ||
(Int)d0 > ArityOfFunctor((Functor) d1) ||
Yap_IUnify(pt0[d0], ARG3) == FALSE) {
/* don't complain here for Prolog compatibility
if ((Int)d0 <= 0) {
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,
MkIntegerTerm(d0),"arg 1 of arg/3");
}
*/
return(FALSE);
}
return(TRUE);
ENDP(pt0);
}
else if (IsPairTerm(d1)) {
BEGP(pt0);
pt0 = RepPair(d1);
if (d0 == 1) {
save_hb();
if (Yap_IUnify((CELL)pt0, ARG3) == FALSE) {
return(FALSE);
}
return(TRUE);
}
else if (d0 == 2) {
save_hb();
if (Yap_IUnify((CELL)(pt0+1), ARG3) == FALSE) {
return(FALSE);
}
return(TRUE);
}
else {
if ((Int)d0 < 0)
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,
MkIntegerTerm(d0),"arg 1 of arg/3");
return(FALSE);
}
ENDP(pt0);
}
else {
/* Yap_Error(TYPE_ERROR_COMPOUND, d1, "arg 2 of arg/3"); */
return(FALSE);
}
BEGP(pt0);
deref_body(d1, pt0, arg_arg2_unk, arg_arg2_nvar);
Yap_Error(INSTANTIATION_ERROR,(CELL)pt0,"arg 2 of arg/3");;
ENDP(pt0);
return(FALSE);
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, arg_arg1_unk, arg_arg1_nvar);
Yap_Error(INSTANTIATION_ERROR,(CELL)pt0,"arg 1 of arg/3");;
ENDP(pt0);
return(FALSE);
ENDD(d0);
}
static Int
p_functor( USES_REGS1 ) /* functor(?,?,?) */
{
#if SHADOW_HB
register CELL *HBREG;
#endif
restart:
#if SHADOW_HB
HBREG = HB;
#endif
BEGD(d0);
d0 = ARG1;
deref_head(d0, func_unk);
func_nvar:
/* A1 is bound */
BEGD(d1);
if (IsApplTerm(d0)) {
d1 = *RepAppl(d0);
if (IsExtensionFunctor((Functor) d1)) {
if (d1 == (CELL)FunctorDouble) {
d1 = MkIntTerm(0);
} else if (d1 == (CELL)FunctorLongInt) {
d1 = MkIntTerm(0);
} else if (d1 == (CELL)FunctorString) {
d1 = MkIntTerm(0);
} else
return(FALSE);
} else {
d0 = MkAtomTerm(NameOfFunctor((Functor) d1));
d1 = MkIntTerm(ArityOfFunctor((Functor) d1));
}
}
else if (IsPairTerm(d0)) {
d0 = TermDot;
d1 = MkIntTerm(2);
}
else {
d1 = MkIntTerm(0);
}
/* d1 and d0 now have the two arguments */
/* let's go and bind them */
{
register CELL arity = d1;
d1 = ARG2;
deref_head(d1, func_nvar_unk);
func_nvar_nvar:
/* A2 was bound */
if (d0 != d1) {
return(FALSE);
}
/* have to buffer ENDP and label */
d0 = arity;
goto func_bind_x3;
BEGP(pt0);
deref_body(d1, pt0, func_nvar_unk, func_nvar_nvar);
/* A2 is a variable, go and bind it */
Bind(pt0, d0);
/* have to buffer ENDP and label */
d0 = arity;
ENDP(pt0);
/* now let's process A3 */
func_bind_x3:
d1 = ARG3;
deref_head(d1, func_nvar3_unk);
func_nvar3_nvar:
/* A3 was bound */
if (d0 != d1) {
return(FALSE);
}
/* Done */
return(TRUE);
BEGP(pt0);
deref_body(d1, pt0, func_nvar3_unk, func_nvar3_nvar);
/* A3 is a variable, go and bind it */
Bind(pt0, d0);
return(TRUE);
ENDP(pt0);
}
ENDD(d1);
BEGP(pt0);
deref_body(d0, pt0, func_unk, func_nvar);
/* A1 is a variable */
/* We have to build the structure */
d0 = ARG2;
deref_head(d0, func_var_2unk);
func_var_2nvar:
/* we do, let's get the third argument */
BEGD(d1);
d1 = ARG3;
deref_head(d1, func_var_3unk);
func_var_3nvar:
/* Uuuff, the second and third argument are bound */
if (IsIntegerTerm(d1))
d1 = IntOfTerm(d1);
else {
if (IsBigIntTerm(d1)) {
Yap_Error(RESOURCE_ERROR_STACK, ARG3, "functor/3");
} else {
Yap_Error(TYPE_ERROR_INTEGER,ARG3,"functor/3");
}
return(FALSE);
}
if (!IsAtomicTerm(d0)) {
Yap_Error(TYPE_ERROR_ATOMIC,d0,"functor/3");
return(FALSE);
}
/* We made it!!!!! we got in d0 the name, in d1 the arity and
* in pt0 the variable to bind it to. */
if (d0 == TermDot && d1 == 2) {
RESET_VARIABLE(H);
RESET_VARIABLE(H+1);
d0 = AbsPair(H);
H += 2;
}
else if ((Int)d1 > 0) {
/* now let's build a compound term */
if (!IsAtomTerm(d0)) {
Yap_Error(TYPE_ERROR_ATOM,d0,"functor/3");
return(FALSE);
}
BEGP(pt1);
if (!IsAtomTerm(d0)) {
return(FALSE);
}
else
d0 = (CELL) Yap_MkFunctor(AtomOfTerm(d0), (Int) d1);
pt1 = H;
*pt1++ = d0;
d0 = AbsAppl(H);
if (pt1+d1 > ENV - CreepFlag) {
if (!Yap_gcl((1+d1)*sizeof(CELL), 3, ENV, gc_P(P,CP))) {
Yap_Error(OUT_OF_STACK_ERROR, TermNil, LOCAL_ErrorMessage);
return FALSE;
}
goto restart;
}
while (d1-- > 0) {
RESET_VARIABLE(pt1);
pt1++;
}
/* done building the term */
H = pt1;
ENDP(pt1);
} else if ((Int)d1 < 0) {
Yap_Error(DOMAIN_ERROR_NOT_LESS_THAN_ZERO,MkIntegerTerm(d1),"functor/3");
return(FALSE);
}
/* else if arity is 0 just pass d0 through */
/* Ding, ding, we made it */
Bind(pt0, d0);
return(TRUE);
BEGP(pt1);
deref_body(d1, pt1, func_var_3unk, func_var_3nvar);
Yap_Error(INSTANTIATION_ERROR,(CELL)pt1,"functor/3");
ENDP(pt1);
/* Oops, third argument was unbound */
return(FALSE);
ENDD(d1);
BEGP(pt1);
deref_body(d0, pt1, func_var_2unk, func_var_2nvar);
Yap_Error(INSTANTIATION_ERROR,(CELL)pt1,"functor/3");
ENDP(pt1);
/* Oops, second argument was unbound too */
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Term
cp_as_integer(choiceptr cp USES_REGS)
{
return(MkIntegerTerm(LCL0-(CELL *)cp));
}
static Int
p_cut_by( USES_REGS1 )
{
BEGD(d0);
d0 = ARG1;
deref_head(d0, cutby_x_unk);
cutby_x_nvar:
#if YAPOR_SBA
if (!IsIntegerTerm(d0)) {
#else
if (!IsIntTerm(d0)) {
#endif
return(FALSE);
}
BEGCHO(pt0);
#if YAPOR_SBA
pt0 = (choiceptr)IntegerOfTerm(d0);
#else
pt0 = (choiceptr)(LCL0-IntOfTerm(d0));
#endif
#ifdef CUT_C
{
while (POP_CHOICE_POINT(pt0))
{
POP_EXECUTE();
}
}
#endif /* CUT_C */
#ifdef YAPOR
CUT_prune_to(pt0);
#endif /* YAPOR */
/* find where to cut to */
if (pt0 > B) {
/* Wow, we're gonna cut!!! */
#ifdef TABLING
while (B->cp_b < pt0) {
B = B->cp_b;
}
abolish_incomplete_subgoals(B);
#endif /* TABLING */
B = pt0;
HB = B->cp_h;
Yap_TrimTrail();
}
ENDCHO(pt0);
return(TRUE);
BEGP(pt0);
deref_body(d0, pt0, cutby_x_unk, cutby_x_nvar);
/* never cut to a variable */
/* Abort */
return(FALSE);
ENDP(pt0);
ENDD(d0);
}
static Int
p_erroneous_call( USES_REGS1 )
{
Yap_Error(SYSTEM_ERROR, TermNil, "bad call to internal built-in");
return(FALSE);
}
static Int
init_genarg( USES_REGS1 )
{ /* getarg(?Atom) */
Term t0 = Deref(ARG1);
Term t1 = Deref(ARG2);
CELL *pt, *end;
int res;
UInt arity;
if (!IsVarTerm(t0)) {
res = p_arg( PASS_REGS1 );
if (res) {
cut_succeed();
} else {
cut_fail();
}
}
if (IsVarTerm(t1)) {
Yap_Error(INSTANTIATION_ERROR,t1,"genarg/3");
return FALSE;
}
if (IsPrimitiveTerm(t1)) {
Yap_Error(TYPE_ERROR_COMPOUND,t1,"genarg/3");
return FALSE;
}
if (IsPairTerm(t1)) {
pt = RepPair(t1);
end = RepPair(t1)+1;
arity = 2;
} else {
arity = ArityOfFunctor(FunctorOfTerm(t1));
pt = RepAppl(t1);
end = pt+arity;
pt += 1;
}
res = Yap_unify(ARG1,MkIntTerm(1)) &&
Yap_unify(ARG3,pt[0]);
if (arity == 1) {
if (res) {
cut_succeed();
} else {
cut_fail();
}
}
EXTRA_CBACK_ARG(3,1) = (Term)(pt+1);
EXTRA_CBACK_ARG(3,2) = (Term)(end);
EXTRA_CBACK_ARG(3,3) = MkIntegerTerm(arity);
return res;
}
static Int
cont_genarg( USES_REGS1 )
{ /* genarg(?Atom) */
CELL *pt, *end;
int res;
UInt arity;
pt = (CELL *)EXTRA_CBACK_ARG(3,1);
end = (CELL *)EXTRA_CBACK_ARG(3,2);
arity = IntegerOfTerm(EXTRA_CBACK_ARG(3,3));
if (pt == end) {
res = Yap_unify(ARG1,MkIntegerTerm(arity)) &&
Yap_unify(ARG3,pt[0]);
if (res) {
cut_succeed();
} else {
cut_fail();
}
}
EXTRA_CBACK_ARG(3,1) = (Term)(pt+1);
return Yap_unify(ARG1,MkIntegerTerm(arity-(end-pt))) &&
Yap_unify(ARG3,pt[0]);
}
static Int
p_save_cp( USES_REGS1 )
{
Term t = Deref(ARG1);
Term td;
#if SHADOW_HB
register CELL *HBREG = HB;
#endif
if (!IsVarTerm(t)) return(FALSE);
td = cp_as_integer(B PASS_REGS);
Bind((CELL *)t,td);
return(TRUE);
}
void
Yap_InitInlines(void)
{
CACHE_REGS
Term cm = CurrentModule;
Yap_InitAsmPred("$$cut_by", 1, _cut_by, p_cut_by, SafePredFlag);
Yap_InitAsmPred("$$save_by", 1, _save_by, p_save_cp, SafePredFlag);
Yap_InitAsmPred("atom", 1, _atom, p_atom, SafePredFlag);
Yap_InitAsmPred("atomic", 1, _atomic, p_atomic, SafePredFlag);
Yap_InitAsmPred("integer", 1, _integer, p_integer, SafePredFlag);
Yap_InitAsmPred("nonvar", 1, _nonvar, p_nonvar, SafePredFlag);
Yap_InitAsmPred("number", 1, _number, p_number, SafePredFlag);
Yap_InitAsmPred("var", 1, _var, p_var, SafePredFlag);
Yap_InitAsmPred("db_reference", 1, _db_ref, p_db_ref, SafePredFlag);
Yap_InitAsmPred("primitive", 1, _primitive, p_primitive, SafePredFlag);
Yap_InitAsmPred("compound", 1, _compound, p_compound, SafePredFlag);
Yap_InitAsmPred("float", 1, _float, p_float, SafePredFlag);
Yap_InitAsmPred("=", 2, _equal, p_equal, SafePredFlag);
Yap_InitAsmPred("\\=", 2, _dif, p_dif, SafePredFlag);
Yap_InitAsmPred("==", 2, _eq, p_eq, SafePredFlag);
Yap_InitAsmPred("arg", 3, _arg, p_arg, SafePredFlag);
Yap_InitAsmPred("functor", 3, _functor, p_functor, 0);
Yap_InitAsmPred("$label_ctl", 2, _p_label_ctl, p_erroneous_call, SafePredFlag);
CurrentModule = ARG_MODULE;
Yap_InitCPredBack("genarg", 3, 3, init_genarg, cont_genarg,SafePredFlag);
CurrentModule = cm;
}