This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/pl/corout.yap
2009-06-05 09:48:00 -05:00

781 lines
24 KiB
Prolog

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: corout.pl *
* Last rev: *
* mods: *
* comments: Coroutines implementation *
* *
*************************************************************************/
%:- module(coroutining,[
%dif/2,
%when/2,
%block/1,
%wait/1,
%frozen/2
%]).
%
% operators defined in this module:
%
:- op(1150, fx, block).
%
% Tell the system how to present frozen goals.
%
:- assert((extensions_to_present_answer(Level) :-
'$show_frozen_goals'(Level))).
'$project_and_delayed_goals'(G,LGs) :-
attributes:all_attvars(LAV),
LAV = [_|_], !,
% SICStus compatible step,
% just try to simplify store by projecting constraints
% over query variables.
'$project_attributes'(LAV, G),
% now get a list of frozen goals.
attributes:all_attvars(NLAV),
'$get_goalist_from_attvars'(NLAV, LGs).
'$project_and_delayed_goals'(_,[]).
%
% wake_up_goal is called by the system whenever a suspended goal
% resumes.
%
/* The first case may happen if this variable was used for dif.
In this case, we need a way to keep the original
suspended goal around
*/
%'$wake_up_goal'([Module1|Continuation],G) :-
% '$write'(4,vsc_woke:G+[Module1|Continuation]:'
%'), fail.
'$wake_up_goal'([Module1|Continuation], LG) :-
%write(waking:LG),nl,
'$execute_woken_system_goals'(LG),
'$do_continuation'(Continuation, Module1).
%
% in the first two cases restore register immediately and proceed
% to continuation. In the last case take care with modules, but do
% not act as if a meta-call.
%
%
'$do_continuation'('$cut_by'(X), _) :- !,
'$$cut_by'(X).
'$do_continuation'('$restore_regs'(X), _) :- !,
'$restore_regs'(X).
'$do_continuation'('$restore_regs'(X,Y), _) :- !,
'$restore_regs'(X,Y).
'$do_continuation'(Continuation, Module1) :-
'$execute_continuation'(Continuation,Module1).
'$execute_continuation'(Continuation, Module1) :-
'$undefined'(Continuation, Module1), !,
'$undefp'([Module1|Continuation]).
'$execute_continuation'(Continuation, Mod) :-
% do not do meta-expansion nor any fancy stuff.
'$execute0'(Continuation, Mod).
'$execute_woken_system_goals'([]).
'$execute_woken_system_goals'([G|LG]) :-
'$execute_woken_system_goals'(LG),
'$execute_woken_system_goal'(G).
%
% X surely was bound, otherwise we would not be awaken.
%
'$execute_woken_system_goal'('$att_do'(V,New)) :-
( '$frozen_goals'(V, Goals) ->
'$call_atts'(V,New),
'$execute_frozen_goals'(Goals)
;
'$call_atts'(V,New)
).
'$call_atts'(V,_) :-
nonvar(V), !.
'$call_atts'(V,_) :-
'$undefined'(woken_att_do(_,_), attributes), !,
attributes:bind_attvar(V).
'$call_atts'(V,_) :-
'$att_bound'(V), !.
'$call_atts'(V,New) :-
attributes:woken_att_do(V,New).
'$execute_frozen_goals'([]).
'$execute_frozen_goals'([G0|Gs]) :-
'$execute_frozen_goal'(G0,G0),
'$execute_frozen_goals'(Gs).
%
% X and Y may not be bound (multiple suspensions on the same goal).
%
'$execute_frozen_goal'('$redo_dif'(Done, X, Y), G) :-
'$redo_dif'(Done, X, Y, G).
'$execute_frozen_goal'('$redo_freeze'(Done, V, Goal), _) :-
'$redo_freeze'(Done, V, Goal).
'$execute_frozen_goal'('$redo_eq'(Done, X, Y, Goal), G) :-
'$redo_eq'(Done, X, Y, Goal, G).
'$execute_frozen_goal'('$redo_ground'(Done, X, Goal), _) :-
'$redo_ground'(Done, X, Goal).
freeze(V, G) :-
var(V), !,
'$freeze_goal'(V,G).
freeze(_, G) :-
'$execute'(G).
'$freeze_goal'(V,VG) :-
var(VG), !,
'$current_module'(M),
'$freeze'(V, '$redo_freeze'(_Done,V,M:VG)).
'$freeze_goal'(V,M:G) :- !,
'$freeze'(V, '$redo_freeze'(_Done,V,M:G)).
'$freeze_goal'(V,G) :-
'$current_module'(M),
'$freeze'(V, '$redo_freeze'(_Done,V,M:G)).
%
%
% Dif is tricky because we need to wake up on the two variables being
% bound together, or on any variable of the term being bound to
% another. Also, the day YAP fully supports infinite rational trees,
% dif should work for them too. Hence, term comparison should not be
% implemented in Prolog.
%
% This is the way dif works. The '$can_unify' predicate does not know
% anything about dif semantics, it just compares two terms for
% equaility and is based on compare. If it succeeds without generating
% a list of variables, the terms are equal and dif fails. If it fails,
% dif succeeds.
%
% If it succeeds but it creates a list of variables, dif creates
% suspension records for all these variables on the '$redo_dif'(V,
% X, Y) goal. V is a flag that says whether dif has completed or not,
% X and Y are the original goals. Whenever one of these variables is
% bound, it calls '$redo_dif' again. '$redo_dif' will then check whether V
% was bound. If it was, dif has succeeded and redo_dif just
% exits. Otherwise, '$redo_dif' will call dif again to see what happened.
%
% Dif needs two extensions from the suspension engine:
%
% First, it needs
% for the engine to be careful when binding two suspended
% variables. Basically, in this case the engine must be sure to wake
% up one of the goals, as they may make dif fail. The way the engine
% does so is by searching the list of suspended variables, and search
% whether they share a common suspended goal. If they do, that
% suspended goal is added to the WokenList.
%
% Second, thanks to dif we may try to suspend on the same variable
% several times. dif calls a special version of freeze that checks
% whether that is in fact the case.
%
dif(X, Y) :- '$can_unify'(X, Y, LVars), !,
LVars = [_|_],
'$dif_suspend_on_lvars'(LVars, '$redo_dif'(_Done, X, Y)).
dif(_, _).
'$dif_suspend_on_lvars'([], _).
'$dif_suspend_on_lvars'([H|T], G) :-
'$freeze'(H, G),
'$dif_suspend_on_lvars'(T, G).
%
% This predicate is called whenever a variable dif was suspended on is
% bound. Note that dif may have already executed successfully.
%
% Three possible cases: dif has executed and Done is bound; we redo
% dif and the two terms either unify, hence we fail, or may unify, and
% we try to increase the number of suspensions; last, the two terms
% did not unify, we are done, so we succeed and bind the Done variable.
%
'$redo_dif'(Done, _, _, _) :- nonvar(Done), !.
'$redo_dif'(_, X, Y, G) :-
'$can_unify'(X, Y, LVars), !,
LVars = [_|_],
'$dif_suspend_on_lvars'(LVars, G).
'$redo_dif'('$done', _, _, _).
% If you called nonvar as condition for when, then you may find yourself
% here.
%
% someone else (that is Cond had ;) did the work, do nothing
%
'$redo_freeze'(Done, _, _) :- nonvar(Done), !.
%
% We still have some more conditions: continue the analysis.
%
'$redo_freeze'(Done, _, '$when'(C, G, Done)) :- !,
'$when'(C, G, Done).
%
% check if the variable was really bound
%
'$redo_freeze'(Done, V, G) :- var(V), !,
'$freeze'(V, '$redo_freeze'(Done,V,G)).
%
% I can't believe it: we're done and can actually execute our
% goal. Notice we have to say we are done, otherwise someone else in
% the disjunction might decide to wake up the goal themselves.
%
'$redo_freeze'('$done', _, G) :-
'$execute'(G).
%
% eq is a combination of dif and freeze
'$redo_eq'(Done, _, _, _, _) :- nonvar(Done), !.
'$redo_eq'(_, X, Y, _, G) :-
'$can_unify'(X, Y, LVars),
LVars = [_|_], !,
'$dif_suspend_on_lvars'(LVars, G).
'$redo_eq'(Done, _, _, '$when'(C, G, Done), _) :- !,
'$when'(C, G, Done).
'$redo_eq'('$done', _ ,_ , Goal, _) :-
'$execute'(Goal).
%
% ground is similar to freeze
'$redo_ground'(Done, _, _) :- nonvar(Done), !.
'$redo_ground'(Done, X, Goal) :-
'$non_ground'(X, Var), !,
'$freeze'(Var, '$redo_ground'(Done, X, Goal)).
'$redo_ground'(Done, _, '$when'(C, G, Done)) :- !,
'$when'(C, G, Done).
'$redo_ground'('$done', _, Goal) :-
'$execute'(Goal).
%
% support for when/2 built-in
%
when(Conds,Goal) :-
'$current_module'(Mod),
'$prepare_goal_for_when'(Goal, Mod, ModG),
'$when'(Conds, ModG, Done, [], LG), !,
%write(vsc:freezing(LG,Done)),nl,
'$suspend_when_goals'(LG, Done).
when(_,Goal) :-
'$execute'(Goal).
%
% support for when/2 like declaration.
%
%
% when will block on a conjunction or disjunction of nonvar, ground,
% ?=, where ?= is both terms being bound together
%
%
'$declare_when'(Cond, G) :-
'$generate_code_for_when'(Cond, G, Code),
'$current_module'(Module),
'$$compile'(Code, Code, 5, Module), fail.
'$declare_when'(_,_).
%
% use a meta interpreter for now
%
'$generate_code_for_when'(Conds, G,
( G :- '$when'(Conds, ModG, Done, [], LG), !,
'$suspend_when_goals'(LG, Done)) ) :-
'$current_module'(Mod),
'$prepare_goal_for_when'(G, Mod, ModG).
%
% make sure we have module info for G!
%
'$prepare_goal_for_when'(G, Mod, Mod:call(G)) :- var(G), !.
'$prepare_goal_for_when'(M:G, _, M:G) :- !.
'$prepare_goal_for_when'(G, Mod, Mod:G).
%
% now for the important bit
%
% Done is used to synchronise: when it is bound someone else did the
% goal and we can give up.
%
% $when/5 and $when_suspend succeds when there is need to suspend a goal
%
%
'$when'(V, G, Done, LG0, LGF) :- var(V), !,
'$do_error'(instantiation_error,when(V,G)).
'$when'(nonvar(V), G, Done, LG0, LGF) :-
'$when_suspend'(nonvar(V), G, Done, LG0, LGF).
'$when'(?=(X,Y), G, Done, LG0, LGF) :-
'$when_suspend'(?=(X,Y), G, Done, LG0, LGF).
'$when'(ground(T), G, Done, LG0, LGF) :-
'$when_suspend'(ground(T), G, Done, LG0, LGF).
'$when'((C1, C2), G, Done, LG0, LGF) :-
% leave it open to continue with when.
(
'$when'(C1, '$when'(C2, G, Done), Done, LG0, LGI)
->
LGI = LGF
;
% we solved C1, great, now we just have to solve C2!
'$when'(C2, G, Done, LG0, LGF)
).
'$when'((G1 ; G2), G, Done, LG0, LGF) :-
'$when'(G1, G, Done, LG0, LGI),
'$when'(G2, G, Done, LGI, LGF).
%
% Auxiliary predicate called from within a conjunction.
% Repeat basic code for when, as inserted in first clause for predicate.
%
'$when'(_, _, Done) :-
nonvar(Done), !.
'$when'(Cond, G, Done) :-
'$when'(Cond, G, Done, [], LG),
!,
'$suspend_when_goals'(LG, Done).
'$when'(_, G, '$done') :-
'$execute'(G).
%
% Do something depending on the condition!
%
% some one else did the work.
%
'$when_suspend'(_, _, Done, _, []) :- nonvar(Done), !.
%
% now for the serious stuff.
%
'$when_suspend'(nonvar(V), G, Done, LG0, LGF) :-
'$try_freeze'(V, G, Done, LG0, LGF).
'$when_suspend'(?=(X,Y), G, Done, LG0, LGF) :-
'$try_eq'(X, Y, G, Done, LG0, LGF).
'$when_suspend'(ground(X), G, Done, LG0, LGF) :-
'$try_ground'(X, G, Done, LG0, LGF).
'$try_freeze'(V, G, Done, LG0, LGF) :-
var(V),
LGF = ['$freeze'(V, '$redo_freeze'(Done, V, G))|LG0].
'$try_eq'(X, Y, G, Done, LG0, LGF) :-
'$can_unify'(X, Y, LVars), LVars = [_|_],
LGF = ['$dif_suspend_on_lvars'(LVars, '$redo_eq'(Done, X, Y, G))|LG0].
'$try_ground'(X, G, Done, LG0, LGF) :-
'$non_ground'(X, Var), % the C predicate that succeds if
% finding out the term is nonground
% and gives the first variable it
% finds. Notice that this predicate
% must know about svars.
LGF = ['$freeze'(Var, '$redo_ground'(Done, X, G))| LG0].
%
% When executing a when, if nobody succeeded, we need to create suspensions.
%
'$suspend_when_goals'([], _).
'$suspend_when_goals'(['$freeze'(V, G)|Ls], Done) :-
var(Done), !,
'$freeze'(V, G),
'$suspend_when_goals'(Ls, Done).
'$suspend_when_goals'(['$dif_suspend_on_lvars'(LVars, G)|LG], Done) :-
var(Done), !,
'$dif_suspend_on_lvars'(LVars, G),
'$suspend_when_goals'(LG, Done).
'$suspend_when_goals'([_|_], _).
%
% Support for wait declarations on goals.
% Or we also use the more powerful, SICStus like, "block" declarations.
%
% block or wait declarations must precede the first clause.
%
%
% I am using the simplest solution now: I'll add an extra clause at
% the beginning of the procedure to do this work. This creates a
% choicepoint and make things a bit slower, but it's probably not as
% significant as the remaining overheads.
%
'$block'(Conds) :-
'$generate_blocking_code'(Conds, _, Code),
'$current_module'(Module),
'$$compile'(Code, Code, 5, Module), fail.
'$block'(_).
'$generate_blocking_code'(Conds, G, Code) :-
'$extract_head_for_block'(Conds, G),
'$recorded'('$blocking_code','$code'(G,OldConds),R), !,
erase(R),
functor(G, Na, Ar),
'$current_module'(M),
abolish(M:Na, Ar),
'$generate_blocking_code'((Conds,OldConds), G, Code).
'$generate_blocking_code'(Conds, G, (G :- (If, !, when(When, G)))) :-
'$extract_head_for_block'(Conds, G),
recorda('$blocking_code','$code'(G,Conds),_),
'$generate_body_for_block'(Conds, G, If, When).
%
% find out what we are blocking on.
%
'$extract_head_for_block'((C1, _), G) :- !,
'$extract_head_for_block'(C1, G).
'$extract_head_for_block'(C, G) :-
functor(C, Na, Ar),
functor(G, Na, Ar).
%
% If we suspend on the conditions, we should continue
% execution. If we don't suspend we should fail so that we can take
% the next clause. To
% know what we have to do we just test how many variables we suspended
% on ;-).
%
%
% We generate code as follows:
%
% block a(-,-,?)
%
% (var(A1), var(A2) -> true ; fail), !, when((nonvar(A1);nonvar(A2)),G).
%
% block a(-,-,?), a(?,-, -)
%
% (var(A1), var(A2) -> true ; (var(A2), var(A3) -> true ; fail)), !,
% when(((nonvar(A1);nonvar(A2)),(nonvar(A2);nonvar(A3))),G).
'$generate_body_for_block'((C1, C2), G, (Code1 -> true ; Code2), (WhenConds,OtherWhenConds)) :- !,
'$generate_for_cond_in_block'(C1, G, Code1, WhenConds),
'$generate_body_for_block'(C2, G, Code2, OtherWhenConds).
'$generate_body_for_block'(C, G, (Code -> true ; fail), WhenConds) :-
'$generate_for_cond_in_block'(C, G, Code, WhenConds).
'$generate_for_cond_in_block'(C, G, Code, Whens) :-
C =.. [_|Args],
G =.. [_|GArgs],
'$fetch_out_variables_for_block'(Args,GArgs,L0Vars),
'$add_blocking_vars'(L0Vars, LVars),
'$generate_for_each_arg_in_block'(LVars, Code, Whens).
'$add_blocking_vars'([], [_]) :- !.
'$add_blocking_vars'(LV, LV).
'$fetch_out_variables_for_block'([], [], []).
'$fetch_out_variables_for_block'(['?'|Args], [_|GArgs], LV) :-
'$fetch_out_variables_for_block'(Args, GArgs, LV).
'$fetch_out_variables_for_block'(['-'|Args], [GArg|GArgs],
[GArg|LV]) :-
'$fetch_out_variables_for_block'(Args, GArgs, LV).
'$generate_for_each_arg_in_block'([], false, true).
'$generate_for_each_arg_in_block'([V], var(V), nonvar(V)) :- !.
'$generate_for_each_arg_in_block'([V|L], (var(V),If), (nonvar(V);Whens)) :-
'$generate_for_each_arg_in_block'(L, If, Whens).
%
% The wait declaration is a simpler and more efficient version of block.
%
'$wait'(Na/Ar) :-
functor(S, Na, Ar),
arg(1, S, A),
'$current_module'(M),
'$$compile'((S :- var(A), !, freeze(A, S)), (S :- var(A), !, freeze(A, S)), 5, M), fail.
'$wait'(_).
frozen(V, G) :- nonvar(V), !,
'$do_error'(type_error(variable,V),frozen(V,G)).
frozen(V, LG) :-
'$get_conj_from_attvars'([V], LG).
'$find_att_vars'([], []).
'$find_att_vars'([V|LGs], [V|AttVars]) :- attvar(V), !,
'$find_att_vars'(LGs, AttVars).
'$find_att_vars'([_|LGs], AttVars) :-
'$find_att_vars'(LGs, AttVars).
'$purge_done_goals'([], []).
'$purge_done_goals'([V|G0], GF) :- attvar(V), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'(['$redo_dif'(Done, _ , _)|G0], GF) :- nonvar(Done), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'(['$redo_freeze'(Done, _, _)|G0], GF) :- nonvar(Done), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'(['$redo_freeze'(_Done, _, CallCleanup)|G0], GF) :-
nonvar(CallCleanup),
% be careful about possibly adding extra binding at this point.
CallCleanup = _:T, nonvar(T), T = '$clean_call'(_,_), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'(['$redo_eq'(Done, _, _, _)|G0], GF) :- nonvar(Done), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'(['$redo_ground'(Done, _, _)|G0], GF) :- nonvar(Done), !,
'$purge_done_goals'(G0, GF).
'$purge_done_goals'([G|G0], [G|GF]) :-
'$purge_done_goals'(G0, GF).
'$convert_frozen_goal'(V, _, _, V, _) :- attvar(V), !.
'$convert_frozen_goal'('$redo_dif'(Done, X, Y), LV, Done, [X,Y|LV], dif(X,Y)).
'$convert_frozen_goal'('$redo_freeze'(Done, FV, G), LV, Done, [FV|LV], G).
'$convert_frozen_goal'('$redo_eq'(Done, X, Y, G), LV, Done, [X,Y|LV], G).
'$convert_frozen_goal'('$redo_ground'(Done, V, G), LV, Done, [V|LV], G).
'$fetch_same_done_goals'([], _, [], []).
'$fetch_same_done_goals'([V|G0], Done, NL, GF) :- attvar(V), !,
'$fetch_same_done_goals'(G0, Done, NL, GF).
'$fetch_same_done_goals'(['$redo_dif'(Done, X , Y)|G0], D0, [X,Y|LV], GF) :-
Done == D0, !,
'$fetch_same_done_goals'(G0, D0, LV, GF).
'$fetch_same_done_goals'(['$redo_freeze'(Done, V, _)|G0], D0, [V|LV], GF) :-
Done == D0, !,
'$fetch_same_done_goals'(G0, D0, LV, GF).
'$fetch_same_done_goals'(['$redo_eq'(Done, X, Y, _)|G0], D0, [X,Y|LV], GF) :-
Done == D0, !,
'$fetch_same_done_goals'(G0, D0, LV, GF).
'$fetch_same_done_goals'(['$redo_ground'(Done, G, _)|G0], D0, [G|LV], GF) :-
Done == D0, !,
'$fetch_same_done_goals'(G0, D0, LV, GF).
'$fetch_same_done_goals'([G|G0], D0, LV, [G|GF]) :-
'$fetch_same_done_goals'(G0, D0, LV, GF).
call_residue_vars(Goal,Residue) :-
attributes:all_attvars(Vs0),
call(Goal),
attributes:all_attvars(Vs),
% this should not be actually strictly necessary right now.
% but it makes it a safe bet.
sort(Vs, Vss),
sort(Vs0, Vs0s),
'$ord_remove'(Vss, Vs0s, Residue).
'$ord_remove'([], _, []).
'$ord_remove'([V|Vs], [], [V|Vs]).
'$ord_remove'([V1|Vss], [V2|Vs0s], Residue) :-
( V1 == V2 ->
'$ord_remove'(Vss, Vs0s, Residue)
;
V1 @< V2 ->
Residue = [V1|ResidueF],
'$ord_remove'(Vss, [V2|Vs0s], ResidueF)
;
'$ord_remove'([V1|Vss], Vs0s, Residue)
).
copy_term(Term, Copy, Goals) :-
term_variables(Term, TVars),
'$get_goalist_from_attvars'(TVars, Goals0),
copy_term_nat([Term|Goals0], [Copy|Goals]).
call_residue(Goal,Residue) :-
var(Goal), !,
'$do_error'(instantiation_error,call_residue(Goal,Residue)).
call_residue(Module:Goal,Residue) :-
atom(Module), !,
'$call_residue'(Goal,Module,Residue).
call_residue(Goal,Residue) :-
'$current_module'(Module),
'$call_residue'(Goal,Module,Residue).
'$call_residue'(Goal,Module,Residue) :-
'$read_svar_list'(OldAttsList),
copy_term_nat(Goal, NGoal),
( '$set_svar_list'(CurrentAttsList),
'$system_catch'(NGoal,Module,Error,'$residue_catch_trap'(Error,OldAttsList)),
'$project_and_delayed_goals'(NGoal,Residue0),
'$add_vs_to_vlist'(Residue0, Residue),
( '$set_svar_list'(OldAttsList),
copy_term_nat(NGoal+NResidue, Goal+Residue)
;
'$set_svar_list'(CurrentAttsList), fail
)
;
'$set_svar_list'(OldAttsList), fail
).
'$add_vs_to_vlist'([], []).
'$add_vs_to_vlist'([G|Residue0], [Vs-G|Residue]) :-
term_variables(G, TVs),
'$pick_att_vars'(TVs, Vs),
'$add_vs_to_vlist'(Residue0, Residue).
% make sure we set the suspended goal list to its previous state!
'$residue_catch_trap'(Error,OldAttsList) :-
'$set_svar_list'(OldAttsList),
throw(Error).
% make sure we have installed a SICStus like constraint solver.
'$project_attributes'(_, _) :-
'$undefined'(modules_with_attributes(_),attributes), !.
'$project_attributes'(AllVs, G) :-
attributes:modules_with_attributes(LMods),
term_variables(G, InputVs),
'$pick_att_vars'(InputVs, AttIVs),
'$project_module'(LMods, AttIVs, AllVs).
'$pick_att_vars'([],[]).
'$pick_att_vars'([V|L],[V|NL]) :- attvar(V), !,
'$pick_att_vars'(L,NL).
'$pick_att_vars'([_|L],NL) :-
'$pick_att_vars'(L,NL).
'$project_module'([], _, _).
'$project_module'([Mod|LMods], LIV, LAV) :-
current_predicate(Mod:project_attributes/2),
'$notrace'(Mod:project_attributes(LIV, LAV)), !,
attributes:all_attvars(NLAV),
'$project_module'(LMods,LIV,NLAV).
'$project_module'([_|LMods], LIV, LAV) :-
'$project_module'(LMods,LIV,LAV).
'$convert_att_vars'(_, []) :-
% do nothing
'$undefined'(convert_att_var(Vs,LIV),attributes), !.
'$convert_att_vars'(Vs0, LGs) :-
'$sort'(Vs0, Vs),
'$do_convert_att_vars'(Vs0, LGs).
'$do_convert_att_vars'([],[]).
'$do_convert_att_vars'([V|LAV], NGs) :-
attvar(V),
attributes:convert_att_var(V,G),
G \= true,
!,
'$split_goals_for_catv'(G,V,NGs,IGs),
'$do_convert_att_vars'(LAV, IGs).
'$do_convert_att_vars'([_|LAV], Gs) :-
'$do_convert_att_vars'(LAV, Gs).
'$split_goals_for_catv'((G,NG),V,[V-G|Gs],Gs0) :- !,
'$split_goals_for_catv'(NG,V,Gs,Gs0).
'$split_goals_for_catv'(NG,V,[V-NG|Gs],Gs).
'$vars_interset_for_constr'([V1|_],[V2|_]) :-
V1 == V2, !.
'$vars_interset_for_constr'([V1|GV],[V2|LIV]) :-
V1 @< V2, !,
'$vars_interset_for_constr'(GV,[V2|LIV]).
'$vars_interset_for_constr'([V1|GV],[_|LIV]) :-
'$vars_interset_for_constr'([V1|GV],LIV).
'$process_when'('$when'(_,G,_), NG) :- !,
'$process_when'(G, NG).
'$process_when'(G, G).
%'$freeze'(V,G) :-
% attributes:get_att(V, 0, Gs), write(G+Gs),nl,fail.
'$freeze'(V,G) :-
'$update_att'(V, G).
'$update_att'(V, G) :-
attributes:get_module_atts(V, prolog(_,Gs)), !,
attributes:put_module_atts(V, prolog(_,[G|Gs])).
'$update_att'(V, G) :-
attributes:put_module_atts(V, prolog(_,[G])).
'$goal_in'(G,[G1|_]) :- G == G1, !.
'$goal_in'(G,[_|Gs]) :-
'$goal_in'(G,Gs).
'$frozen_goals'(V,Gs) :-
var(V),
attributes:get_att(V, prolog, 2, Gs), nonvar(Gs).
%
% given a list of attributed variables, generate a conjunction of goals.
%
'$get_conj_from_attvars'(TVars, Goals) :-
'$get_goalist_from_attvars'(TVars, [], GoalList, []),
'$list_to_conjunction'(GoalList, Goals).
%
% same, but generate list
%
'$get_goalist_from_attvars'(TVars, GoalList) :-
'$get_goalist_from_attvars'(TVars, [], GoalList, []).
'$get_goalist_from_attvars'([], _, GoalList, GoalList).
'$get_goalist_from_attvars'([V|TVars], DonesSoFar, GoalListF, GoalList0) :-
'$get_goalist_from_attvar'(V, DonesSoFar, MoreDonesSoFar, GoalListF, GoalListI),
'$get_goalist_from_attvars'(TVars, MoreDonesSoFar, GoalListI, GoalList0).
'$get_goalist_from_attvar'(V, DonesSoFar, MoreDonesSoFar, GoalListF, GoalList0) :- attvar(V), !,
attributes:get_all_atts(V, AllAtts),
'$all_atts_to_goals'(AllAtts, V, DonesSoFar, MoreDonesSoFar, GoalListF, GoalList0).
'$get_goalist_from_attvar'(_, DonesSoFar, DonesSoFar, GoalList, GoalList).
'$all_atts_to_goals'(AllAtts, _, DonesSoFar, DonesSoFar, GoalList, GoalList) :- var(AllAtts), !.
'$all_atts_to_goals'(AllAtts, V, DonesSoFar, MoreDonesSoFar, GoalListF, GoalList0) :-
functor(AllAtts, Mod, _),
arg(1, AllAtts, MoreAtts),
'$attgoals_for_module'(Mod, V, AllAtts, DonesSoFar, IDonesSoFar, GoalListF, GoalListI),
'$all_atts_to_goals'(MoreAtts, V, IDonesSoFar, MoreDonesSoFar, GoalListI, GoalList0).
%
% check constraints for variable
%
'$attgoals_for_module'(prolog, V, prolog(_,Gs), DonesSoFar, MoreDonesSoFar, GoalListF, GoalList0) :- !,
% dif, when, freeze
'$attgoals_for_prolog'(Gs, V, DonesSoFar, MoreDonesSoFar, GoalListF, GoalList0).
'$attgoals_for_module'(Mod, V, _Gs, DonesSoFar, DonesSoFar, GoalListF, GoalList0) :-
% SWI, HProlog
current_predicate(Mod:attribute_goals/3), !,
(
'$notrace'(Mod:attribute_goals(V,GoalListF,GoalList0))
->
true
;
GoalListF = GoalList0
).
'$attgoals_for_module'(Mod, V, _, DonesSoFar, DonesSoFar, GoalListF, GoalList0) :-
% SICStus
current_predicate(Mod:attribute_goal/2), !,
(
'$notrace'(Mod:attribute_goal(V,G))
->
GoalListF = [G|GoalList0]
;
GoalListF = GoalList0
).
'$attgoals_for_module'(Mod, V, _, DonesSoFar, DonesSoFar, GoalList, GoalList).
'$attgoals_for_prolog'([], _, DonesSoFar, DonesSoFar, GoalList, GoalList).
'$attgoals_for_prolog'([G|AllAtts], V, DonesSoFar, MoreDonesSoFar, [AttGoal|GoalListI], GoalList0) :-
'$attgoal_for_prolog'(G, Done, AttGoal),
'$not_vmember'(Done, DonesSoFar), !,
'$attgoals_for_prolog'(AllAtts, V, [Done|DonesSoFar], MoreDonesSoFar, GoalListI, GoalList0).
'$attgoals_for_prolog'([_|AllAtts], V, DonesSoFar, MoreDonesSoFar, GoalListI, GoalList0) :-
'$attgoals_for_prolog'(AllAtts, V, DonesSoFar, MoreDonesSoFar, GoalListI, GoalList0).
'$attgoal_for_prolog'('$redo_dif'(Done, X, Y), Done, prolog:dif(X,Y)).
'$attgoal_for_prolog'('$redo_freeze'(_, _, _:'$clean_call'(_,_)), _, _) :- !, fail.
'$attgoal_for_prolog'('$redo_freeze'(Done, V, Goal), Done, prolog:freeze(V,Goal)).
'$attgoal_for_prolog'('$redo_eq'(Done, X, Y, Goal), Done, prolog:when(X=Y,Goal)).
'$attgoal_for_prolog'('$redo_ground'(Done, X, Goal), Done, prolog:when(ground(X),Goal)).
'$not_vmember'(_, []).
'$not_vmember'(V, [V1|DonesSoFar]) :-
V \== V1,
'$not_vmember'(V, DonesSoFar).
'$list_to_conjunction'([], true).
'$list_to_conjunction'([G], G) :- !.
'$list_to_conjunction'([G|GoalList], (G,Goals0)) :-
'$list_to_conjunction'(GoalList, Goals0).