This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/pl/sort.yap
2012-03-22 22:41:41 +00:00

129 lines
3.1 KiB
Prolog

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: sort.pl *
* Last rev: *
* mods: *
* comments: sorting in Prolog *
* *
*************************************************************************/
/* The three sorting routines are all variations of merge-sort, done by
bisecting the list, sorting the nearly equal halves, and merging the
results. The half-lists aren't actually constructed, the number of
elements is counted instead (which is why 'length' is in this file).
*/
% length of a list.
length(L, M) :-
'$skip_list'(M0, L, R),
( R == [] -> M = M0 ;
var(R) -> '$$_length'(R, M, M0) ;
'$do_error'(type_error(list,L),length(L,M))
).
%
% in case A1 is unbound or a difference list, things get tricky
%
'$$_length'(R, M, M0) :-
( var(M) -> '$$_length1'(R,M,M0)
; M >= M0 -> '$$_length2'(R,M,M0) ).
%
% Size is unbound, generate lists
%
'$$_length1'([], M, M).
'$$_length1'([_|L], O, N) :-
M is N + 1,
'$$_length1'(L, O, M).
%
% Size is bound, generate single list
%
'$$_length2'(NL, O, N) :-
( N =:= O -> NL = [];
M is N + 1, NL = [_|L], '$$_length2'(L, O, M) ).
sort(L,O) :-
'$skip_list'(NL,L,RL),
( RL == [] -> true ;
var(RL) -> '$do_error'(instantiation_error,sort(L,O)) ;
'$do_error'(type_error(list,L),sort(L,O))
),
(
nonvar(O)
->
(
O == []
->
L == []
;
'$skip_list'(NO,O,RO),
( RO == [] -> NO =< NL ;
var(RO) -> NO =< NL ;
'$do_error'(type_error(list,O),sort(L,O))
)
)
; true
),
'$sort'(L,O).
msort(L,O) :-
'$msort'(L,O).
keysort(L,O) :-
'$keysort'(L,O).
:- meta_predicate prolog:predsort(3,+,-).
%% predsort(:Compare, +List, -Sorted) is det.
%
% Sorts similar to sort/2, but determines the order of two terms
% by calling Compare(-Delta, +E1, +E2). This call must unify
% Delta with one of <, > or =. If built-in predicate compare/3 is
% used, the result is the same as sort/2. See also keysort/2.
predsort(P, L, R) :-
length(L, N),
predsort(P, N, L, _, R1), !,
R = R1.
predsort(P, 2, [X1, X2|L], L, R) :- !,
call(P, Delta, X1, X2),
sort2(Delta, X1, X2, R).
predsort(_, 1, [X|L], L, [X]) :- !.
predsort(_, 0, L, L, []) :- !.
predsort(P, N, L1, L3, R) :-
N1 is N // 2,
plus(N1, N2, N),
predsort(P, N1, L1, L2, R1),
predsort(P, N2, L2, L3, R2),
predmerge(P, R1, R2, R).
sort2(<, X1, X2, [X1, X2]).
sort2(=, X1, _, [X1]).
sort2(>, X1, X2, [X2, X1]).
predmerge(_, [], R, R) :- !.
predmerge(_, R, [], R) :- !.
predmerge(P, [H1|T1], [H2|T2], Result) :-
call(P, Delta, H1, H2),
predmerge(Delta, P, H1, H2, T1, T2, Result).
predmerge(>, P, H1, H2, T1, T2, [H2|R]) :-
predmerge(P, [H1|T1], T2, R).
predmerge(=, P, H1, _, T1, T2, [H1|R]) :-
predmerge(P, T1, T2, R).
predmerge(<, P, H1, H2, T1, T2, [H1|R]) :-
predmerge(P, T1, [H2|T2], R).