This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/C/save.c
vsc f22f7434c7 fixes to?\012handle interrupts ^C in Windows.
Improvements to configure scripts for WIN32 configurations.
--with-readline= option for configure


git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@96 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
2001-06-22 17:53:36 +00:00

2966 lines
79 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: save.c *
* Last rev: *
* mods: *
* comments: saving and restoring a Prolog computation *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "@(#)save.c 1.3 3/15/90";
#endif
#include "absmi.h"
#include "alloc.h"
#include "yapio.h"
#include "sshift.h"
#include "Foreign.h"
#if HAVE_STRING_H
#include <string.h>
#endif
#if !HAVE_STRNCAT
#define strncat(X,Y,Z) strcat(X,Y)
#endif
#if !HAVE_STRNCPY
#define strncpy(X,Y,Z) strcpy(X,Y)
#endif
#if HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
/********* hack for accesing several kinds of terms. Should be cleaned **/
#define AbsTerm(V) ((Term) (V))
extern char StartUpFile[];
static char end_msg[256] ="*** End of YAP saved state *****";
#ifdef DEBUG
/*
* FOR DEBUGGING define DEBUG_RESTORE0 to check the file stuff,
* define DEBUG_RESTORE1 to see if it is able to prepare the chain,
* define DEBUG_RESTORE2 to see how things are going,
* define DEBUG_RESTORE3 to check if the atom chain is still a working
* chain,
* define DEBUG_RESTORE4 if you want to set the output for some
* particular file,
* define DEBUG_RESTORE5 if you want to see how the stacks are being
* cleaned up,
* define DEBUG_RESTORE6 if you want to follow the execution in
*
* Also a file is defined where you can write things, by default stderr
*
* Good Luck
*/
#endif
STATIC_PROTO(void myread, (int, char *, Int));
STATIC_PROTO(void mywrite, (int, char *, Int));
STATIC_PROTO(int open_file, (char *, int));
STATIC_PROTO(void close_file, (void));
STATIC_PROTO(void putout, (CELL));
STATIC_PROTO(void putcellptr, (CELL *));
STATIC_PROTO(CELL get_cell, (void));
STATIC_PROTO(CELL *get_cellptr, ( /* CELL * */ void));
STATIC_PROTO(void put_info, (int, int));
STATIC_PROTO(void save_regs, (int));
STATIC_PROTO(void save_code_info, (void));
STATIC_PROTO(void save_heap, (void));
STATIC_PROTO(void save_stacks, (int));
STATIC_PROTO(void save_crc, (void));
STATIC_PROTO(Int do_save, (int));
STATIC_PROTO(Int p_save, (void));
STATIC_PROTO(Int p_save_program, (void));
STATIC_PROTO(int check_header, (void));
STATIC_PROTO(void get_heap_info, (void));
STATIC_PROTO(void get_regs, (int));
STATIC_PROTO(void get_insts, (OPCODE []));
STATIC_PROTO(void get_hash, (void));
STATIC_PROTO(void CopyCode, (void));
STATIC_PROTO(void CopyStacks, (void));
STATIC_PROTO(int get_coded, (int, OPCODE []));
STATIC_PROTO(void restore_codes, (void));
STATIC_PROTO(void ConvDBList, (Term, char *,CELL));
STATIC_PROTO(Term AdjustDBTerm, (Term));
STATIC_PROTO(void RestoreDB, (DBEntry *));
STATIC_PROTO(void RestoreClause, (Clause *));
STATIC_PROTO(void CleanClauses, (CODEADDR, CODEADDR));
STATIC_PROTO(void rehash, (CELL *, int, int));
STATIC_PROTO(void CleanCode, (PredEntry *));
STATIC_PROTO(void RestoreEntries, (PropEntry *));
STATIC_PROTO(void RestoreInvisibleAtoms, (void));
STATIC_PROTO(void RestoreFreeSpace, (void));
STATIC_PROTO(void restore_heap, (void));
#ifdef DEBUG_RESTORE3
STATIC_PROTO(void ShowAtoms, (void));
STATIC_PROTO(void ShowEntries, (PropEntry *));
#endif
STATIC_PROTO(int OpenRestore, (char *));
STATIC_PROTO(void CloseRestore, (void));
STATIC_PROTO(int check_opcodes, (OPCODE []));
STATIC_PROTO(void RestoreHeap, (OPCODE [], int));
STATIC_PROTO(Int p_restore, (void));
STATIC_PROTO(void restore_heap_regs, (void));
STATIC_PROTO(void restore_regs, (int));
STATIC_PROTO(void ConvDBStruct, (Term, char *, CELL));
#ifdef MACYAP
STATIC_PROTO(void NewFileInfo, (long, long));
extern int DefVol;
#endif
#if HAVE_IO_H
#include <io.h>
#endif
#ifdef LIGHT
#include <unix.h>
#include <strings.h>
void
LightBug(char *);
static void
LightBug(s)
char *s;
{
}
#endif /* LIGHT */
#if SHORT_INTS
#ifdef M_WILLIAMS
#include <fcntl.h>
#endif
static void
myread(int fd, char *buff, Int len)
{
while (len > 16000) {
int nchars = read(fd, buff, 16000);
if (nchars <= 0)
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
len -= 16000;
buff += 16000;
}
read(fd, buff, (unsigned) len);
}
static void
mywrite(int fd, char *buff, Int len)
{
while (len > 16000) {
write(fd, buff, 16000);
len -= 16000;
buff += 16000;
}
write(fd, buff, (unsigned) len);
}
#else /* SHORT_INTS */
#if SUN
#include <sys/file.h>
#endif
inline static
void myread(int fd, char *buffer, Int len) {
int nread;
while (len > 0) {
nread = read(fd, buffer, (int)len);
if (nread < 1) {
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
}
buffer += nread;
len -= nread;
}
}
inline static
void mywrite(int fd, char *buff, Int len) {
Int nwritten;
while (len > 0) {
nwritten = (Int)write(fd, buff, (int)len);
if (nwritten == -1) {
Error(SYSTEM_ERROR,TermNil,"write error while saving");
}
buff += nwritten;
len -= nwritten;
}
}
#endif /* SHORT_INTS */
#define FullSaved 1
#define Atomics 0
#define Funcs 1
/* Where the code was before */
typedef CELL *CELLPOINTER;
int splfild = 0;
#ifdef DEBUG
#ifdef DEBUG_RESTORE4
static FILE *errout;
#else
#define errout YP_stderr
#endif
#endif /* DEBUG */
static Int OldHeapUsed;
static CELL which_save;
/* Open a file to read or to write */
static int
open_file(char *ss, int flag)
{
int splfild;
#ifdef M_WILLIAMS
if (flag & O_CREAT)
splfild = creat(ss, flag);
else
splfild = open(ss, flag);
if (splfild < 0) {
#else
#ifdef O_BINARY
#if _MSC_VER
if ((splfild = _open(ss, flag | O_BINARY), _S_IREAD | _S_IWRITE) < 0)
#else
if ((splfild = open(ss, flag | O_BINARY), 0755) < 0)
#endif
#else /* O_BINARY */
if ((splfild = open(ss, flag, 0755)) < 0)
#endif /* O_BINARY */
#endif /* M_WILLIAMS */
{
splfild = 0; /* We do not have an open file */
return(-1);
}
#ifdef undf0
YP_fprintf(errout, "Opened file %s\n", ss);
#endif
return(splfild);
}
static void
close_file(void)
{
close(splfild);
splfild = 0;
}
/* stores a cell in a file */
static void
putout(CELL l)
{
mywrite(splfild, (char *) &l, sizeof(CELL));
}
/* stores a pointer to a cell in a file */
static void
putcellptr(CELL *l)
{
mywrite(splfild, (char *) &l, sizeof(CELLPOINTER));
}
/* gets a cell from a file */
static CELL
get_cell(void)
{
CELL l;
myread(splfild, (char *) &l, Unsigned(sizeof(CELL)));
return (l);
}
/* gets a pointer to cell from a file */
static CELL *
get_cellptr(void)
{
CELL *l;
myread(splfild, (char *) &l, Unsigned(sizeof(CELLPOINTER)));
return (l);
}
/*
* writes the header (at the moment YAPV*), info about what kind of saved
* set, the work size, and the space ocuppied
*/
static void
put_info(int info, int mode)
{
char msg[256];
sprintf(msg, "#!/bin/sh\nexec_dir=${YAPBINDIR:-%s}\nexec $exec_dir/yap $0 \"$@\"\n%cYAPV%s", BIN_DIR, 1, version_number);
mywrite(splfild, msg, strlen(msg) + 1);
putout(Unsigned(info));
/* say whether we just saved the heap or everything */
putout(mode);
/* current state of stacks, to be used by SavedInfo */
#if defined(YAPOR) || defined(TABLING)
/* space available in heap area */
putout(Unsigned(GlobalBase)-Unsigned(HeapBase));
/* space available for stacks */
putout(Unsigned(LocalBase)-Unsigned(GlobalBase)+CellSize);
#else
/* space available in heap area */
putout(Unsigned(GlobalBase)-Unsigned(HeapBase));
/* space available for stacks */
putout(Unsigned(LocalBase)-Unsigned(GlobalBase));
#endif /* YAPOR || TABLING */
/* space available for trail */
putout(Unsigned(TrailTop)-Unsigned(TrailBase));
/* Space used in heap area */
putout(Unsigned(HeapTop)-Unsigned(HeapBase));
/* Space used for local stack */
putout(Unsigned(LCL0)-Unsigned(ASP));
/* Space used for global stack */
putout(Unsigned(H) - Unsigned(GlobalBase));
/* Space used for trail */
putout(Unsigned(TR) - Unsigned(TrailBase));
}
static void
save_regs(int mode)
{
/* save all registers */
putout((CELL)compile_arrays);
if (mode == DO_EVERYTHING) {
putcellptr((CELL *)CP);
putcellptr(ENV);
putcellptr(ASP);
/* putout((CELL)N); */
putcellptr(H0);
putcellptr(LCL0);
putcellptr(H);
putcellptr(HB);
putcellptr((CELL *)B);
putcellptr((CELL *)TR);
putcellptr(YENV);
putcellptr(S);
putcellptr((CELL *)P);
putcellptr((CELL *)MyTR);
putout(CreepFlag);
putcellptr((CELL *)TopB);
putcellptr((CELL *)DelayedB);
putout(FlipFlop);
putcellptr(CurrentModulePtr);
#ifdef COROUTINING
putout(DelayedVars);
#endif
}
putcellptr((CELL *)HeapPlus);
if (mode == DO_EVERYTHING) {
#ifdef COROUTINING
putout(WokenGoals);
#endif
#ifdef DEPTH_LIMIT
putout(DEPTH);
#endif
}
/* The operand base */
putcellptr(CellPtr(XREGS));
putout(which_save);
/* Now start by saving the code */
/* the heap boundaries */
putcellptr(CellPtr(HeapBase));
putcellptr(CellPtr(HeapTop));
/* and the space it ocuppies */
putout(Unsigned(HeapUsed));
/* Then the start of the free code */
putcellptr(CellPtr(FreeBlocks));
if (mode == DO_EVERYTHING) {
/* put the old trail base, just in case it moves again */
putout(ARG1);
if (which_save == 2) {
putout(ARG2);
}
putcellptr(CellPtr(TrailBase));
}
}
static void
save_code_info(void)
{
/* First the instructions */
{
op_numbers i;
OPCODE my_ops[_std_top+1];
for (i = _Ystop; i <= _std_top; ++i)
my_ops[i] = opcode(i);
mywrite(splfild, (char *)my_ops, sizeof(OPCODE)*(_std_top+1));
}
/* Then the c-functions */
putout(NUMBER_OF_CPREDS);
{
UInt i;
for (i = 0; i < NUMBER_OF_CPREDS; ++i)
putcellptr(CellPtr(c_predicates[i]));
}
/* Then the cmp-functions */
putout(NUMBER_OF_CMPFUNCS);
{
UInt i;
for (i = 0; i < NUMBER_OF_CMPFUNCS; ++i) {
putcellptr(CellPtr(cmp_funcs[i].p));
putcellptr(CellPtr(cmp_funcs[i].f));
}
}
/* and the current character codes */
mywrite(splfild, chtype, NUMBER_OF_CHARS);
}
static void
save_heap(void)
{
int j;
/* Then save the whole heap */
#if defined(YAPOR) || defined(TABLING)
/* skip the local and global data structures */
j = Unsigned(&GLOBAL) - Unsigned(HeapBase);
putout(j);
mywrite(splfild, (char *) HeapBase, j);
#ifdef USE_HEAP
j = Unsigned(HeapTop) - Unsigned(&HashChain);
putout(j);
mywrite(splfild, (char *) &HashChain, j);
#else
j = Unsigned(BaseAllocArea) - Unsigned(&HashChain);
putout(j);
mywrite(splfild, (char *) &HashChain, j);
j = Unsigned(HeapTop) - Unsigned(TopAllocBlockArea);
putout(j);
mywrite(splfild, (char *) TopAllocBlockArea, j);
#endif
#else
j = Unsigned(HeapTop) - Unsigned(HeapBase);
/* store 10 more cells because of the memory manager */
mywrite(splfild, (char *) HeapBase, j);
#endif
}
static void
save_stacks(int mode)
{
int j;
switch (mode) {
case DO_EVERYTHING:
/* Now, go and save the state */
/* Save the local stack */
j = Unsigned(LCL0) - Unsigned(ASP);
mywrite(splfild, (char *) ASP, j);
/* Save the global stack */
j = Unsigned(H) - Unsigned(GlobalBase);
mywrite(splfild, (char *) GlobalBase, j);
/* Save the trail */
j = Unsigned(TR) - Unsigned(TrailBase);
mywrite(splfild, (char *) TrailBase, j);
break;
case DO_ONLY_CODE:
{
tr_fr_ptr tr_ptr = TR;
while (tr_ptr != (tr_fr_ptr)TrailBase) {
CELL val = TrailTerm(tr_ptr-1);
if (!IsVarTerm(val) && IsPairTerm(val)) {
CELL *d1 = RepPair(val);
if (d1 < (CELL *)HeapTop)
putcellptr(d1);
}
tr_ptr--;
}
}
putcellptr(NULL);
break;
}
}
static void
save_crc(void)
{
/* Save a CRC */
mywrite(splfild, end_msg, 256);
#ifdef MACYAP
NewFileInfo('TEXT', 'MYap');
if (DefVol)
SetVol(0l, DefVol);
DefVol = 0;
#endif
}
static Int
do_save(int mode) {
#ifdef MACYAP
NewFileInfo('YAPS', 'MYap');
#endif
Term t1 = Deref(ARG1);
if (!GetName(FileNameBuf, t1)) {
Error(TYPE_ERROR_LIST,t1,"save/1");
return(FALSE);
}
CloseStreams(TRUE);
if ((splfild = open_file(FileNameBuf, O_WRONLY | O_CREAT)) < 0) {
Error(SYSTEM_ERROR,MkAtomTerm(LookupAtom(FileNameBuf)),
"restore/1, open(%s)", strerror(errno));
return(FALSE);
}
put_info(FullSaved, mode);
save_regs(mode);
save_code_info();
save_heap();
save_stacks(mode);
save_crc();
close_file();
return (TRUE);
}
/* Saves a complete prolog environment */
static Int
p_save(void)
{
which_save = 1;
return(do_save(DO_EVERYTHING));
}
/* Saves a complete prolog environment */
static Int
p_save2(void)
{
which_save = 2;
return(do_save(DO_EVERYTHING) && unify(ARG2,MkIntTerm(1)));
}
/* Just save the program, not the stacks */
static Int
p_save_program(void)
{
which_save = 0;
return(do_save(DO_ONLY_CODE));
}
/* Now, to restore the saved code */
/* First check out if we are dealing with a valid file */
static int
check_header(void)
{
char pp[80];
char msg[256];
CELL hp_size, gb_size, lc_size, tr_size, mode;
/* skip the first line */
do {
myread(splfild, pp, 1);
} while (pp[0] != 1);
/* now check the version */
sprintf(msg, "YAPV%s", version_number);
myread(splfild, pp, Unsigned(strlen(msg) + 1));
if (strcmp(pp, msg) != 0) {
Error(SYSTEM_ERROR,TermNil,"not a saved Prolog state");
return(FAIL_RESTORE);
}
/* check info on header */
/* ignore info on saved state */
get_cell();
/* check the restore mode */
if ((mode = get_cell()) != DO_EVERYTHING && mode != DO_ONLY_CODE) {
Error(SYSTEM_ERROR,TermNil,"corrupted saved state");
return(FAIL_RESTORE);
}
/* ignore info on stacks size */
get_cell();
get_cell();
get_cell();
/* now, check whether we got enough enough space to load the
saved space */
if ((hp_size = get_cell()) > Unsigned(AuxTop) - Unsigned(HeapBase)) {
Error(SYSTEM_ERROR,TermNil,"out of heap space, Yap needs %d", hp_size);
return(FAIL_RESTORE);
}
if (mode == DO_EVERYTHING) {
if ((lc_size = get_cell())+(gb_size=get_cell()) > Unsigned(LocalBase) - Unsigned(GlobalBase)) {
Error(SYSTEM_ERROR,TermNil,"out of stack space, Yap needs %d", lc_size+gb_size);
return(FALSE);
}
if ((tr_size = get_cell()) > Unsigned(TrailTop) - Unsigned(TrailBase)) {
Error(SYSTEM_ERROR,TermNil,"out of trail space, Yap needs %d", tr_size);
return(FAIL_RESTORE);
}
} else {
/* skip cell size */
get_cell();
get_cell();
get_cell();
}
return(mode);
}
/* Gets the state of the heap, and evaluates the related variables */
static void
get_heap_info(void)
{
OldHeapBase = (ADDR) get_cellptr();
OldHeapTop = (ADDR) get_cellptr();
OldHeapUsed = (Int) get_cell();
FreeBlocks = (BlockHeader *) get_cellptr();
HDiff = Unsigned(HeapBase) - Unsigned(OldHeapBase);
}
/* Gets the register array */
/* Saves the old bases for the work areas */
/* and evaluates the difference from the old areas to the new ones */
static void
get_regs(int flag)
{
CELL *NewGlobalBase = (CELL *)GlobalBase;
CELL *NewLCL0 = LCL0;
CELL *OldXREGS;
/* Get regs */
compile_arrays = (int)get_cell();
if (flag == DO_EVERYTHING) {
CP = (yamop *)get_cellptr();
ENV = get_cellptr();
ASP = get_cellptr();
/* N = get_cell(); */
H0 = get_cellptr();
LCL0 = get_cellptr();
H = get_cellptr();
HB = get_cellptr();
B = (choiceptr)get_cellptr();
TR = (tr_fr_ptr)get_cellptr();
YENV = get_cellptr();
S = get_cellptr();
P = (yamop *)get_cellptr();
MyTR = (tr_fr_ptr)get_cellptr();
CreepFlag = get_cell();
TopB = (choiceptr)get_cellptr();
DelayedB = (choiceptr)get_cellptr();
FlipFlop = get_cell();
CurrentModulePtr = get_cellptr();
#ifdef COROUTINING
DelayedVars = get_cell();
#endif
}
HeapPlus = (ADDR)get_cellptr();
if (flag == DO_EVERYTHING) {
#ifdef COROUTINING
WokenGoals = get_cell();
#endif
#ifdef DEPTH_LIMIT
DEPTH = get_cell();
#endif
}
/* Get the old bases */
OldXREGS = get_cellptr();
which_save = get_cell();
XDiff = (CELL)XREGS - (CELL)OldXREGS;
get_heap_info();
if (flag == DO_EVERYTHING) {
ARG1 = get_cell();
if (which_save == 2) {
ARG2 = get_cell();
}
/* get old trail base */
OldTrailBase = (ADDR)get_cellptr();
/* Save the old register where we can easily access them */
OldASP = ASP;
OldLCL0 = LCL0;
OldGlobalBase = (CELL *)GlobalBase;
OldH = H;
OldTR = TR;
GDiff = Unsigned(NewGlobalBase) - Unsigned(GlobalBase);
LDiff = Unsigned(NewLCL0) - Unsigned(LCL0);
TrDiff = LDiff;
GlobalBase = (ADDR)NewGlobalBase;
LCL0 = NewLCL0;
}
}
/* Get the old opcodes and place them in a hash table */
static void
get_insts(OPCODE old_ops[])
{
myread(splfild, (char *)old_ops, sizeof(OPCODE)*(_std_top+1));
}
/* check if the old functions are the same as the new ones, or if they
have moved around. Note that we don't need these functions afterwards */
static int
check_funcs(void)
{
UInt old_NUMBER_OF_CPREDS, old_NUMBER_OF_CMPFUNCS;
int out = FALSE;
if ((old_NUMBER_OF_CPREDS = get_cell()) != NUMBER_OF_CPREDS) {
Error(SYSTEM_ERROR,TermNil,"bad saved state, different number of functions (%d vs %d), system corrupted, old_NUMBER_OF_CPREDS, NUMBER_OF_CPREDS");
}
{
unsigned int i;
for (i = 0; i < old_NUMBER_OF_CPREDS; ++i) {
CELL *old_pred = get_cellptr();
out = (out || old_pred != CellPtr(c_predicates[i]));
}
}
if ((old_NUMBER_OF_CMPFUNCS = get_cell()) != NUMBER_OF_CMPFUNCS) {
Error(SYSTEM_ERROR,TermNil,"bad saved state, different number of comparison functions (%d vs %d), system corrupted", old_NUMBER_OF_CMPFUNCS, NUMBER_OF_CMPFUNCS);
}
{
unsigned int i;
for (i = 0; i < old_NUMBER_OF_CMPFUNCS; ++i) {
CELL *old_p = get_cellptr();
CELL *old_f = get_cellptr();
/* if (AddrAdjust((ADDR)old_p) != cmp_funcs[i].p) {
Error(SYSTEM_ERROR,TermNil,"bad saved state, comparison function is in wrong place (%p vs %p), system corrupted", AddrAdjust((ADDR)old_p), cmp_funcs[i].p);
} */
cmp_funcs[i].p = (PredEntry *)AddrAdjust((ADDR)old_p);
out = (out ||
old_f != CellPtr(cmp_funcs[i].f));
}
}
return(out);
}
/* Get the old atoms hash table */
static void
get_hash(void)
{
myread(splfild, chtype , NUMBER_OF_CHARS);
}
/* Copy all of the old code to the new Heap */
static void
CopyCode(void)
{
#if defined(YAPOR) || defined(TABLING)
/* skip the local and global data structures */
CELL j = get_cell();
if (j != Unsigned(&GLOBAL) - Unsigned(HeapBase)) {
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
}
myread(splfild, (char *) HeapBase, j);
#ifdef USE_HEAP
j = get_cell();
myread(splfild, (char *) &HashChain, j);
#else
j = get_cell();
if (j != Unsigned(BaseAllocArea) - Unsigned(&HashChain)) {
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
}
myread(splfild, (char *) &HashChain, j);
j = get_cell();
myread(splfild, (char *) TopAllocBlockArea, j);
#endif
#else
myread(splfild, (char *) HeapBase,
(Unsigned(OldHeapTop) - Unsigned(OldHeapBase)));
#endif
}
/* Copy the local and global stack and also the trail to their new home */
/* In REGS we still have nonadjusted values !! */
static void
CopyStacks(void)
{
Int j;
char *NewASP;
j = Unsigned(OldLCL0) - Unsigned(ASP);
NewASP = (char *) (Unsigned(ASP) + (Unsigned(LCL0) - Unsigned(OldLCL0)));
myread(splfild, (char *) NewASP, j);
j = Unsigned(H) - Unsigned(OldGlobalBase);
myread(splfild, (char *) GlobalBase, j);
j = Unsigned(TR) - Unsigned(OldTrailBase);
myread(splfild, TrailBase, j);
}
/* Copy the local and global stack and also the trail to their new home */
/* In REGS we still have nonadjusted values !! */
static void
CopyTrailEntries(void)
{
CELL entry, *Entries;
Entries = (CELL *)TrailBase;
do {
*Entries++ = entry = get_cell();
} while ((CODEADDR)entry != NULL);
}
/* get things which are saved in the file */
static int
get_coded(int flag, OPCODE old_ops[])
{
char my_end_msg[256];
int funcs_moved = FALSE;
get_regs(flag);
get_insts(old_ops);
funcs_moved = check_funcs();
get_hash();
CopyCode();
switch (flag) {
case DO_EVERYTHING:
CopyStacks();
break;
case DO_ONLY_CODE:
CopyTrailEntries();
break;
}
/* Check CRC */
myread(splfild, my_end_msg, 256);
if (strcmp(end_msg,my_end_msg) != 0)
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
return(funcs_moved);
}
/* Now, everything on its place so you must adjust the pointers */
/* restore the failcodes */
static void
restore_codes(void)
{
heap_regs->heap_top = AddrAdjust(OldHeapTop);
#ifdef YAPOR
heap_regs->getworkfirsttimecode.opc = opcode(_getwork_first_time);
heap_regs->getworkcode.opc = opcode(_getwork);
INIT_YAMOP_LTT(&(heap_regs->getworkcode), 0);
heap_regs->getworkcode_seq.opc = opcode(_getwork_seq);
INIT_YAMOP_LTT(&(heap_regs->getworkcode_seq), 0);
#endif /* YAPOR */
#ifdef TABLING
heap_regs->tablecompletioncode.opc = opcode(_table_completion);
heap_regs->tableanswerresolutioncode.opc = opcode(_table_answer_resolution);
#ifdef YAPOR
INIT_YAMOP_LTT(&(heap_regs->tablecompletioncode), 0);
INIT_YAMOP_LTT(&(heap_regs->tableanswerresolutioncode), 0);
#endif /* YAPOR */
#endif /* TABLING */
heap_regs->failcode = opcode(_op_fail);
heap_regs->failcode_1 = opcode(_op_fail);
heap_regs->failcode_2 = opcode(_op_fail);
heap_regs->failcode_3 = opcode(_op_fail);
heap_regs->failcode_4 = opcode(_op_fail);
heap_regs->failcode_5 = opcode(_op_fail);
heap_regs->failcode_6 = opcode(_op_fail);
heap_regs->trustfailcode = opcode(_trust_fail);
heap_regs->yescode = opcode(_Ystop);
#ifdef YAPOR
heap_regs->nocode.opc = opcode(_Nstop);
INIT_YAMOP_LTT(&(heap_regs->nocode), 1);
#else
heap_regs->nocode = opcode(_Nstop);
#endif /* YAPOR */
#ifdef YAPOR
INIT_YAMOP_LTT(&(heap_regs->rtrycode), 1);
#endif /* YAPOR */
((yamop *)(&heap_regs->rtrycode))->opc = opcode(_retry_and_mark);
if (((yamop *)(&heap_regs->rtrycode))->u.ld.d != NIL)
((yamop *)(&heap_regs->rtrycode))->u.ld.d =
CodeAddrAdjust(((yamop *)(&heap_regs->rtrycode))->u.ld.d);
{
int arity;
arity = heap_regs->clausecode.arity;
if (heap_regs->clausecode.clause != NIL)
heap_regs->clausecode.clause =
CodeAddrAdjust(heap_regs->clausecode.clause);
if (arity) {
heap_regs->clausecode.func =
FuncAdjust(heap_regs->clausecode.func);
} else {
/* an atom */
heap_regs->clausecode.func =
(Functor)AtomAdjust((Atom)(heap_regs->clausecode.func));
}
}
/* restore consult stack. It consists of heap pointers, so it
is easy to fix.
*/
heap_regs->consultlow =
ConsultObjAdjust(heap_regs->consultlow);
heap_regs->consultbase =
ConsultObjAdjust(heap_regs->consultbase);
heap_regs->consultsp =
ConsultObjAdjust(heap_regs->consultsp);
{
/* we assume all pointers have the same size */
register consult_obj *pt = heap_regs->consultsp;
while (pt <
heap_regs->consultlow+heap_regs->consultcapacity) {
pt->p = PropAdjust(pt->p);
pt ++;
}
}
#if USE_THREADED_CODE
heap_regs->op_rtable = (opentry *)
CodeAddrAdjust((CODEADDR)(heap_regs->op_rtable));
#endif
if (heap_regs->atprompt != NIL) {
heap_regs->atprompt =
AtomAdjust(heap_regs->atprompt);
}
heap_regs->undef_op = opcode(_undef_p);
heap_regs->index_op = opcode(_index_pred);
if (heap_regs->char_conversion_table != NULL) {
heap_regs->char_conversion_table = (char *)
AddrAdjust((ADDR)heap_regs->char_conversion_table);
}
if (heap_regs->char_conversion_table2 != NULL) {
heap_regs->char_conversion_table2 = (char *)
AddrAdjust((ADDR)heap_regs->char_conversion_table2);
}
if (heap_regs->dead_clauses != NULL) {
heap_regs->dead_clauses = (Clause *)
AddrAdjust((ADDR)(heap_regs->dead_clauses));
}
if (heap_regs->db_queues != NULL) {
heap_regs->db_queues = (struct idb_queue *)
AddrAdjust((ADDR)(heap_regs->db_queues));
}
heap_regs->retry_recorded_code =
PtoOpAdjust(heap_regs->retry_recorded_code);
heap_regs->retry_recorded_k_code =
PtoOpAdjust(heap_regs->retry_recorded_k_code);
heap_regs->retry_drecorded_code =
PtoOpAdjust(heap_regs->retry_drecorded_code);
heap_regs->retry_c_recordedp_code =
PtoOpAdjust(heap_regs->retry_c_recordedp_code);
if (heap_regs->IntKeys != NULL) {
heap_regs->IntKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntKeys));
{
UInt i;
for (i = 0; i < heap_regs->int_keys_size; i++) {
if (heap_regs->IntKeys[i] != NIL) {
Prop p0 = heap_regs->IntKeys[i] = PropAdjust(heap_regs->IntKeys[i]);
RestoreEntries(RepProp(p0));
}
}
}
}
if (heap_regs->IntBBKeys != NULL) {
heap_regs->IntBBKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntBBKeys));
{
UInt i;
for (i = 0; i < heap_regs->int_bb_keys_size; i++) {
if (heap_regs->IntBBKeys[i] != NIL) {
Prop p0 = heap_regs->IntBBKeys[i] = PropAdjust(heap_regs->IntBBKeys[i]);
RestoreEntries(RepProp(p0));
}
}
}
}
{
/* adjust atoms in atom table */
unsigned int i = 0;
for (i = 0; i < heap_regs->no_of_modules; i++) {
heap_regs->module_name[i] = AtomTermAdjust(heap_regs->module_name[i]);
}
}
heap_regs->atom_abol = AtomAdjust(heap_regs->atom_abol);
heap_regs->atom_append = AtomAdjust(heap_regs->atom_append);
heap_regs->atom_array = AtomAdjust(heap_regs->atom_array);
heap_regs->atom_assert = AtomAdjust(heap_regs->atom_assert);
heap_regs->atom_alarm = AtomAdjust(heap_regs->atom_alarm);
heap_regs->atom_b = AtomAdjust(heap_regs->atom_b);
heap_regs->atom_break = AtomAdjust(heap_regs->atom_break);
heap_regs->atom_call = AtomAdjust(heap_regs->atom_call);
heap_regs->atom_catch = AtomAdjust(heap_regs->atom_catch);
heap_regs->atom_comma = AtomAdjust(heap_regs->atom_comma);
heap_regs->atom_cpu_time = AtomAdjust(heap_regs->atom_cpu_time);
heap_regs->atom_csult = AtomAdjust(heap_regs->atom_csult);
heap_regs->atom_cut = AtomAdjust(heap_regs->atom_cut);
heap_regs->atom_cut_by = AtomAdjust(heap_regs->atom_cut_by);
#ifdef EUROTRA
#ifdef SFUNC
heap_regs->atom_dollar_undef = AtomAdjust(heap_regs->atom_dollar_undef);
#endif
#endif
heap_regs->atom_e = AtomAdjust(heap_regs->atom_e);
heap_regs->atom_e_q = AtomAdjust(heap_regs->atom_e_q);
heap_regs->atom_eof = AtomAdjust(heap_regs->atom_eof);
#ifdef EUROTRA
heap_regs->atom_f_b = AtomAdjust(heap_regs->atom_f_b);
#endif
heap_regs->atom_fail = AtomAdjust(heap_regs->atom_fail);
heap_regs->atom_false = AtomAdjust(heap_regs->atom_false);
heap_regs->atom_fast = AtomAdjust(heap_regs->atom_fast);
heap_regs->atom_g_t = AtomAdjust(heap_regs->atom_g_t);
heap_regs->atom_gc = AtomAdjust(heap_regs->atom_gc);
heap_regs->atom_gc_margin = AtomAdjust(heap_regs->atom_gc_margin);
heap_regs->atom_gc_trace = AtomAdjust(heap_regs->atom_gc_trace);
heap_regs->atom_gc_verbose = AtomAdjust(heap_regs->atom_gc_verbose);
heap_regs->atom_global = AtomAdjust(heap_regs->atom_global);
heap_regs->atom_heap_used = AtomAdjust(heap_regs->atom_heap_used);
heap_regs->atom_index = AtomAdjust(heap_regs->atom_index);
heap_regs->atom_inf = AtomAdjust(heap_regs->atom_inf);
heap_regs->atom_l_t = AtomAdjust(heap_regs->atom_l_t);
heap_regs->atom_local = AtomAdjust(heap_regs->atom_local);
heap_regs->atom_meta_call = AtomAdjust(heap_regs->atom_meta_call);
heap_regs->atom_minus = AtomAdjust(heap_regs->atom_minus);
heap_regs->atom_nan = AtomAdjust(heap_regs->atom_nan);
heap_regs->atom_otherwise = AtomAdjust(heap_regs->atom_otherwise);
heap_regs->atom_pi = AtomAdjust(heap_regs->atom_pi);
heap_regs->atom_plus = AtomAdjust(heap_regs->atom_plus);
heap_regs->atom_portray = AtomAdjust(heap_regs->atom_portray);
heap_regs->atom_profile = AtomAdjust(heap_regs->atom_profile);
heap_regs->atom_random = AtomAdjust(heap_regs->atom_random);
heap_regs->atom_read = AtomAdjust(heap_regs->atom_read);
heap_regs->atom_repeat = AtomAdjust(heap_regs->atom_repeat);
heap_regs->atom_restore_regs = AtomAdjust(heap_regs->atom_restore_regs);
heap_regs->atom_stack_free = AtomAdjust(heap_regs->atom_stack_free);
heap_regs->atom_throw = AtomAdjust(heap_regs->atom_throw);
heap_regs->atom_true = AtomAdjust(heap_regs->atom_true);
heap_regs->atom_user = AtomAdjust(heap_regs->atom_user);
heap_regs->atom_usr_err = AtomAdjust(heap_regs->atom_usr_err);
heap_regs->atom_usr_in = AtomAdjust(heap_regs->atom_usr_in);
heap_regs->atom_usr_out = AtomAdjust(heap_regs->atom_usr_out);
heap_regs->atom_version_number = AtomAdjust(heap_regs->atom_version_number);
heap_regs->atom_write = AtomAdjust(heap_regs->atom_write);
#ifdef USE_SOCKET
heap_regs->functor_af_inet = FuncAdjust(heap_regs->functor_af_inet);
heap_regs->functor_af_local = FuncAdjust(heap_regs->functor_af_local);
heap_regs->functor_af_unix = FuncAdjust(heap_regs->functor_af_unix);
#endif
heap_regs->functor_alt_not = FuncAdjust(heap_regs->functor_alt_not);
heap_regs->functor_arrow = FuncAdjust(heap_regs->functor_arrow);
heap_regs->functor_assert = FuncAdjust(heap_regs->functor_assert);
#ifdef COROUTINING
heap_regs->functor_att_goal = FuncAdjust(heap_regs->functor_att_goal);
#endif
heap_regs->functor_braces = FuncAdjust(heap_regs->functor_braces);
heap_regs->functor_call = FuncAdjust(heap_regs->functor_call);
heap_regs->functor_cut_by = FuncAdjust(heap_regs->functor_cut_by);
heap_regs->functor_comma = FuncAdjust(heap_regs->functor_comma);
heap_regs->functor_csult = FuncAdjust(heap_regs->functor_csult);
heap_regs->functor_eq = FuncAdjust(heap_regs->functor_eq);
heap_regs->functor_g_atom = FuncAdjust(heap_regs->functor_g_atom);
heap_regs->functor_g_atomic = FuncAdjust(heap_regs->functor_g_atomic);
heap_regs->functor_g_compound = FuncAdjust(heap_regs->functor_g_compound);
heap_regs->functor_g_float = FuncAdjust(heap_regs->functor_g_float);
heap_regs->functor_g_integer = FuncAdjust(heap_regs->functor_g_integer);
heap_regs->functor_g_number = FuncAdjust(heap_regs->functor_g_number);
heap_regs->functor_g_primitive = FuncAdjust(heap_regs->functor_g_primitive);
heap_regs->functor_g_var = FuncAdjust(heap_regs->functor_g_var);
heap_regs->functor_list = FuncAdjust(heap_regs->functor_list);
heap_regs->functor_module = FuncAdjust(heap_regs->functor_module);
#ifdef MULTI_ASSIGNMENT_VARIABLES
heap_regs->functor_mutable = FuncAdjust(heap_regs->functor_mutable);
#endif
heap_regs->functor_not = FuncAdjust(heap_regs->functor_not);
heap_regs->functor_or = FuncAdjust(heap_regs->functor_or);
heap_regs->functor_portray = FuncAdjust(heap_regs->functor_portray);
heap_regs->functor_query = FuncAdjust(heap_regs->functor_query);
heap_regs->functor_spied_meta_call = FuncAdjust(heap_regs->functor_spied_meta_call);
heap_regs->functor_stream = FuncAdjust(heap_regs->functor_stream);
heap_regs->functor_stream_pos = FuncAdjust(heap_regs->functor_stream_pos);
heap_regs->functor_stream_eOS = FuncAdjust(heap_regs->functor_stream_eOS);
heap_regs->functor_change_module = FuncAdjust(heap_regs->functor_change_module);
heap_regs->functor_current_module = FuncAdjust(heap_regs->functor_current_module);
heap_regs->functor_mod_switch = FuncAdjust(heap_regs->functor_mod_switch);
heap_regs->functor_u_minus = FuncAdjust(heap_regs->functor_u_minus);
heap_regs->functor_u_plus = FuncAdjust(heap_regs->functor_u_plus);
heap_regs->functor_v_bar = FuncAdjust(heap_regs->functor_v_bar);
heap_regs->functor_var = FuncAdjust(heap_regs->functor_var);
#ifdef EUROTRA
heap_regs->term_dollar_u = AtomTermAdjust(heap_regs->term_dollar_u);
#endif
heap_regs->term_refound_var = AtomTermAdjust(heap_regs->term_refound_var);
heap_regs->file_aliases =
(struct AliasDescS *)AddrAdjust((ADDR)heap_regs->file_aliases);
heap_regs->yap_lib_dir =
(char *)AddrAdjust((ADDR)heap_regs->yap_lib_dir);
heap_regs->pred_goal_expansion =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_goal_expansion);
heap_regs->pred_meta_call =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_meta_call);
if (heap_regs->undef_code != NULL)
heap_regs->undef_code = PtoHeapCellAdjust(heap_regs->undef_code);
if (heap_regs->creep_code != NULL)
heap_regs->creep_code = PtoHeapCellAdjust(heap_regs->creep_code);
if (heap_regs->spy_code != NULL)
heap_regs->spy_code = PtoHeapCellAdjust(heap_regs->spy_code);
#ifdef COROUTINING
#ifdef MULTI_ASSIGNMENT_VARIABLES
if (heap_regs->wake_up_code != NULL)
heap_regs->wake_up_code = PtoHeapCellAdjust(heap_regs->wake_up_code);
heap_regs->mutable_list =
AbsAppl(PtoGloAdjust(RepAppl(heap_regs->mutable_list)));
heap_regs->atts_mutable_list =
AbsAppl(PtoGloAdjust(RepAppl(heap_regs->atts_mutable_list)));
#endif
#endif
if (heap_regs->last_wtime != NULL)
heap_regs->last_wtime = (void *)PtoHeapCellAdjust((CELL *)(heap_regs->last_wtime));
}
/* restore some heap registers */
static void
restore_heap_regs(void)
{
HeapPlus = AddrAdjust(HeapPlus);
*((YAP_SEG_SIZE *) HeapTop) = InUseFlag;
HeapMax = HeapUsed = OldHeapUsed;
restore_codes();
}
/* adjust abstract machine registers */
static void
restore_regs(int flag)
{
restore_heap_regs();
if (flag == DO_EVERYTHING) {
CP = PtoOpAdjust(CP);
ENV = PtoLocAdjust(ENV);
ASP = PtoLocAdjust(ASP);
H = PtoGloAdjust(H);
B = (choiceptr)PtoLocAdjust(CellPtr(B));
TR = PtoTRAdjust(TR);
P = PtoOpAdjust(P);
HB = PtoLocAdjust(HB);
YENV = PtoLocAdjust(YENV);
S = PtoGloAdjust(S);
HeapPlus = AddrAdjust(HeapPlus);
if (MyTR)
MyTR = PtoTRAdjust(MyTR);
if (CurrentModulePtr)
CurrentModulePtr = PtoGloAdjust(CurrentModulePtr);
#ifdef COROUTINING
DelayedVars = AbsAppl(PtoGloAdjust(RepAppl(DelayedVars)));
#ifdef MULTI_ASSIGNMENT_VARIABLES
WokenGoals = AbsAppl(PtoGloAdjust(RepAppl(WokenGoals)));
#endif
#endif
}
}
/* Restoring the heap */
/* Converts a structure of the DB, as it was saved in the heap */
/* uses a variable base */
static void
ConvDBStruct(Term Struct, char *tbase, CELL size)
{
CELL *TermP;
Functor f;
int Arity, i;
TermP = (CELL *)(tbase + (CELL)RepAppl(Struct));
f = FuncAdjust((Functor)(*TermP));
*(Functor *)TermP = f;
Arity = ArityOfFunctor(f);
TermP++;
for (i = 0; i < Arity; i++) {
register Term t = *TermP;
if (IsVarTerm(t)) {
/* do nothing */
} else if (IsAtomTerm(t)) {
/* these are the only ones that may actually need to be changed */
*TermP = AtomTermAdjust(t);
} else if (IsApplTerm(t)) {
CELL offset = (CELL)RepAppl(Struct);
if (offset > size) {
*TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t)));
}
ConvDBStruct(t, tbase, size);
} else if (IsPairTerm(t)) {
ConvDBList(t, tbase, size);
}
TermP++;
}
}
/* Converts a list of the DB, as it was saved in the heap */
/* uses a variable base */
static void
ConvDBList(Term List, char *tbase, CELL size)
{
CELL *TermP;
int i;
TermP = (CELL *)(tbase + (CELL) RepPair(List));
for (i = 0; i < 2; i++) {
register Term t = *TermP;
if (IsVarTerm(t)) {
/* do nothing */
} else if (IsAtomTerm(t))
*TermP = AtomTermAdjust(t);
else if (IsApplTerm(t))
ConvDBStruct(t, tbase, size);
else if (IsPairTerm(t))
ConvDBList(t, tbase, size);
TermP++;
}
}
/* adjusts terms stored in the data base, when they have no variables */
static Term
AdjustDBTerm(Term trm)
{
Term *p;
if (IsAtomTerm(trm))
return (AtomTermAdjust(trm));
if (IsPairTerm(trm)) {
p = PtoHeapCellAdjust(RepPair(trm));
*p = AdjustDBTerm(*p);
++p;
*p = AdjustDBTerm(*p);
return (AbsPair(p-1));
}
if (IsApplTerm(trm)) {
int Arity, i;
Functor f;
Term *p0 = p = PtoHeapCellAdjust(RepAppl(trm));
f = FuncAdjust((Functor)(*p));
*p = (Term)f ;
Arity = ArityOfFunctor(f);
p++;
for (i = 0; i < Arity; ++i) {
*p = AdjustDBTerm(*p);
p++;
}
return (AbsAppl(p0));
}
return (trm);
}
static void
recompute_mask(DBRef dbr)
{
CELL *x = (CELL *)HeapTop, *tp;
unsigned int Arity, i;
Term out;
char *tbase = CharP(dbr->Contents-1);
if (IsPairTerm(dbr->Entry)) {
out = AbsPair(x);
Arity = 2;
tp = (CELL *)(tbase + (CELL) RepPair(dbr->Entry));
} else {
Functor f;
tp = (CELL *)(tbase + (CELL) RepAppl(dbr->Entry));
f = (Functor)(*tp++);
out = AbsAppl(x);
Arity = ArityOfFunctor(f);
*x++ = (CELL)f;
if (Arity > 3) Arity = 3;
}
for (i = 0; i < Arity; i++) {
register Term tw = *tp++;
if (IsVarTerm(tw)) {
RESET_VARIABLE(x);
} else if (IsApplTerm(tw)) {
/* just fetch the functor from where it is in the data-base.
This guarantees we have access to references and friends. */
CELL offset = (CELL)RepAppl(tw);
if (offset > dbr->NOfCells*sizeof(CELL))
*x = tw;
else
*x = AbsAppl((CELL *)(tbase + offset));
} else if (IsAtomicTerm(tw)) {
*x = tw;
} else if (IsPairTerm(tw)) {
*x = AbsPair(x);
}
x++;
}
dbr->Mask = EvalMasks(out, &(dbr->Key));
}
static void
RestoreDBEntry(DBRef dbr)
{
#ifdef DEBUG_RESTORE
YP_fprintf(errout, "Restoring at %x", dbr);
if (dbr->Flags & DBAtomic)
YP_fprintf(errout, " an atomic term\n");
else if (dbr->Flags & DBNoVars)
YP_fprintf(errout, " with no vars\n");
else if (dbr->Flags & DBComplex)
YP_fprintf(errout, " complex term\n");
else if (dbr->Flags & DBIsRef)
YP_fprintf(errout, " a ref\n");
else
YP_fprintf(errout, " a var\n");
#endif
dbr->Parent = (DBProp)AddrAdjust((ADDR)(dbr->Parent));
if (dbr->Code != NIL)
dbr->Code = CodeAddrAdjust(dbr->Code);
if (dbr->Flags & DBAtomic) {
if (IsAtomTerm(dbr->Entry))
dbr->Entry = AtomTermAdjust(dbr->Entry);
} else if (dbr->Flags & DBNoVars)
dbr->Entry = (CELL) AdjustDBTerm((Term) dbr->Entry);
else if (dbr->Flags & DBComplex) {
if (IsApplTerm((Term) dbr->Entry))
ConvDBStruct((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL));
else
ConvDBList((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL));
}
if (dbr->Prev != NULL)
dbr->Prev = DBRefAdjust(dbr->Prev);
if (dbr->Next != NULL)
dbr->Next = DBRefAdjust(dbr->Next);
if (dbr->Flags & DBWithRefs) {
DBRef *cp;
DBRef tm;
cp = (DBRef *) ((CODEADDR) dbr + SizeOfBlock(CodePtr(dbr)));
while ((tm = *--cp) != 0)
*cp = DBRefAdjust(tm);
}
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Recomputing masks\n");
#endif
if (dbr->Flags & DBNoVars) {
dbr->Mask = EvalMasks((Term) dbr->Entry, &(dbr->Key));
} else if (dbr->Flags & DBComplex) {
/* This is quite nasty, we want to recalculate the mask but
we don't want to rebuild the whole term. We'll just build whatever we
need to recompute the mask.
*/
recompute_mask(dbr);
}
}
/* Restores a DB structure, as it was saved in the heap */
static void
RestoreDB(DBEntry *pp)
{
register DBRef dbr;
if (pp->First != NULL)
pp->First = DBRefAdjust(pp->First);
if (pp->Last != NULL)
pp->Last = DBRefAdjust(pp->Last);
#ifndef KEEP_ENTRY_AGE
if (pp->FirstNEr != NULL)
pp->FirstNEr = DBRefAdjust(pp->FirstNEr);
#endif
if (pp->ArityOfDB)
pp->FunctorOfDB = FuncAdjust(pp->FunctorOfDB);
else
pp->FunctorOfDB = (Functor) AtomAdjust((Atom)(pp->FunctorOfDB));
dbr = pp->First;
/* While we have something in the data base, restore it */
while (dbr) {
RestoreDBEntry(dbr);
dbr = dbr->Next;
}
}
/* Restores a DB structure, as it was saved in the heap */
static void
RestoreBB(BlackBoardEntry *pp)
{
if (pp->Element) {
register DBRef dbr;
pp->Element = DBRefAdjust(pp->Element);
#ifdef DEBUG_RESTORE
YP_fprintf(errout, "Restoring at %x", dbr);
if (dbr->Flags & DBAtomic)
YP_fprintf(errout, " an atomic term\n");
else if (dbr->Flags & DBNoVars)
YP_fprintf(errout, " with no vars\n");
else if (dbr->Flags & DBComplex)
YP_fprintf(errout, " complex term\n");
else if (dbr->Flags & DBIsRef)
YP_fprintf(errout, " a ref\n");
else
YP_fprintf(errout, " a var\n");
#endif
dbr = pp->Element;
RestoreDBEntry(dbr);
}
pp->KeyOfBB = AtomAdjust(pp->KeyOfBB);
}
#define HASH_SHIFT 6
/*
* This is used to make an hash table correct, after displacing its elements,
* HCEnd should point to an area of free space, usually in the heap. The
* routine is very dependent on the hash function used, and it destroys the
* previous "hit" order
*/
static void
rehash(CELL *oldcode, int NOfE, int KindOfEntries)
{
register CELL *savep, *basep;
CELL *oldp = oldcode;
int TableSize = NOfE - 1, NOfEntries;
register int i;
int hash;
CELL WorkTerm, failplace = 0;
CELL *Base = oldcode;
if (HDiff == 0)
return;
basep = H;
if (H + (NOfE*2) > ASP) {
basep = (CELL *)TR;
if (basep + (NOfE*2) > (CELL *)TrailTop) {
if (!growtrail((ADDR)(basep + (NOfE*2))-TrailTop)) {
Error(SYSTEM_ERROR, TermNil,
"not enough space to restore hash tables for indexing");
exit_yap(1, "");
}
}
}
for (i = 0; i < NOfE; ++i) {
if (*oldp == 0) {
failplace = oldp[1];
break;
}
oldp += 2;
}
savep = basep;
oldp = oldcode;
for (i = 0; i < NOfE; ++i) {
if (*oldp != 0) {
savep[0] = oldp[0];
savep[1] = oldp[1];
oldp[0] = 0;
oldp[1] = failplace;
savep += 2;
}
oldp += 2;
}
NOfEntries = (savep - basep)/2;
savep = basep;
for (i = 0; i < NOfEntries; ++i) {
register Int d;
CELL *hentry;
WorkTerm = savep[i*2];
hash = (Unsigned(WorkTerm) >> HASH_SHIFT) & TableSize;
hentry = Base + hash * 2;
d = TableSize & (Unsigned(WorkTerm) | 1);
while (*hentry) {
#ifdef DEBUG
#ifdef CLASHES
++clashes;
#endif /* CLASHES */
#endif /* DEBUG */
hash = (hash + d) & TableSize;
hentry = Base + hash * 2;
}
hentry[0] = WorkTerm;
hentry[1] = savep[i*2+1];
}
}
static CODEADDR
CCodeAdjust(PredEntry *pe)
{
/* add this code to a list of ccalls that must be adjusted */
return ((CODEADDR)(c_predicates[pe->StateOfPred]));
}
static CODEADDR
NextCCodeAdjust(PredEntry *pe)
{
/* add this code to a list of ccalls that must be adjusted */
return ((CODEADDR)(c_predicates[pe->StateOfPred+1]));
}
static CODEADDR
DirectCCodeAdjust(PredEntry *pe)
{
/* add this code to a list of ccalls that must be adjusted */
unsigned int i;
for (i = 0; i < NUMBER_OF_CMPFUNCS; i++) {
if (cmp_funcs[i].p == pe) {
return((CODEADDR)(cmp_funcs[i].f));
}
}
Error(FATAL_ERROR,TermNil,"bad saved state, system corrupted");
return(NULL);
}
/* Restores a prolog clause, in its compiled form */
static void
RestoreClause(Clause *Cl)
/*
* Cl points to the start of the code, IsolFlag tells if we have a single
* clause for this predicate or not
*/
{
yamop *pc;
OPREG cl_type = Cl->ClFlags;
if (cl_type == ApplCl ||
(cl_type == ListCl && HeadOfClType(cl_type) == ApplCl))
Cl->u.ClValue = (CELL)FuncAdjust((Functor)(Cl->u.ClValue));
else if ((cl_type == AtCl ||
(cl_type == ListCl && HeadOfClType(cl_type) == AtCl)) &&
IsAtomTerm(Cl->u.ClValue))
Cl->u.ClValue = AtomTermAdjust(Cl->u.ClValue);
/* TO DO: log update semantics */
/* Get the stored operator */
pc = Cl->ClCode;
do {
op_numbers op = op_from_opcode(pc->opc);
pc->opc = opcode(op);
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "%d ", op);
#endif
switch (op) {
case _Ystop:
case _Nstop:
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "left OK\n");
#endif
return;
/* instructions type ld */
case _try_me:
case _retry_me:
case _trust_me:
case _profiled_retry_me:
case _profiled_trust_me:
case _try_me0:
case _retry_me0:
case _trust_me0:
case _try_me1:
case _retry_me1:
case _trust_me1:
case _try_me2:
case _retry_me2:
case _trust_me2:
case _try_me3:
case _retry_me3:
case _trust_me3:
case _try_me4:
case _retry_me4:
case _trust_me4:
case _spy_or_trymark:
case _try_and_mark:
case _profiled_retry_and_mark:
case _retry_and_mark:
case _try_clause:
case _retry:
case _trust:
case _retry_first:
case _trust_first:
case _retry_tail:
case _trust_tail:
case _retry_head:
case _trust_head:
#ifdef YAPOR
case _getwork:
case _getwork_seq:
case _sync:
#endif
pc->u.ld.p = CodeAddrAdjust(pc->u.ld.p);
pc->u.ld.d = CodeAddrAdjust(pc->u.ld.d);
pc = NEXTOP(pc,ld);
break;
/* instructions type l */
case _enter_profiling:
case _retry_profiled:
case _try_logical_pred:
case _trust_logical_pred:
case _dealloc_for_logical_pred:
case _execute:
case _dexecute:
case _jump:
case _move_back:
case _skip:
case _try_in:
case _jump_if_var:
pc->u.l.l = CodeAddrAdjust(pc->u.l.l);
pc = NEXTOP(pc,l);
break;
/* instructions type EC */
case _alloc_for_logical_pred:
pc->u.EC.ClBase = CodeAddrAdjust(pc->u.EC.ClBase);
pc = NEXTOP(pc,EC);
break;
/* instructions type e */
case _trust_fail:
case _op_fail:
case _cut:
case _cut_t:
case _cut_e:
case _procceed:
case _allocate:
case _deallocate:
case _write_void:
case _write_list:
case _write_l_list:
#if !defined(YAPOR)
case _or_last:
#endif
case _pop:
case _index_pred:
case _undef_p:
case _spy_pred:
case _p_equal:
case _p_dif:
case _p_eq:
case _p_functor:
#ifdef YAPOR
case _getwork_first_time:
#endif
pc = NEXTOP(pc,e);
break;
/* instructions type x */
case _save_b_x:
case _comit_b_x:
case _get_list:
case _put_list:
case _write_x_var:
case _write_x_val:
case _write_x_loc:
case _p_atom_x:
case _p_atomic_x:
case _p_integer_x:
case _p_nonvar_x:
case _p_number_x:
case _p_var_x:
case _p_db_ref_x:
case _p_primitive_x:
case _p_compound_x:
case _p_float_x:
case _p_cut_by_x:
pc->u.x.x = XAdjust(pc->u.x.x);
pc = NEXTOP(pc,x);
break;
/* instructions type y */
case _save_b_y:
case _comit_b_y:
case _write_y_var:
case _write_y_val:
case _write_y_loc:
case _p_atom_y:
case _p_atomic_y:
case _p_integer_y:
case _p_nonvar_y:
case _p_number_y:
case _p_var_y:
case _p_db_ref_y:
case _p_primitive_y:
case _p_compound_y:
case _p_float_y:
case _p_cut_by_y:
pc->u.y.y = YAdjust(pc->u.y.y);
pc = NEXTOP(pc,y);
break;
/* instructions type sla */
case _fcall:
case _call:
case _either:
case _or_else:
#ifdef YAPOR
case _or_last:
#endif
pc->u.sla.l = CodeAddrAdjust(pc->u.sla.l);
if (pc->u.sla.l2 != NIL) {
CELL *p;
p = (CELL *)(pc->u.sla.l2 = CodeAddrAdjust(pc->u.sla.l2));
/* restore entry to predicate from bitmap */
p[0] = (CELL)PtoPredAdjust((PredEntry *)(p[0]));
}
pc->u.sla.p = CodeAddrAdjust(pc->u.sla.p);
pc = NEXTOP(pc,sla);
break;
/* instructions type sla, but for functions */
case _call_cpred:
case _call_usercpred:
pc->u.sla.p = CodeAddrAdjust(pc->u.sla.p);
pc->u.sla.l = CCodeAdjust((PredEntry *)(pc->u.sla.p));
if (pc->u.sla.l2 != NIL) {
CELL *p;
p = (CELL *)(pc->u.sla.l2 = CodeAddrAdjust(pc->u.sla.l2));
/* restore entry to predicate from bitmap */
p[0] = (CELL)PtoPredAdjust((PredEntry *)(p[0]));
}
pc = NEXTOP(pc,sla);
break;
/* instructions type xx */
case _get_x_var:
case _get_x_val:
case _glist_valx:
case _gl_void_varx:
case _gl_void_valx:
case _put_x_var:
case _put_x_val:
pc->u.xx.xr = XAdjust(pc->u.xx.xr);
pc->u.xx.xl = XAdjust(pc->u.xx.xl);
pc = NEXTOP(pc,xx);
break;
/* instructions type yx */
case _get_y_var:
case _get_y_val:
case _put_y_var:
case _put_y_val:
case _put_unsafe:
pc->u.yx.x = XAdjust(pc->u.yx.x);
pc->u.yx.y = YAdjust(pc->u.yx.y);
pc = NEXTOP(pc,yx);
break;
/* instructions type xc */
case _get_atom:
case _put_atom:
case _get_float:
case _get_longint:
case _get_bigint:
pc->u.xc.x = XAdjust(pc->u.xc.x);
{
Term t = pc->u.xc.c;
if (IsAtomTerm(t))
pc->u.xc.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.xc.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,xc);
break;
/* instructions type xf */
case _get_struct:
case _put_struct:
pc->u.xf.x = XAdjust(pc->u.xf.x);
pc->u.xf.f = FuncAdjust(pc->u.xf.f);
pc = NEXTOP(pc,xf);
break;
/* instructions type xy */
case _glist_valy:
case _gl_void_vary:
case _gl_void_valy:
pc->u.xy.x = XAdjust(pc->u.xy.x);
pc->u.xy.y = YAdjust(pc->u.xy.y);
pc = NEXTOP(pc,xy);
break;
/* instructions type ox */
case _unify_x_var:
case _unify_x_var_write:
case _unify_l_x_var:
case _unify_l_x_var_write:
case _unify_x_val_write:
case _unify_x_val:
case _unify_l_x_val_write:
case _unify_l_x_val:
case _unify_x_loc_write:
case _unify_x_loc:
case _unify_l_x_loc_write:
case _unify_l_x_loc:
case _save_pair_x_write:
case _save_pair_x:
case _save_appl_x_write:
case _save_appl_x:
pc->u.ox.opcw = opcode(op_from_opcode(pc->u.ox.opcw));
pc->u.ox.x = XAdjust(pc->u.ox.x);
pc = NEXTOP(pc,ox);
break;
/* instructions type oxx */
case _unify_x_var2:
case _unify_x_var2_write:
case _unify_l_x_var2:
case _unify_l_x_var2_write:
pc->u.oxx.opcw = opcode(op_from_opcode(pc->u.oxx.opcw));
pc->u.oxx.xl = XAdjust(pc->u.oxx.xl);
pc->u.oxx.xr = XAdjust(pc->u.oxx.xr);
pc = NEXTOP(pc,oxx);
break;
/* instructions type oy */
case _unify_y_var:
case _unify_y_var_write:
case _unify_l_y_var:
case _unify_l_y_var_write:
case _unify_y_val_write:
case _unify_y_val:
case _unify_l_y_val_write:
case _unify_l_y_val:
case _unify_y_loc_write:
case _unify_y_loc:
case _unify_l_y_loc_write:
case _unify_l_y_loc:
case _save_pair_y_write:
case _save_pair_y:
case _save_appl_y_write:
case _save_appl_y:
pc->u.oy.opcw = opcode(op_from_opcode(pc->u.oy.opcw));
pc->u.oy.y = YAdjust(pc->u.oy.y);
pc = NEXTOP(pc,oy);
break;
/* instructions type o */
case _unify_void_write:
case _unify_void:
case _unify_l_void_write:
case _unify_l_void:
case _unify_list_write:
case _unify_list:
case _unify_l_list_write:
case _unify_l_list:
pc->u.o.opcw = opcode(op_from_opcode(pc->u.o.opcw));
pc = NEXTOP(pc,o);
break;
/* instructions type os */
case _unify_n_voids_write:
case _unify_n_voids:
case _unify_l_n_voids_write:
case _unify_l_n_voids:
pc->u.os.opcw = opcode(op_from_opcode(pc->u.os.opcw));
pc = NEXTOP(pc,os);
break;
/* instructions type oc */
case _unify_atom_write:
case _unify_atom:
case _unify_l_atom_write:
case _unify_l_atom:
case _unify_float:
case _unify_l_float:
case _unify_longint:
case _unify_l_longint:
case _unify_bigint:
case _unify_l_bigint:
pc->u.oc.opcw = opcode(op_from_opcode(pc->u.oc.opcw));
{
Term t = pc->u.oc.c;
if (IsAtomTerm(t))
pc->u.oc.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.oc.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,oc);
break;
/* instructions type osc */
case _unify_n_atoms_write:
case _unify_n_atoms:
pc->u.osc.opcw = opcode(op_from_opcode(pc->u.osc.opcw));
{
Term t = pc->u.osc.c;
if (IsAtomTerm(t))
pc->u.osc.c = AtomTermAdjust(t);
}
pc = NEXTOP(pc,osc);
break;
/* instructions type of */
case _unify_struct_write:
case _unify_struct:
case _unify_l_struc_write:
case _unify_l_struc:
pc->u.of.opcw = opcode(op_from_opcode(pc->u.of.opcw));
pc->u.of.f = FuncAdjust(pc->u.of.f);
pc = NEXTOP(pc,of);
break;
/* instructions type s */
case _write_n_voids:
case _pop_n:
pc = NEXTOP(pc,s);
break;
/* instructions type c */
case _write_atom:
{
Term t = pc->u.c.c;
if (IsAtomTerm(t))
pc->u.c.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.c.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,c);
break;
/* instructions type sc */
case _write_n_atoms:
{
Term t = pc->u.sc.c;
if (IsAtomTerm(t))
pc->u.sc.c = AtomTermAdjust(t);
}
pc = NEXTOP(pc,sc);
break;
/* instructions type f */
case _write_struct:
case _write_l_struc:
pc->u.f.f = FuncAdjust(pc->u.f.f);
pc = NEXTOP(pc,f);
break;
/* instructions type sdl */
case _call_c_wfail:
pc->u.sdl.p = CodeAddrAdjust(pc->u.sdl.p);
pc->u.sdl.l = CodeAddrAdjust(pc->u.sdl.l);
pc->u.sdl.d = CCodeAdjust((PredEntry *)(pc->u.sdl.p));
pc = NEXTOP(pc,sdl);
break;
/* instructions type lds */
case _try_c:
case _try_userc:
/* don't need to do no nothing here, initstaff will do it for us
*/
pc->u.lds.p = CodeAddrAdjust(pc->u.lds.p);
pc->u.lds.d = CCodeAdjust((PredEntry *)(pc->u.lds.p));
pc = NEXTOP(pc,lds);
break;
case _retry_c:
case _retry_userc:
/* don't need to do no nothing here, initstaff will do it for us
pc->u.lds.d = CCodeAdjust(pc->u.lds.d); */
pc->u.lds.p = CodeAddrAdjust(pc->u.lds.p);
pc->u.lds.d = NextCCodeAdjust((PredEntry *)(pc->u.lds.p));
pc = NEXTOP(pc,lds);
break;
/* instructions type ldl */
case _trust_in:
case _trust_first_in:
case _trust_tail_in:
case _trust_head_in:
pc->u.ldl.p = CodeAddrAdjust(pc->u.ldl.p);
pc->u.ldl.d = CodeAddrAdjust(pc->u.ldl.d);
pc->u.ldl.bl = CodeAddrAdjust(pc->u.ldl.bl);
pc = NEXTOP(pc,ldl);
break;
/* instructions type llll */
case _switch_on_type:
case _switch_list_nl:
case _switch_on_head:
pc->u.llll.l1 = CodeAddrAdjust(pc->u.llll.l1);
pc->u.llll.l2 = CodeAddrAdjust(pc->u.llll.l2);
pc->u.llll.l3 = CodeAddrAdjust(pc->u.llll.l3);
pc->u.llll.l4 = CodeAddrAdjust(pc->u.llll.l4);
pc = NEXTOP(pc,llll);
break;
/* instructions type lll */
case _switch_on_nonv:
case _switch_nv_list:
pc->u.lll.l1 = CodeAddrAdjust(pc->u.lll.l1);
pc->u.lll.l2 = CodeAddrAdjust(pc->u.lll.l2);
pc->u.lll.l3 = CodeAddrAdjust(pc->u.lll.l3);
pc = NEXTOP(pc,lll);
break;
/* instructions type cll */
case _if_not_then:
{
Term t = pc->u.cll.c;
if (IsAtomTerm(t))
pc->u.cll.c = AtomTermAdjust(t);
}
pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1);
pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2);
pc = NEXTOP(pc,cll);
break;
/* instructions type ollll */
case _switch_list_nl_prefetch:
pc->u.ollll.pop = opcode(op_from_opcode(pc->u.ollll.pop));
pc->u.ollll.l1 = CodeAddrAdjust(pc->u.ollll.l1);
pc->u.ollll.l2 = CodeAddrAdjust(pc->u.ollll.l2);
pc->u.ollll.l3 = CodeAddrAdjust(pc->u.ollll.l3);
pc->u.ollll.l4 = CodeAddrAdjust(pc->u.ollll.l4);
pc = NEXTOP(pc,ollll);
break;
/* switch_on_func */
case _switch_on_func:
{
int i, j;
CELL *oldcode, *startcode;
i = pc->u.s.s;
startcode = oldcode = (CELL *)NEXTOP(pc,s);
for (j = 0; j < i; ++j) {
Functor oldfunc = (Functor)(oldcode[0]);
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
if (oldfunc != NULL) {
oldcode[0] = (CELL)FuncAdjust(oldfunc);
}
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
rehash(startcode, i, Funcs);
pc = (yamop *)oldcode;
}
break;
/* switch_on_cons */
case _switch_on_cons:
{
int i, j;
CELL *oldcode;
#if !USE_OFFSETS
CELL *startcode;
#endif
i = pc->u.s.s;
#if !USE_OFFSETS
startcode =
#endif
oldcode = (CELL *)NEXTOP(pc,s);
for (j = 0; j < i; ++j) {
#if !USE_OFFSETS
Term oldatom = oldcode[0];
#endif
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
#if !USE_OFFSETS
if (oldatom != 0x0) {
oldcode[0] = AtomTermAdjust(oldatom);
}
#endif
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
#if !USE_OFFSETS
rehash(startcode, i, Atomics);
#endif
pc = (yamop *)oldcode;
}
break;
/* instructions type fll */
case _go_on_func:
pc->u.fll.f = FuncAdjust(pc->u.fll.f);
pc->u.fll.l1 = CodeAddrAdjust(pc->u.fll.l1);
pc->u.fll.l2 = CodeAddrAdjust(pc->u.fll.l2);
pc = NEXTOP(pc,fll);
break;
/* instructions type cll */
case _go_on_cons:
if (IsAtomTerm(pc->u.cll.c))
pc->u.cll.c = AtomTermAdjust(pc->u.cll.c);
pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1);
pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2);
pc = NEXTOP(pc,cll);
break;
/* instructions type sl */
case _if_func:
{
int i, j;
CELL *oldcode;
i = pc->u.s.s;
pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l);
oldcode = (CELL *)NEXTOP(pc,sl);
for (j = 0; j < i; ++j) {
Functor oldfunc = (Functor)(oldcode[0]);
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
if (oldfunc != NULL) {
oldcode[0] = (CELL)FuncAdjust(oldfunc);
}
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
pc = (yamop *)oldcode;
}
}
break;
case _if_cons:
{
int i, j;
CELL *oldcode;
i = pc->u.sl.s;
pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l);
oldcode = (CELL *)NEXTOP(pc,sl);
for (j = 0; j < i; ++j) {
#if !USE_OFFSETS
Term oldatom = oldcode[0];
#endif
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
#if !USE_OFFSETS
if (oldatom != 0x0) {
oldcode[0] = AtomTermAdjust(oldatom);
}
#endif
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
pc = (yamop *)oldcode;
}
break;
/* instructions type slll */
case _switch_last:
case _switch_l_list:
pc->u.slll.p = CodeAddrAdjust(pc->u.slll.p);
pc->u.slll.l1 = CodeAddrAdjust(pc->u.slll.l1);
pc->u.slll.l2 = CodeAddrAdjust(pc->u.slll.l2);
pc->u.slll.l3 = CodeAddrAdjust(pc->u.slll.l3);
pc = NEXTOP(pc,slll);
break;
/* instructions type xxx */
case _p_plus_vv:
case _p_minus_vv:
case _p_times_vv:
case _p_div_vv:
case _p_and_vv:
case _p_or_vv:
case _p_sll_vv:
case _p_slr_vv:
case _p_arg_vv:
case _p_func2s_vv:
case _p_func2f_xx:
pc->u.xxx.x = XAdjust(pc->u.xxx.x);
pc->u.xxx.x1 = XAdjust(pc->u.xxx.x1);
pc->u.xxx.x2 = XAdjust(pc->u.xxx.x2);
pc = NEXTOP(pc,xxx);
break;
/* instructions type xxc */
case _p_plus_vc:
case _p_minus_cv:
case _p_times_vc:
case _p_div_cv:
case _p_and_vc:
case _p_or_vc:
case _p_sll_vc:
case _p_slr_vc:
case _p_func2s_vc:
pc->u.xxc.x = XAdjust(pc->u.xxc.x);
if (IsAtomTerm(pc->u.xxc.c))
pc->u.xxc.c = AtomTermAdjust(pc->u.xxc.c);
pc->u.xxc.xi = XAdjust(pc->u.xxc.xi);
pc = NEXTOP(pc,xxc);
break;
case _p_div_vc:
case _p_sll_cv:
case _p_slr_cv:
case _p_arg_cv:
pc->u.xcx.x = XAdjust(pc->u.xcx.x);
pc->u.xcx.xi = XAdjust(pc->u.xcx.xi);
pc = NEXTOP(pc,xcx);
break;
case _p_func2s_cv:
pc->u.xcx.x = XAdjust(pc->u.xcx.x);
if (IsAtomTerm(pc->u.xcx.c))
pc->u.xcx.c = AtomTermAdjust(pc->u.xcx.c);
pc->u.xcx.xi = XAdjust(pc->u.xcx.xi);
pc = NEXTOP(pc,xcx);
break;
/* instructions type xyx */
case _p_func2f_xy:
pc->u.xyx.x = XAdjust(pc->u.xyx.x);
pc->u.xyx.x1 = XAdjust(pc->u.xyx.x1);
pc->u.xyx.y2 = YAdjust(pc->u.xyx.y2);
pc = NEXTOP(pc,xyx);
break;
/* instructions type yxx */
case _p_plus_y_vv:
case _p_minus_y_vv:
case _p_times_y_vv:
case _p_div_y_vv:
case _p_and_y_vv:
case _p_or_y_vv:
case _p_sll_y_vv:
case _p_slr_y_vv:
case _p_arg_y_vv:
case _p_func2s_y_vv:
case _p_func2f_yx:
pc->u.yxx.y = YAdjust(pc->u.yxx.y);
pc->u.yxx.x1 = XAdjust(pc->u.yxx.x1);
pc->u.yxx.x2 = XAdjust(pc->u.yxx.x2);
pc = NEXTOP(pc,yxx);
break;
/* instructions type yyx */
case _p_func2f_yy:
pc->u.yyx.y1 = YAdjust(pc->u.yyx.y1);
pc->u.yyx.y2 = YAdjust(pc->u.yyx.y2);
pc->u.yyx.x = XAdjust(pc->u.yyx.x);
pc = NEXTOP(pc,yyx);
break;
/* instructions type yxc */
case _p_plus_y_vc:
case _p_minus_y_cv:
case _p_times_y_vc:
case _p_div_y_vc:
case _p_div_y_cv:
case _p_and_y_vc:
case _p_or_y_vc:
case _p_sll_y_vc:
case _p_slr_y_vc:
case _p_func2s_y_vc:
pc->u.yxc.y = YAdjust(pc->u.yxc.y);
pc->u.yxc.c = AtomTermAdjust(pc->u.yxc.c);
pc->u.yxc.xi = XAdjust(pc->u.yxc.xi);
pc = NEXTOP(pc,yxc);
break;
/* instructions type ycx */
case _p_sll_y_cv:
case _p_slr_y_cv:
case _p_arg_y_cv:
pc->u.ycx.y = YAdjust(pc->u.ycx.y);
pc->u.ycx.xi = XAdjust(pc->u.ycx.xi);
pc = NEXTOP(pc,ycx);
break;
/* instructions type lxx */
case _p_func2s_y_cv:
pc->u.ycx.y = YAdjust(pc->u.ycx.y);
if (IsAtomTerm(pc->u.ycx.c))
pc->u.ycx.c = AtomTermAdjust(pc->u.ycx.c);
pc->u.ycx.xi = XAdjust(pc->u.ycx.xi);
pc = NEXTOP(pc,ycx);
break;
/* instructions type lxx */
case _call_bfunc_xx:
pc->u.lxx.p = CodeAddrAdjust(pc->u.lxx.p);
pc->u.lxx.l = DirectCCodeAdjust((PredEntry *)(pc->u.lxx.p));
pc->u.lxx.x1 = XAdjust(pc->u.lxx.x1);
pc->u.lxx.x2 = XAdjust(pc->u.lxx.x2);
pc = NEXTOP(pc,lxx);
break;
/* instructions type lxy */
case _call_bfunc_yx:
case _call_bfunc_xy:
pc->u.lxy.p = CodeAddrAdjust(pc->u.lxy.p);
pc->u.lxy.l = DirectCCodeAdjust((PredEntry *)(pc->u.lxy.p));
pc->u.lxy.x = XAdjust(pc->u.lxy.x);
pc->u.lxy.y = YAdjust(pc->u.lxy.y);
pc = NEXTOP(pc,lxy);
break;
case _call_bfunc_yy:
pc->u.lyy.p = CodeAddrAdjust(pc->u.lyy.p);
pc->u.lyy.l = DirectCCodeAdjust((PredEntry *)(pc->u.lyy.p));
pc->u.lyy.y1 = YAdjust(pc->u.lyy.y1);
pc->u.lyy.y2 = YAdjust(pc->u.lyy.y2);
pc = NEXTOP(pc,lyy);
break;
}
} while (TRUE);
}
/*
* Restores a group of clauses for the same predicate, starting with First
* and ending with Last, First may be equal to Last
*/
static void
CleanClauses(CODEADDR First, CODEADDR Last)
{
CODEADDR cl = First;
do {
RestoreClause(ClauseCodeToClause(cl));
if (cl == Last) return;
cl = NextClause(cl);
} while (TRUE);
}
static void
restore_static_array(StaticArrayEntry *ae)
{
Int sz = -ae->ArrayEArity;
switch (ae->ArrayType) {
case array_of_ints:
case array_of_doubles:
case array_of_chars:
case array_of_uchars:
return;
case array_of_ptrs:
{
AtomEntry **base = (AtomEntry **)AddrAdjust((ADDR)(ae->ValueOfVE.ptrs));
Int i;
ae->ValueOfVE.ptrs = base;
if (ae != NULL) {
for (i=0; i<sz; i++) {
AtomEntry *reg = *base;
if (reg == NULL) {
base++;
} else if (IsOldCode((CELL)reg)) {
*base++ = AtomEntryAdjust(reg);
} else if (IsOldLocalInTR((CELL)reg)) {
*base++ = (AtomEntry *)LocalAddrAdjust((ADDR)reg);
} else if (IsOldGlobal((CELL)reg)) {
*base++ = (AtomEntry *)GlobalAddrAdjust((ADDR)reg);
} else if (IsOldDelay((CELL)reg)) {
*base++ = (AtomEntry *)DelayAddrAdjust((ADDR)reg);
} else if (IsOldTrail((CELL)reg)) {
*base++ = (AtomEntry *)TrailAddrAdjust((ADDR)reg);
} else {
/* oops */
base++;
}
}
}
}
return;
case array_of_atoms:
{
Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.atoms));
Int i;
ae->ValueOfVE.atoms = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
Term reg = *base;
if (reg == 0L) {
base++;
} else {
*base++ = AtomTermAdjust(reg);
}
}
}
}
return;
case array_of_dbrefs:
{
Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.dbrefs));
Int i;
ae->ValueOfVE.dbrefs = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
Term reg = *base;
if (reg == 0L) {
base++;
} else {
*base++ = AbsAppl(PtoHeapCellAdjust(RepAppl(reg)));
}
}
}
}
return;
case array_of_terms:
{
DBRef *base = (DBRef *)AddrAdjust((ADDR)(ae->ValueOfVE.terms));
Int i;
ae->ValueOfVE.terms = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
DBRef reg = *base;
if (reg == NULL) {
base++;
} else {
*base++ = reg = DBRefAdjust(reg);
RestoreDBEntry(reg);
}
}
}
}
return;
}
}
/*
* Clean all the code for a particular predicate, this can get a bit tricky,
* because of the indexing code
*/
static void
CleanCode(PredEntry *pp)
{
CELL flag;
CODEADDR FirstC, LastC;
/* Init takes care of the first 2 cases */
if (pp->ArityOfPE)
pp->FunctorOfPred = FuncAdjust(pp->FunctorOfPred);
else
pp->FunctorOfPred = (Functor) AtomAdjust((Atom)(pp->FunctorOfPred));
if (pp->OwnerFile)
pp->OwnerFile = AtomAdjust(pp->OwnerFile);
pp->OpcodeOfPred = opcode(op_from_opcode(pp->OpcodeOfPred));
if (pp->PredFlags & (CPredFlag|BasicPredFlag)) {
if (pp->CodeOfPred != NULL) {
if (pp->CodeOfPred == pp->TrueCodeOfPred) {
if (pp->PredFlags & CPredFlag)
/* C, assembly + C */
pp->CodeOfPred = pp->TrueCodeOfPred = CCodeAdjust(pp);
else
/* assembly */
pp->CodeOfPred = (CODEADDR)AddrAdjust((ADDR)(pp->CodeOfPred));
} else {
/* comparison */
pp->CodeOfPred = CCodeAdjust(pp);
pp->TrueCodeOfPred = DirectCCodeAdjust(pp);
}
}
} else {
if (pp->FirstClause)
pp->FirstClause = CodeAddrAdjust(pp->FirstClause);
if (pp->LastClause)
pp->LastClause = CodeAddrAdjust(pp->LastClause);
pp->CodeOfPred = CodeAddrAdjust(pp->CodeOfPred);
pp->TrueCodeOfPred = CodeAddrAdjust(pp->TrueCodeOfPred);
flag = pp->PredFlags;
FirstC = pp->FirstClause;
LastC = pp->LastClause;
/* We just have a fail here */
if (FirstC == NIL && LastC == NIL) {
return;
}
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "at %lx Correcting clauses from %lx to %lx\n", *(OPCODE *) FirstC, FirstC, LastC);
#endif
CleanClauses(FirstC, LastC);
if (flag & (DynamicPredFlag|IndexedPredFlag)) {
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Correcting dynamic/indexed code\n");
#endif
RestoreClause(ClauseCodeToClause(pp->TrueCodeOfPred));
}
}
/* we are pointing at ourselves */
}
/*
* Restores all of the entries, for a particular atom, we only have problems
* if we find code or data bases
*/
static void
RestoreEntries(PropEntry *pp)
{
while (!EndOfPAEntr(pp)) {
switch(pp->KindOfPE) {
case FunctorProperty:
{
FunctorEntry *fe = (FunctorEntry *)pp;
fe->NameOfFE =
AtomAdjust(fe->NameOfFE);
}
break;
case ValProperty:
{
ValEntry *ve = (ValEntry *)pp;
Term tv = ve->ValueOfVE;
if (IsAtomTerm(tv))
ve->ValueOfVE = AtomTermAdjust(tv);
}
break;
case ArrayProperty:
{
ArrayEntry *ae = (ArrayEntry *)pp;
if (ae->ArrayEArity < 0) {
restore_static_array((StaticArrayEntry *)ae);
} else {
if (IsVarTerm(ae->ValueOfVE))
RESET_VARIABLE(&(ae->ValueOfVE));
else {
CELL *ptr = RepAppl(ae->ValueOfVE);
/* in fact it should just be a pointer to the global,
but we'll be conservative.
Notice that the variable should have been reset in restore_program mode.
*/
if (IsOldGlobalPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoGloAdjust(ptr));
} else if (IsOldCodeCellPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoHeapCellAdjust(ptr));
} else if (IsOldLocalInTRPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoLocAdjust(ptr));
} else if (IsOldDelayPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoDelayAdjust(ptr));
} else if (IsOldTrailPtr(ptr)) {
ae->ValueOfVE = AbsAppl(CellPtoTRAdjust(ptr));
}
}
}
}
break;
case PEProp:
CleanCode((PredEntry *) pp);
break;
case DBProperty:
case LogUpdDBProperty:
case CodeLogUpdDBProperty:
case CodeDBProperty:
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Correcting data base clause at %p\n", pp);
#endif
if (HDiff)
RestoreDB((DBEntry *) pp);
break;
case BBProperty:
if (HDiff)
RestoreBB((BlackBoardEntry *)pp);
break;
case ExpProperty:
case OpProperty:
case ModProperty:
/* do nothing */
break;
default:
/* OOPS */
Error(SYSTEM_ERROR, TermNil,
"Invalid Atom Property at %p", pp);
return;
}
pp = RepProp(pp->NextOfPE);
}
}
/* restore the atom entries which are invisible for the user */
static void
RestoreInvisibleAtoms(void)
{
AtomEntry *at;
Atom atm = INVISIBLECHAIN.Entry;
INVISIBLECHAIN.Entry = atm = AtomAdjust(atm);
at = RepAtom(atm);
if (EndOfPAEntr(at))
return;
do {
#ifdef DEBUG_RESTORE2 /* useful during debug */
YP_fprintf(errout, "Restoring %s\n", at->StrOfAE);
#endif
RestoreEntries(RepProp(at->PropOfAE));
atm = at->NextOfAE;
at->NextOfAE = atm = AtomAdjust(atm);
at = RepAtom(atm);
}
while (!EndOfPAEntr(at));
}
/* restore the atom entries which are invisible for the user */
static void
RestoreForeignCodeStructure(void)
{
ForeignObj *f_code;
if (ForeignCodeLoaded != NULL)
ForeignCodeLoaded = (void *)AddrAdjust((ADDR)ForeignCodeLoaded);
f_code = ForeignCodeLoaded;
while (f_code != NULL) {
StringList objs, libs;
if (f_code->objs != NULL)
f_code->objs = (StringList)AddrAdjust((ADDR)f_code->objs);
objs = f_code->objs;
while (objs != NULL) {
if (objs->next != NULL)
objs->next = (StringList)AddrAdjust((ADDR)objs->next);
if (objs->s != NULL)
objs->s = (char *)AddrAdjust((ADDR)objs->s);
objs = objs->next;
}
if (f_code->libs != NULL)
f_code->libs = (StringList)AddrAdjust((ADDR)f_code->libs);
libs = f_code->libs;
while (libs != NULL) {
if (libs->next != NULL)
libs->next = (StringList)AddrAdjust((ADDR)libs->next);
if (libs->s != NULL)
libs->s = (char *)AddrAdjust((ADDR)libs->s);
libs = libs->next;
}
if (f_code->f != NULL)
f_code->f = (char *)AddrAdjust((ADDR)f_code->f);
if (f_code->next != NULL)
f_code->next = (ForeignObj *)AddrAdjust((ADDR)f_code->f);
f_code = f_code->next;
}
}
/* restores the list of free space, with its curious structure */
static void
RestoreFreeSpace(void)
{
register BlockHeader *bpt, *bsz;
if (FreeBlocks != NULL)
FreeBlocks = BlockAdjust(FreeBlocks);
bpt = FreeBlocks;
while (bpt != NULL) {
if (bpt->b_next != NULL) {
bsz = bpt->b_next = BlockAdjust(bpt->b_next);
while (bsz != NULL) {
if (bsz->b_next_size != NULL)
bsz->b_next_size = BlockAdjust(bsz->b_next_size);
if (bsz->b_next != NULL)
bsz->b_next = BlockAdjust(bsz->b_next);
bsz = bsz->b_next;
}
}
if (bpt->b_next_size != NULL)
bpt->b_next_size = BlockAdjust(bpt->b_next_size);
bpt = bpt->b_next_size;
}
*((YAP_SEG_SIZE *) HeapTop) = InUseFlag;
}
/*
* This is the really tough part, to restore the whole of the heap
*/
static void
restore_heap(void)
{
AtomHashEntry *HashPtr = HashChain;
register int i;
for (i = 0; i < MaxHash; ++i) {
Atom atm = HashPtr->Entry;
if (atm) {
AtomEntry *at;
HashPtr->Entry = atm = AtomAdjust(atm);
at = RepAtom(atm);
do {
#ifdef DEBUG_RESTORE2 /* useful during debug */
YP_fprintf(errout, "Restoring %s\n", at->StrOfAE);
#endif
RestoreEntries(RepProp(at->PropOfAE));
atm = at->NextOfAE = AtomAdjust(at->NextOfAE);
at = RepAtom(atm);
} while (!EndOfPAEntr(at));
}
HashPtr++;
}
RestoreInvisibleAtoms();
RestoreForeignCodeStructure();
}
#ifdef DEBUG_RESTORE3
static void
ShowEntries(pp)
PropEntry *pp;
{
while (!EndOfPAEntr(pp)) {
YP_fprintf(YP_stderr,"Estou a ver a prop %x em %x\n", pp->KindOfPE, pp);
pp = RepProp(pp->NextOfPE);
}
}
static void
ShowAtoms()
{
AtomHashEntry *HashPtr = HashChain;
register int i;
for (i = 0; i < MaxHash; ++i) {
if (HashPtr->Entry != NIL) {
AtomEntry *at;
at = RepAtom(HashPtr->Entry);
do {
YP_fprintf(YP_stderr,"Passei ao %s em %x\n", at->StrOfAE, at);
ShowEntries(RepProp(at->PropOfAE));
} while (!EndOfPAEntr(at = RepAtom(at->NextOfAE)));
}
HashPtr++;
}
}
#endif /* DEBUG_RESTORE3 */
#include <stdio.h>
static int
OpenRestore(char *s)
{
int mode;
/* if (strcmp(s, StartUpFile) == 0)
YP_fprintf(YP_stderr, "[ YAP version %s ]\n\n", version_number);*/
CloseStreams(TRUE);
if ((splfild = open_file(s, O_RDONLY)) < 0) {
if (!dir_separator(s[0]) && !volume_header(s)) {
/*
we have a relative path for the file, try to do somewhat better
using YAPLIBDIR or friends.
*/
if (Yap_LibDir != NULL) {
strncpy(FileNameBuf, Yap_LibDir, YAP_FILENAME_MAX);
#if HAVE_GETENV
} else {
char *yap_env = getenv("YAPLIBDIR");
if (yap_env != NULL) {
strncpy(FileNameBuf, yap_env, YAP_FILENAME_MAX);
#endif
} else {
strncpy(FileNameBuf, LIB_DIR, YAP_FILENAME_MAX);
}
#if HAVE_GETENV
}
#endif
#if _MSC_VER || defined(__MINGW32__)
strncat(FileNameBuf,"\\", YAP_FILENAME_MAX);
#else
strncat(FileNameBuf,"/", YAP_FILENAME_MAX);
#endif
strncat(FileNameBuf,s, YAP_FILENAME_MAX);
if ((splfild = open_file(FileNameBuf, O_RDONLY)) < 0) {
if (PrologMode != BootMode) {
Error(SYSTEM_ERROR,MkAtomTerm(LookupAtom(s)),
"save/1, open(%s)", strerror(errno));
}
return(FAIL_RESTORE);
}
} else {
return(FAIL_RESTORE);
}
}
PrologMode = BootMode;
if ((mode = check_header()) == FAIL_RESTORE)
return(FAIL_RESTORE);
if (!yap_flags[HALT_AFTER_CONSULT_FLAG]) {
YP_fprintf(YP_stderr, "[ Restoring file %s ]\n", s);
}
#ifdef DEBUG_RESTORE4
/*
* This should be another file, like the log file
*/
errout = YP_stderr;
#endif
return(mode);
}
static void
CloseRestore(void)
{
#ifdef DEBUG_RESTORE3
ShowAtoms();
#endif
close_file();
PrologMode = UserMode;
}
static int
check_opcodes(OPCODE old_ops[])
{
#if USE_THREADED_CODE
int have_shifted = FALSE;
op_numbers op = _Ystop;
for (op = _Ystop; op < _std_top; op++) {
if (opcode(op) != old_ops[op]) {
have_shifted = TRUE;
break;
}
}
return(have_shifted);
#else
return(FALSE);
#endif
}
static void
RestoreHeap(OPCODE old_ops[], int functions_moved)
{
int heap_moved = (OldHeapBase != HeapBase), opcodes_moved;
opcodes_moved = check_opcodes(old_ops);
/* opcodes_moved has side-effects and should be tried first */
if (heap_moved || opcodes_moved || functions_moved) {
restore_heap();
}
/* This must be done after restore_heap */
if (heap_moved) {
RestoreFreeSpace();
}
InitAbsmi();
if (!(ReInitConstExps() && ReInitUnaryExps() && ReInitBinaryExps()))
Error(SYSTEM_ERROR, TermNil, "arithmetic operator not in saved state");
#ifdef DEBUG_RESTORE1
YP_fprintf(errout, "phase 1 done\n");
#endif
}
/*
* This function is called to know about the parameters of the last saved
* state
*/
int
SavedInfo(char *FileName, int *ATrail, int *AStack, int *AHeap, char *YapLibDir)
{
char pp[80];
char msg[256];
char NameBuf[YAP_FILENAME_MAX];
int result, mode;
if ((splfild = open_file(FileName, O_RDONLY)) < 0) {
if (!dir_separator(FileName[0]) && !volume_header(FileName)) {
/* we have a relative path for the file, try to do somewhat better */
if (YapLibDir != NULL) {
strncpy(FileNameBuf, YapLibDir, YAP_FILENAME_MAX);
#if HAVE_GETENV
} else {
char* my_env=getenv("YAPLIBDIR");
if (my_env != NULL) {
strncpy(NameBuf, my_env, YAP_FILENAME_MAX);
#endif
} else {
strncpy(NameBuf, LIB_DIR, YAP_FILENAME_MAX);
}
#if HAVE_GETENV
}
#endif
#if _MSC_VER || defined(__MINGW32__)
strncat(NameBuf,"\\", YAP_FILENAME_MAX);
#else
strncat(NameBuf,"/", YAP_FILENAME_MAX);
#endif
strncat(NameBuf,FileName, YAP_FILENAME_MAX);
if ((splfild = open_file(NameBuf, O_RDONLY)) < 0) {
return(FALSE);
}
} else {
return(FALSE);
}
}
/* skip the first line */
do {
myread(splfild, pp, 1);
} while (pp[0] != 1);
sprintf(msg, "YAPV%s", version_number);
myread(splfild, pp, Unsigned(strlen(msg) + 1));
if (strcmp(pp, msg) != 0) {
if (PrologMode != BootMode)
Error(SYSTEM_ERROR, TermNil,
"file %s is not a saved Prolog state", FileName);
return(0);
}
result = get_cell();
mode = get_cell();
if (mode != DO_ONLY_CODE && mode != DO_EVERYTHING) {
Error(SYSTEM_ERROR, TermNil,
"file %s is not a saved Prolog state", FileName);
return(0);
}
if (*AHeap)
get_cell();
else
*AHeap = get_cell() / 1024;
if (mode == DO_ONLY_CODE || *AStack)
get_cell();
else
*AStack = get_cell() / 1024;
if (mode == DO_ONLY_CODE || *ATrail)
get_cell();
else
*ATrail = get_cell() / 1024;
close_file();
return (result);
}
static void
UnmarkTrEntries(void)
{
CELL entry, *Entries;
/* initialise a choice point */
B = (choiceptr)LCL0;
B--;
B->cp_ap = (yamop *)NOCODE;
Entries = (CELL *)TrailBase;
while ((CODEADDR)(entry = *Entries++) != NULL) {
register CELL flags;
flags = Flags(entry);
ResetFlag(InUseMask, flags);
Flags(entry) = flags;
if (FlagOn(ErasedMask, flags)) {
if (FlagOn(DBClMask, flags)) {
ErDBE((DBRef) (entry - (CELL) &(((DBRef) NIL)->Flags)));
} else {
ErCl(ClauseFlagsToClause(entry));
}
}
}
B = NULL;
}
int in_limbo = FALSE;
/*
* This function is called when wanting only to restore the heap and
* associated registers
*/
int
Restore(char *s)
{
int restore_mode;
int funcs_moved;
OPCODE old_ops[_std_top+1];
if ((restore_mode = OpenRestore(s)) == FAIL_RESTORE)
return(FALSE);
ShutdownLoadForeign();
in_limbo = TRUE;
funcs_moved = get_coded(restore_mode, old_ops);
restore_regs(restore_mode);
in_limbo = FALSE;
/*#endif*/
RestoreHeap(old_ops, funcs_moved);
switch(restore_mode) {
case DO_EVERYTHING:
if (OldHeapBase != HeapBase ||
OldLCL0 != LCL0 ||
OldGlobalBase != (CELL *)GlobalBase ||
OldTrailBase != TrailBase) {
AdjustStacksAndTrail();
if (which_save == 2) {
AdjustRegs(2);
} else {
AdjustRegs(1);
}
break;
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "phase 2 done\n");
#endif
}
break;
case DO_ONLY_CODE:
UnmarkTrEntries();
break;
}
ReOpenLoadForeign();
InitPlIO();
/* reset time */
ReInitWallTime();
CloseRestore();
if (which_save == 2) {
unify(ARG2, MkIntTerm(0));
}
return(restore_mode);
}
static Int
p_restore(void)
{
int mode;
Term t1 = Deref(ARG1);
if (!GetName(FileNameBuf, t1)) {
Error(TYPE_ERROR_LIST,t1,"restore/1");
return(FALSE);
}
if ((mode = Restore(FileNameBuf)) == DO_ONLY_CODE) {
#if PUSH_REGS
restore_absmi_regs(&standard_regs);
#endif
/* back to the top level we go */
siglongjmp(RestartEnv,3);
}
return(mode != FAIL_RESTORE);
}
void
InitSavePreds(void)
{
InitCPred("$save", 1, p_save, SafePredFlag|SyncPredFlag);
InitCPred("$save", 2, p_save2, SafePredFlag|SyncPredFlag);
InitCPred("$save_program", 1, p_save_program, SafePredFlag|SyncPredFlag);
InitCPred("$restore", 1, p_restore, SyncPredFlag);
}