382 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			382 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| :- module(ta,[main/0,main/1]).
 | |
| 
 | |
| :- use_module(library(chr)).
 | |
| :- use_module(library(lists)).
 | |
| 
 | |
| /*
 | |
| 
 | |
| 	Timed automaton => Constraints
 | |
| 
 | |
| 			=>
 | |
| 
 | |
| 	 X := N			geq(X,N)
 | |
| 	-------->
 | |
| 
 | |
| 	 X =< N			leq(X,N)
 | |
| 	-------->
 | |
| 
 | |
| 	 X >= N			geq(X,N)
 | |
| 	-------->
 | |
| 
 | |
| 
 | |
| n > 1,	1 ------> v		fincl(Xv,X1),
 | |
| 	...    /		...
 | |
| 	n ----/			fincl(Xv,Xn),
 | |
| 				fub_init(Xv,[])
 | |
| 
 | |
| n >= 1, v ------> 1		bincl(Xv,X1),
 | |
| 	  \     ...		...
 | |
| 	   \----> n		bincl(Xv,X1),
 | |
| 				bub_init(Xv,[])
 | |
| */
 | |
| 
 | |
| %% handler ta.
 | |
| 
 | |
| :- chr_constraint
 | |
| 
 | |
| 	fincl/2,	% expresses that clock 1 includes clock 2 (union)
 | |
| 			% in the sense that clock 2 is forward of clock 1
 | |
| 
 | |
| 	bincl/2,	% expresses that clock 1 includes clock 2 (union)
 | |
| 			% in the sense that clock 1 is forward of clock 2
 | |
| 
 | |
| 	leq/2,		% expresses that clock 1 =< number 2
 | |
| 
 | |
| 	geq/2,		% expresses that clock 1 >= number 2
 | |
| 
 | |
| 	fub_init/2,	% collects the inital upper bounds
 | |
| 			% from incoming arrows for clock 1 in list 2
 | |
| 
 | |
| 	fub/2,		% collects the upper bounds for clock 1
 | |
| 			% from incoming arrows in list 2
 | |
| 
 | |
| 	flb_init/2,	% collects the inital lower bounds
 | |
| 			% from incoming arrows for clock 1 in list 2
 | |
| 
 | |
| 	flb/2,		% collects the lower bounds for clock 1
 | |
| 			% from incoming arrows in list 2
 | |
| 
 | |
| 	bub_init/2,	% collects the inital upper bounds
 | |
| 			% from backward arrows for clock 1 in list 2
 | |
| 
 | |
| 	bub/2,		% collects the upper bounds for clock 1
 | |
| 			% from outgoing arrows in list 2
 | |
| 			% values of clock 1 cannot exceed all
 | |
| 			% values of the clocks in list 2
 | |
| 
 | |
| 	blb_init/2,	% collects the inital lower bounds
 | |
| 			% from backward arrows for clock 1 in list 2
 | |
| 
 | |
| 	blb/2,		% collects the lower bounds for clock 1
 | |
| 			% from outgoing arrows in list 2
 | |
| 			% not all values of clock 1 can exceed any
 | |
| 			% values of the clocks in list 2
 | |
| 
 | |
| 	compl/1,	% indicate that all incoming arrows for clock 1
 | |
| 			% have been registerd
 | |
| 
 | |
| 	dist/3,		% indicates that clock 1 - clock 2 =< number 3
 | |
| 
 | |
| 	fdist_init/3,	% records initial distances for clock 1 and clock 2 from
 | |
| 			% incoming arrows in list 3
 | |
| 
 | |
| 	fdist/3,	% records distances for clock 1 and clock 2 from
 | |
| 			% incoming arrows in list 3
 | |
| 
 | |
| 	setdist/3.	% sets distance between clock 1 and clock 2, where
 | |
| 			% clock 1 is reset to value 3
 | |
| 
 | |
| /* More Constraints:
 | |
| 
 | |
| */
 | |
| 
 | |
| leq(X,N1) \ leq(X,N2) <=> N1 =< N2 | true.
 | |
| 
 | |
| geq(X,N1) \ geq(X,N2) <=> N2 =< N1 | true.
 | |
| 
 | |
| dist(X,Y,D1) \ dist(X,Y,D2) <=> D1 =< D2 | true.
 | |
| 
 | |
| dist(X,Y,D), leq(Y,MY) \ leq(X,MX1) <=>
 | |
| 	MX2 is MY + D, MX2 < MX1 | leq(X,MX2).
 | |
| 
 | |
| dist(X,Y,D), geq(X,MX) \ geq(Y,MY1) <=>
 | |
| 	MY2 is MX - D, MY2 > MY1 | geq(Y,MY2).
 | |
| 
 | |
| fincl(X,Y), leq(Y,N) \ fub_init(X,L)
 | |
| 	<=> \+ memberchk_eq(N-Y,L) |
 | |
| 	    insert_ub(L,Y,N,NL),
 | |
| 	    fub_init(X,NL).
 | |
| 
 | |
| fincl(X,Y), geq(Y,N) \ flb_init(X,L)
 | |
| 	<=> \+ memberchk_eq(N-Y,L) |
 | |
| 	    insert_lb(L,Y,N,NL),
 | |
| 	    flb_init(X,NL).
 | |
| 
 | |
| dist(X1,Y1,D), fincl(X2,X1), fincl(Y2,Y1) \ fdist_init(X2,Y2,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(D-X1,L) |
 | |
| 	insert_ub(L,X1,D,NL),
 | |
| 	fdist_init(X2,Y2,NL).
 | |
| 
 | |
| bincl(X,Y), leq(Y,N) \ bub_init(X,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(N-Y,L) |
 | |
| 	insert_ub(L,Y,N,NL),
 | |
| 	bub_init(X,NL).
 | |
| 
 | |
| compl(X) \ fub_init(X,L) # ID
 | |
| 	<=>
 | |
| 	fub(X,L),
 | |
| 	val(L,M),
 | |
| 	leq(X,M)
 | |
| 	pragma passive(ID).
 | |
| 
 | |
| compl(X) \ flb_init(X,L) # ID
 | |
| 	<=>
 | |
| 	flb(X,L),
 | |
| 	val(L,M),
 | |
| 	geq(X,M)
 | |
| 	pragma passive(ID).
 | |
| 
 | |
| compl(X), compl(Y) \ fdist_init(X,Y,L) # ID
 | |
| 	<=>
 | |
| 	fdist(X,Y,L),
 | |
| 	val(L,D),
 | |
| 	dist(X,Y,D)
 | |
| 	pragma passive(D).
 | |
| 
 | |
| compl(X) \ bub_init(X,L) # ID
 | |
| 	<=>
 | |
| 	bub(X,L),
 | |
| 	val(L,M),
 | |
| 	leq(X,M)
 | |
| 	pragma passive(ID).
 | |
| 
 | |
| fincl(X,Y), leq(Y,N) \ fub(X,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(N-Y,L) |
 | |
| 	insert_ub(L,Y,N,NL),
 | |
| 	fub(X,NL),
 | |
| 	val(NL,M),
 | |
| 	leq(X,M).
 | |
| 
 | |
| fincl(X,Y), geq(Y,N) \ flb(X,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(N-Y,L) |
 | |
| 	insert_lb(L,Y,N,NL),
 | |
| 	flb(X,NL),
 | |
| 	val(NL,M),
 | |
| 	geq(X,M).
 | |
| 
 | |
| bincl(X,Y), leq(Y,N) \ bub(X,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(N-Y,L) |
 | |
| 	insert_ub(L,Y,N,NL),
 | |
| 	bub(X,NL),
 | |
| 	val(NL,M),
 | |
| 	leq(X,M).
 | |
| 
 | |
| fincl(X2,X1), fincl(Y2,Y1), dist(X1,Y1,D) \ fdist(X2,Y2,L)
 | |
| 	<=>
 | |
| 	\+ memberchk_eq(D-X1,L) |
 | |
| 	insert_ub(L,X1,D,NL),
 | |
| 	fdist(X2,Y2,NL),
 | |
| 	val(NL,MD),
 | |
| 	dist(X2,Y2,MD).
 | |
| 
 | |
| fincl(X,Y), leq(X,N) ==> leq(Y,N).
 | |
| 
 | |
| fincl(X,Y), geq(X,N) ==> geq(Y,N).
 | |
| 
 | |
| bincl(X,Y), geq(X,N) ==> geq(Y,N).
 | |
| 
 | |
| bincl(X1,X2), bincl(Y1,Y2), dist(X1,Y1,D1) \ dist(X2,Y2,D2) <=> D1 < D2 | dist(X2,Y2,D1).
 | |
| 
 | |
| setdist(X,Y,N), leq(Y,D1) ==> D2 is D1 - N, dist(Y,X,D2).
 | |
| setdist(X,Y,N), geq(Y,D1) ==> D2 is N - D1, dist(X,Y,D2).
 | |
| 
 | |
| val([N-_|_],N).
 | |
| 
 | |
| insert_ub([],X,N,[N-X]).
 | |
| insert_ub([M-Y|R],X,N,NL) :-
 | |
| 	( Y == X ->
 | |
| 		insert_ub(R,X,N,NL)
 | |
| 	; M > N ->
 | |
| 		NL = [M-Y|NR],
 | |
| 		insert_ub(R,X,N,NR)
 | |
| 	;
 | |
| 		NL = [N-X,M-Y|R]
 | |
| 	).
 | |
| 
 | |
| insert_lb([],X,N,[N-X]).
 | |
| insert_lb([M-Y|R],X,N,NL) :-
 | |
| 	( Y == X ->
 | |
| 		insert_lb(R,X,N,NL)
 | |
| 	; M < N ->
 | |
| 		NL = [M-Y|NR],
 | |
| 		insert_lb(R,X,N,NR)
 | |
| 	;
 | |
| 		NL = [N-X,M-Y|R]
 | |
| 	).
 | |
| 
 | |
| couple(X,Y) :-
 | |
| 	dist(X,Y,10000),
 | |
| 	dist(Y,X,10000).
 | |
| 
 | |
| giri :-
 | |
| 	giri([x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,x9,y9,x10,y10]).
 | |
| 
 | |
| giri(L) :-
 | |
| 	L = [X1,Y1,X2,Y2,X3,Y3,X4,Y4,X5,Y5,X6,Y6,X7,Y7,X8,Y8,X9,Y9,X10,Y10],
 | |
| 	clocks(L),
 | |
| 
 | |
| 	% 1.
 | |
| 	couple(X1,Y1),
 | |
| 	geq(X1,0),
 | |
| 	geq(X2,0),
 | |
| 	dist(X1,Y1,0),
 | |
| 	dist(Y1,X1,0),
 | |
| 
 | |
| 	% 2.
 | |
| 	couple(X2,Y2),
 | |
| 
 | |
| 	fincl(X2,X1),
 | |
| 	fincl(X2,X8),
 | |
| 	fincl(X2,X10),
 | |
| 	fub_init(X2,[]),
 | |
| 	flb_init(X2,[]),
 | |
| 
 | |
| 	fincl(Y2,Y1),
 | |
| 	fincl(Y2,Y8),
 | |
| 	fincl(Y2,Y10),
 | |
| 	fub_init(Y2,[]),
 | |
| 	flb_init(Y2,[]),
 | |
| 
 | |
| 	bincl(X2,X3),
 | |
| 	bincl(X2,X4),
 | |
| 	bub_init(X2,[]),
 | |
| 	blb_init(X2,[]),
 | |
| 
 | |
| 	bincl(Y2,Y3),
 | |
| 	bincl(Y2,Y4),
 | |
| 	bub_init(Y2,[]),
 | |
| 	blb_init(Y2,[]),
 | |
| 
 | |
| 	fdist_init(X2,Y2,[]),
 | |
| 	fdist_init(Y2,X2,[]),
 | |
| 
 | |
| 	% 3.
 | |
| 	couple(X3,Y3),
 | |
| 	leq(X3,3),
 | |
| 
 | |
| 	bincl(X3,X9),
 | |
| 	bincl(X3,X5),
 | |
| 	bub_init(X3,[]),
 | |
| 	blb_init(X3,[]),
 | |
| 
 | |
| 	bincl(Y3,Y9),
 | |
| 	bincl(Y3,Y5),
 | |
| 	bub_init(Y3,[]),
 | |
| 	blb_init(Y3,[]),
 | |
| 
 | |
| 	%fdist_init(X3,Y3,[]),
 | |
| 	%fdist_init(Y3,X3,[]),
 | |
| 
 | |
| 	% 4.
 | |
| 	couple(X4,Y4),
 | |
| 	geq(Y4,2),
 | |
| 	leq(Y4,5),
 | |
| 
 | |
| 	% 5.
 | |
| 	couple(X5,Y5),
 | |
| 	geq(Y5,5),
 | |
| 	leq(Y5,10),
 | |
| 
 | |
| 	% 6.
 | |
| 	couple(X6,Y6),
 | |
| 
 | |
| 	fincl(X6,X4),
 | |
| 	fincl(X6,X5),
 | |
| 	fub_init(X6,[]),
 | |
| 	flb_init(X6,[]),
 | |
| 
 | |
| 	fincl(Y6,Y4),
 | |
| 	fincl(Y6,Y5),
 | |
| 	fub_init(Y6,[]),
 | |
| 	flb_init(Y6,[]),
 | |
| 
 | |
| 	bincl(X6,X7),
 | |
| 	bub_init(X6,[]),
 | |
| 
 | |
| 	bincl(Y6,Y7),
 | |
| 	bub_init(Y6,[]),
 | |
| 
 | |
| 	fdist_init(X6,Y6,[]),
 | |
| 	fdist_init(Y6,X6,[]),
 | |
| 
 | |
| 	% 7.
 | |
| 	couple(X7,Y7),
 | |
| 	geq(Y7,15),
 | |
| 	leq(Y7,15),
 | |
| 
 | |
| 	% 8.
 | |
| 	couple(X8,Y8),
 | |
| 	geq(X8,2),
 | |
| 	geq(Y8,2),
 | |
| 	dist(X8,Y8,0),
 | |
| 	dist(Y8,X8,0),
 | |
| 
 | |
| 	% 9.
 | |
| 	couple(X9,Y9),
 | |
| 	geq(Y9,5),
 | |
| 	leq(Y9,5),
 | |
| 
 | |
| 
 | |
| 	% 10.
 | |
| 	couple(X10,Y10),
 | |
| 	geq(X10,0),
 | |
| 	geq(Y10,0),
 | |
| 	dist(X10,Y10,0),
 | |
| 	dist(Y10,X10,0),
 | |
| 
 | |
| 	% finish
 | |
| 	compl(X2),
 | |
| 	compl(Y2),
 | |
| 
 | |
| 	compl(X3),
 | |
| 	compl(Y3),
 | |
| 
 | |
| 	compl(X6),
 | |
| 	compl(Y6).
 | |
| 
 | |
| 
 | |
| 
 | |
| clocks([]).
 | |
| clocks([C|Cs]) :-
 | |
| 	clock(C),
 | |
| 	clocks(Cs).
 | |
| 
 | |
| clock(X) :-
 | |
| 	geq(X,0),
 | |
| 	leq(X,10000).
 | |
| 
 | |
| main :-
 | |
| 	main(100).
 | |
| 
 | |
| main(N) :-
 | |
| 	cputime(T1),
 | |
| 	loop(N),
 | |
| 	cputime(T2),
 | |
| 	T is T2 - T1,
 | |
| 	write(bench(ta ,N , T,0,hprolog)),write('.'),nl.
 | |
| 
 | |
| 
 | |
| loop(N) :-
 | |
| 	( N =< 0 ->
 | |
| 		true
 | |
| 	;
 | |
| 		( giri, fail ; true),
 | |
| 		M is N - 1,
 | |
| 		loop(M)
 | |
| 	).
 |