This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/H/rheap.h
2002-06-18 05:22:35 +00:00

1618 lines
48 KiB
C

/*************************************************************************
* *
* YAP Prolog *
* *
* Yap Prolog was developed at NCCUP - Universidade do Porto *
* *
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
* *
**************************************************************************
* *
* File: rheap.c *
* Last rev: *
* mods: *
* comments: walk through heap code *
* *
*************************************************************************/
#ifdef SCCS
static char SccsId[] = "@(#)rheap.c 1.3 3/15/90";
#endif
#define Atomics 0
#define Funcs 1
#if DEBUG_RESTORE2
static char *op_names[_std_top + 1] =
{
#define OPCODE(OP,TYPE) #OP
#include "YapOpcodes.h"
#undef OPCODE
};
#endif /* DEBUG_RESTORE2 */
/* Now, everything on its place so you must adjust the pointers */
/* restore the failcodes */
static void
restore_codes(void)
{
heap_regs->heap_top = AddrAdjust(OldHeapTop);
#ifdef YAPOR
heap_regs->getworkfirsttimecode.opc = opcode(_getwork_first_time);
heap_regs->getworkcode.opc = opcode(_getwork);
INIT_YAMOP_LTT(&(heap_regs->getworkcode), 0);
heap_regs->getworkcode_seq.opc = opcode(_getwork_seq);
INIT_YAMOP_LTT(&(heap_regs->getworkcode_seq), 0);
#endif /* YAPOR */
#ifdef TABLING
heap_regs->tablecompletioncode.opc = opcode(_table_completion);
heap_regs->tableanswerresolutioncode.opc = opcode(_table_answer_resolution);
#ifdef YAPOR
INIT_YAMOP_LTT(&(heap_regs->tablecompletioncode), 0);
INIT_YAMOP_LTT(&(heap_regs->tableanswerresolutioncode), 0);
#endif /* YAPOR */
#endif /* TABLING */
heap_regs->failcode = opcode(_op_fail);
heap_regs->failcode_1 = opcode(_op_fail);
heap_regs->failcode_2 = opcode(_op_fail);
heap_regs->failcode_3 = opcode(_op_fail);
heap_regs->failcode_4 = opcode(_op_fail);
heap_regs->failcode_5 = opcode(_op_fail);
heap_regs->failcode_6 = opcode(_op_fail);
heap_regs->env_for_trustfail_code.op = opcode(_call);
heap_regs->trustfailcode = opcode(_trust_fail);
heap_regs->env_for_yes_code.op = opcode(_call);
heap_regs->yescode.opc = opcode(_Ystop);
heap_regs->undef_op = opcode(_undef_p);
heap_regs->index_op = opcode(_index_pred);
heap_regs->nocode.opc = opcode(_Nstop);
#ifdef YAPOR
INIT_YAMOP_LTT(&(heap_regs->nocode), 1);
#endif /* YAPOR */
#ifdef YAPOR
INIT_YAMOP_LTT(&(heap_regs->rtrycode), 1);
#endif /* YAPOR */
((yamop *)(&heap_regs->rtrycode))->opc = opcode(_retry_and_mark);
if (((yamop *)(&heap_regs->rtrycode))->u.ld.d != NIL)
((yamop *)(&heap_regs->rtrycode))->u.ld.d =
CodeAddrAdjust(((yamop *)(&heap_regs->rtrycode))->u.ld.d);
{
int arity;
arity = heap_regs->clausecode.arity;
if (heap_regs->clausecode.clause != NIL)
heap_regs->clausecode.clause =
CodeAddrAdjust(heap_regs->clausecode.clause);
if (arity) {
heap_regs->clausecode.func =
FuncAdjust(heap_regs->clausecode.func);
} else {
/* an atom */
heap_regs->clausecode.func =
(Functor)AtomAdjust((Atom)(heap_regs->clausecode.func));
}
}
/* restore consult stack. It consists of heap pointers, so it
is easy to fix.
*/
heap_regs->consultlow =
ConsultObjAdjust(heap_regs->consultlow);
heap_regs->consultbase =
ConsultObjAdjust(heap_regs->consultbase);
heap_regs->consultsp =
ConsultObjAdjust(heap_regs->consultsp);
{
/* we assume all pointers have the same size */
register consult_obj *pt = heap_regs->consultsp;
while (pt <
heap_regs->consultlow+heap_regs->consultcapacity) {
pt->p = PropAdjust(pt->p);
pt ++;
}
}
#if USE_THREADED_CODE
heap_regs->op_rtable = (opentry *)
CodeAddrAdjust((CODEADDR)(heap_regs->op_rtable));
#endif
if (heap_regs->atprompt != NIL) {
heap_regs->atprompt =
AtomAdjust(heap_regs->atprompt);
}
if (heap_regs->char_conversion_table != NULL) {
heap_regs->char_conversion_table = (char *)
AddrAdjust((ADDR)heap_regs->char_conversion_table);
}
if (heap_regs->char_conversion_table2 != NULL) {
heap_regs->char_conversion_table2 = (char *)
AddrAdjust((ADDR)heap_regs->char_conversion_table2);
}
if (heap_regs->dead_clauses != NULL) {
heap_regs->dead_clauses = (Clause *)
AddrAdjust((ADDR)(heap_regs->dead_clauses));
}
/* vsc: FIXME !!!!! */
if (heap_regs->db_queues != NULL) {
heap_regs->db_queues = (struct idb_queue *)
AddrAdjust((ADDR)(heap_regs->db_queues));
}
if (heap_regs->db_queues_cache != NULL) {
heap_regs->db_queues_cache = (struct idb_queue *)
AddrAdjust((ADDR)(heap_regs->db_queues_cache));
}
heap_regs->retry_recorded_code =
PtoOpAdjust(heap_regs->retry_recorded_code);
heap_regs->retry_recorded_k_code =
PtoOpAdjust(heap_regs->retry_recorded_k_code);
heap_regs->retry_drecorded_code =
PtoOpAdjust(heap_regs->retry_drecorded_code);
heap_regs->retry_c_recordedp_code =
PtoOpAdjust(heap_regs->retry_c_recordedp_code);
if (heap_regs->IntKeys != NULL) {
heap_regs->IntKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntKeys));
{
UInt i;
for (i = 0; i < heap_regs->int_keys_size; i++) {
if (heap_regs->IntKeys[i] != NIL) {
Prop p0 = heap_regs->IntKeys[i] = PropAdjust(heap_regs->IntKeys[i]);
RestoreEntries(RepProp(p0));
}
}
}
}
if (heap_regs->IntBBKeys != NULL) {
heap_regs->IntBBKeys = (Prop *)AddrAdjust((ADDR)(heap_regs->IntBBKeys));
{
UInt i;
for (i = 0; i < heap_regs->int_bb_keys_size; i++) {
if (heap_regs->IntBBKeys[i] != NIL) {
Prop p0 = heap_regs->IntBBKeys[i] = PropAdjust(heap_regs->IntBBKeys[i]);
RestoreEntries(RepProp(p0));
}
}
}
}
{
/* adjust atoms in atom table */
unsigned int i = 0;
for (i = 0; i < heap_regs->no_of_modules; i++) {
heap_regs->module_name[i] = AtomTermAdjust(heap_regs->module_name[i]);
heap_regs->module_pred[i] = PtoPredAdjust(heap_regs->module_pred[i]);
}
}
heap_regs->atom_abol = AtomAdjust(heap_regs->atom_abol);
heap_regs->atom_append = AtomAdjust(heap_regs->atom_append);
heap_regs->atom_array = AtomAdjust(heap_regs->atom_array);
heap_regs->atom_assert = AtomAdjust(heap_regs->atom_assert);
heap_regs->atom_alarm = AtomAdjust(heap_regs->atom_alarm);
heap_regs->atom_b = AtomAdjust(heap_regs->atom_b);
heap_regs->atom_break = AtomAdjust(heap_regs->atom_break);
heap_regs->atom_call = AtomAdjust(heap_regs->atom_call);
heap_regs->atom_catch = AtomAdjust(heap_regs->atom_catch);
heap_regs->atom_comma = AtomAdjust(heap_regs->atom_comma);
heap_regs->atom_cpu_time = AtomAdjust(heap_regs->atom_cpu_time);
heap_regs->atom_csult = AtomAdjust(heap_regs->atom_csult);
heap_regs->atom_cut = AtomAdjust(heap_regs->atom_cut);
heap_regs->atom_cut_by = AtomAdjust(heap_regs->atom_cut_by);
#ifdef EUROTRA
#ifdef SFUNC
heap_regs->atom_dollar_undef = AtomAdjust(heap_regs->atom_dollar_undef);
#endif
#endif
heap_regs->atom_e = AtomAdjust(heap_regs->atom_e);
heap_regs->atom_e_q = AtomAdjust(heap_regs->atom_e_q);
heap_regs->atom_eof = AtomAdjust(heap_regs->atom_eof);
#ifdef EUROTRA
heap_regs->atom_f_b = AtomAdjust(heap_regs->atom_f_b);
#endif
heap_regs->atom_fail = AtomAdjust(heap_regs->atom_fail);
heap_regs->atom_false = AtomAdjust(heap_regs->atom_false);
heap_regs->atom_fast = AtomAdjust(heap_regs->atom_fast);
heap_regs->atom_g_t = AtomAdjust(heap_regs->atom_g_t);
heap_regs->atom_gc = AtomAdjust(heap_regs->atom_gc);
heap_regs->atom_gc_margin = AtomAdjust(heap_regs->atom_gc_margin);
heap_regs->atom_gc_trace = AtomAdjust(heap_regs->atom_gc_trace);
heap_regs->atom_gc_verbose = AtomAdjust(heap_regs->atom_gc_verbose);
heap_regs->atom_gc_very_verbose = AtomAdjust(heap_regs->atom_gc_very_verbose);
heap_regs->atom_global = AtomAdjust(heap_regs->atom_global);
heap_regs->atom_heap_used = AtomAdjust(heap_regs->atom_heap_used);
heap_regs->atom_index = AtomAdjust(heap_regs->atom_index);
heap_regs->atom_inf = AtomAdjust(heap_regs->atom_inf);
heap_regs->atom_l_t = AtomAdjust(heap_regs->atom_l_t);
heap_regs->atom_local = AtomAdjust(heap_regs->atom_local);
heap_regs->atom_meta_call = AtomAdjust(heap_regs->atom_meta_call);
heap_regs->atom_minus = AtomAdjust(heap_regs->atom_minus);
heap_regs->atom_nan = AtomAdjust(heap_regs->atom_nan);
heap_regs->atom_otherwise = AtomAdjust(heap_regs->atom_otherwise);
heap_regs->atom_pi = AtomAdjust(heap_regs->atom_pi);
heap_regs->atom_plus = AtomAdjust(heap_regs->atom_plus);
heap_regs->atom_portray = AtomAdjust(heap_regs->atom_portray);
heap_regs->atom_profile = AtomAdjust(heap_regs->atom_profile);
heap_regs->atom_random = AtomAdjust(heap_regs->atom_random);
heap_regs->atom_read = AtomAdjust(heap_regs->atom_read);
heap_regs->atom_repeat = AtomAdjust(heap_regs->atom_repeat);
heap_regs->atom_restore_regs = AtomAdjust(heap_regs->atom_restore_regs);
#if HAVE_SIGACTION
heap_regs->atom_sig_pending = AtomAdjust(heap_regs->atom_sig_pending);
#endif
heap_regs->atom_stack_free = AtomAdjust(heap_regs->atom_stack_free);
heap_regs->atom_true = AtomAdjust(heap_regs->atom_true);
heap_regs->atom_user = AtomAdjust(heap_regs->atom_user);
heap_regs->atom_usr_err = AtomAdjust(heap_regs->atom_usr_err);
heap_regs->atom_usr_in = AtomAdjust(heap_regs->atom_usr_in);
heap_regs->atom_usr_out = AtomAdjust(heap_regs->atom_usr_out);
heap_regs->atom_version_number = AtomAdjust(heap_regs->atom_version_number);
heap_regs->atom_write = AtomAdjust(heap_regs->atom_write);
#ifdef USE_SOCKET
heap_regs->functor_af_inet = FuncAdjust(heap_regs->functor_af_inet);
heap_regs->functor_af_local = FuncAdjust(heap_regs->functor_af_local);
heap_regs->functor_af_unix = FuncAdjust(heap_regs->functor_af_unix);
#endif
heap_regs->functor_alt_not = FuncAdjust(heap_regs->functor_alt_not);
heap_regs->functor_arrow = FuncAdjust(heap_regs->functor_arrow);
heap_regs->functor_assert = FuncAdjust(heap_regs->functor_assert);
#ifdef COROUTINING
heap_regs->functor_att_goal = FuncAdjust(heap_regs->functor_att_goal);
#endif
heap_regs->functor_braces = FuncAdjust(heap_regs->functor_braces);
heap_regs->functor_call = FuncAdjust(heap_regs->functor_call);
heap_regs->functor_cut_by = FuncAdjust(heap_regs->functor_cut_by);
heap_regs->functor_comma = FuncAdjust(heap_regs->functor_comma);
heap_regs->functor_csult = FuncAdjust(heap_regs->functor_csult);
heap_regs->functor_eq = FuncAdjust(heap_regs->functor_eq);
heap_regs->functor_execute_in_mod = FuncAdjust(heap_regs->functor_execute_in_mod);
heap_regs->functor_execute_within = FuncAdjust(heap_regs->functor_execute_within);
heap_regs->functor_g_atom = FuncAdjust(heap_regs->functor_g_atom);
heap_regs->functor_g_atomic = FuncAdjust(heap_regs->functor_g_atomic);
heap_regs->functor_g_compound = FuncAdjust(heap_regs->functor_g_compound);
heap_regs->functor_g_float = FuncAdjust(heap_regs->functor_g_float);
heap_regs->functor_g_integer = FuncAdjust(heap_regs->functor_g_integer);
heap_regs->functor_g_number = FuncAdjust(heap_regs->functor_g_number);
heap_regs->functor_g_primitive = FuncAdjust(heap_regs->functor_g_primitive);
heap_regs->functor_g_var = FuncAdjust(heap_regs->functor_g_var);
heap_regs->functor_last_execute_within = FuncAdjust(heap_regs->functor_last_execute_within);
heap_regs->functor_list = FuncAdjust(heap_regs->functor_list);
heap_regs->functor_module = FuncAdjust(heap_regs->functor_module);
#ifdef MULTI_ASSIGNMENT_VARIABLES
heap_regs->functor_mutable = FuncAdjust(heap_regs->functor_mutable);
#endif
heap_regs->functor_not = FuncAdjust(heap_regs->functor_not);
heap_regs->functor_or = FuncAdjust(heap_regs->functor_or);
heap_regs->functor_portray = FuncAdjust(heap_regs->functor_portray);
heap_regs->functor_query = FuncAdjust(heap_regs->functor_query);
heap_regs->functor_spy = FuncAdjust(heap_regs->functor_spy);
heap_regs->functor_stream = FuncAdjust(heap_regs->functor_stream);
heap_regs->functor_stream_pos = FuncAdjust(heap_regs->functor_stream_pos);
heap_regs->functor_stream_eOS = FuncAdjust(heap_regs->functor_stream_eOS);
heap_regs->functor_change_module = FuncAdjust(heap_regs->functor_change_module);
heap_regs->functor_current_module = FuncAdjust(heap_regs->functor_current_module);
heap_regs->functor_u_minus = FuncAdjust(heap_regs->functor_u_minus);
heap_regs->functor_u_plus = FuncAdjust(heap_regs->functor_u_plus);
heap_regs->functor_v_bar = FuncAdjust(heap_regs->functor_v_bar);
heap_regs->functor_var = FuncAdjust(heap_regs->functor_var);
#ifdef EUROTRA
heap_regs->term_dollar_u = AtomTermAdjust(heap_regs->term_dollar_u);
#endif
heap_regs->term_prolog = AtomTermAdjust(heap_regs->term_prolog);
heap_regs->term_refound_var = AtomTermAdjust(heap_regs->term_refound_var);
if (heap_regs->dyn_array_list != NULL) {
heap_regs->dyn_array_list =
(struct array_entry *)AddrAdjust((ADDR)heap_regs->dyn_array_list);
}
if (heap_regs->file_aliases != NULL) {
heap_regs->file_aliases =
(struct AliasDescS *)AddrAdjust((ADDR)heap_regs->file_aliases);
}
heap_regs->yap_lib_dir =
(char *)AddrAdjust((ADDR)heap_regs->yap_lib_dir);
heap_regs->pred_goal_expansion =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_goal_expansion);
heap_regs->pred_meta_call =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_meta_call);
heap_regs->pred_dollar_catch =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_dollar_catch);
heap_regs->pred_throw =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_throw);
heap_regs->pred_handle_throw =
(PredEntry *)AddrAdjust((ADDR)heap_regs->pred_handle_throw);
if (heap_regs->dyn_array_list != NULL)
heap_regs->dyn_array_list = PtoArrayEAdjust(heap_regs->dyn_array_list);
if (heap_regs->undef_code != NULL)
heap_regs->undef_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->undef_code));
if (heap_regs->creep_code != NULL)
heap_regs->creep_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->creep_code));
if (heap_regs->spy_code != NULL)
heap_regs->spy_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->spy_code));
#ifdef COROUTINING
if (heap_regs->wake_up_code != NULL)
heap_regs->wake_up_code = (PredEntry *)PtoHeapCellAdjust((CELL *)(heap_regs->wake_up_code));
heap_regs->mutable_list =
AbsAppl(PtoGloAdjust(RepAppl(heap_regs->mutable_list)));
heap_regs->atts_mutable_list =
AbsAppl(PtoGloAdjust(RepAppl(heap_regs->atts_mutable_list)));
#endif
if (heap_regs->last_wtime != NULL)
heap_regs->last_wtime = (void *)PtoHeapCellAdjust((CELL *)(heap_regs->last_wtime));
heap_regs->db_erased_marker =
DBRefAdjust(heap_regs->db_erased_marker);
}
/* Restoring the heap */
/* Converts a structure of the DB, as it was saved in the heap */
/* uses a variable base */
static void
ConvDBStruct(Term Struct, char *tbase, CELL size)
{
CELL *TermP;
Functor f;
int Arity, i;
TermP = (CELL *)(tbase + (CELL)RepAppl(Struct));
f = (Functor)(*TermP);
if (IsExtensionFunctor(f)) {
return;
}
f = FuncAdjust(f);
*(Functor *)TermP = f;
Arity = ArityOfFunctor(f);
TermP++;
for (i = 0; i < Arity; i++) {
register Term t = *TermP;
if (IsVarTerm(t)) {
/* do nothing */
} else if (IsAtomTerm(t)) {
/* these are the only ones that may actually need to be changed */
*TermP = AtomTermAdjust(t);
} else if (IsApplTerm(t)) {
CELL offset = (CELL)RepAppl(t);
if (offset > size) {
*TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t)));
} else {
ConvDBStruct(t, tbase, size);
}
} else if (IsPairTerm(t)) {
ConvDBList(t, tbase, size);
}
TermP++;
}
}
/* Converts a list of the DB, as it was saved in the heap */
/* uses a variable base */
static void
ConvDBList(Term List, char *tbase, CELL size)
{
CELL *TermP;
int i;
TermP = (CELL *)(tbase + (CELL) RepPair(List));
for (i = 0; i < 2; i++) {
register Term t = *TermP;
if (IsVarTerm(t)) {
/* do nothing */
} else if (IsAtomTerm(t))
*TermP = AtomTermAdjust(t);
else if (IsPairTerm(t))
ConvDBList(t, tbase, size);
else if (IsApplTerm(t)) {
CELL offset = (CELL)RepAppl(t);
if (offset > size) {
*TermP = AbsAppl(CellPtoHeapAdjust(RepAppl(t)));
} else {
ConvDBStruct(t, tbase, size);
}
}
TermP++;
}
}
/* adjusts terms stored in the data base, when they have no variables */
static Term
AdjustDBTerm(Term trm)
{
Term *p;
if (IsAtomTerm(trm))
return (AtomTermAdjust(trm));
if (IsPairTerm(trm)) {
p = PtoHeapCellAdjust(RepPair(trm));
*p = AdjustDBTerm(*p);
++p;
*p = AdjustDBTerm(*p);
return (AbsPair(p-1));
}
if (IsApplTerm(trm)) {
Functor f;
Term *p0 = p = PtoHeapCellAdjust(RepAppl(trm));
f = (Functor)*p;
if (!IsExtensionFunctor(f)) {
int Arity, i;
f = FuncAdjust(f);
*p = (Term)f;
Arity = ArityOfFunctor(f);
p++;
for (i = 0; i < Arity; ++i) {
*p = AdjustDBTerm(*p);
p++;
}
}
return (AbsAppl(p0));
}
return (trm);
}
static void
RestoreDBEntry(DBRef dbr)
{
#ifdef DEBUG_RESTORE
YP_fprintf(errout, "Restoring at %x", dbr);
if (dbr->Flags & DBAtomic)
YP_fprintf(errout, " an atomic term\n");
else if (dbr->Flags & DBNoVars)
YP_fprintf(errout, " with no vars\n");
else if (dbr->Flags & DBComplex)
YP_fprintf(errout, " complex term\n");
else if (dbr->Flags & DBIsRef)
YP_fprintf(errout, " a ref\n");
else
YP_fprintf(errout, " a var\n");
#endif
dbr->Parent = (DBProp)AddrAdjust((ADDR)(dbr->Parent));
if (dbr->Code != NIL)
dbr->Code = CodeAddrAdjust(dbr->Code);
if (dbr->Flags & DBAtomic) {
if (IsAtomTerm(dbr->Entry))
dbr->Entry = AtomTermAdjust(dbr->Entry);
} else if (dbr->Flags & DBNoVars)
dbr->Entry = (CELL) AdjustDBTerm((Term) dbr->Entry);
else if (dbr->Flags & DBComplex) {
if (IsApplTerm((Term) dbr->Entry))
ConvDBStruct((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL));
else
ConvDBList((Term) dbr->Entry, CharP(dbr->Contents-1), dbr->NOfCells*sizeof(CELL));
}
if (dbr->Prev != NULL)
dbr->Prev = DBRefAdjust(dbr->Prev);
if (dbr->Next != NULL)
dbr->Next = DBRefAdjust(dbr->Next);
if (dbr->Flags & DBWithRefs) {
DBRef *cp;
DBRef tm;
cp = (DBRef *) ((CODEADDR) dbr + SizeOfBlock(CodePtr(dbr)));
while ((tm = *--cp) != 0)
*cp = DBRefAdjust(tm);
}
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Recomputing masks\n");
#endif
recompute_mask(dbr);
}
/* Restores a DB structure, as it was saved in the heap */
static void
RestoreDB(DBEntry *pp)
{
register DBRef dbr;
if (pp->First != NULL)
pp->First = DBRefAdjust(pp->First);
if (pp->Last != NULL)
pp->Last = DBRefAdjust(pp->Last);
#ifndef KEEP_ENTRY_AGE
if (pp->FirstNEr != NULL)
pp->FirstNEr = DBRefAdjust(pp->FirstNEr);
#endif
if (pp->ArityOfDB)
pp->FunctorOfDB = FuncAdjust(pp->FunctorOfDB);
else
pp->FunctorOfDB = (Functor) AtomAdjust((Atom)(pp->FunctorOfDB));
dbr = pp->First;
/* While we have something in the data base, restore it */
while (dbr) {
RestoreDBEntry(dbr);
dbr = dbr->Next;
}
}
/* Restores a DB structure, as it was saved in the heap */
static void
RestoreBB(BlackBoardEntry *pp)
{
if (pp->Element) {
register DBRef dbr;
pp->Element = DBRefAdjust(pp->Element);
#ifdef DEBUG_RESTORE
YP_fprintf(errout, "Restoring at %x", dbr);
if (dbr->Flags & DBAtomic)
YP_fprintf(errout, " an atomic term\n");
else if (dbr->Flags & DBNoVars)
YP_fprintf(errout, " with no vars\n");
else if (dbr->Flags & DBComplex)
YP_fprintf(errout, " complex term\n");
else if (dbr->Flags & DBIsRef)
YP_fprintf(errout, " a ref\n");
else
YP_fprintf(errout, " a var\n");
#endif
dbr = pp->Element;
RestoreDBEntry(dbr);
}
pp->KeyOfBB = AtomAdjust(pp->KeyOfBB);
}
/* Restores a prolog clause, in its compiled form */
static void
RestoreClause(Clause *Cl, int mode)
/*
* Cl points to the start of the code, IsolFlag tells if we have a single
* clause for this predicate or not
*/
{
yamop *pc;
OPREG cl_type = FirstArgOfClType(Cl->ClFlags);
if (mode == ASSEMBLING_CLAUSE) {
if (cl_type == ApplCl ||
(cl_type == ListCl && HeadOfClType(cl_type) == ApplCl)) {
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "at %p, appl: %lx -> %lx", Cl, Cl->u.ClValue,
(CELL)FuncAdjust((Functor)(Cl->u.ClValue)));
#endif
Cl->u.ClValue = (CELL)FuncAdjust((Functor)(Cl->u.ClValue));
} else if ((cl_type == AtCl ||
(cl_type == ListCl && HeadOfClType(cl_type) == AtCl)) &&
IsAtomTerm(Cl->u.ClValue)) {
#ifdef DEBUG_RESTORE2
if (IsAtomTerm(Cl->u.ClValue))
YP_fprintf(errout, "at %p, atom: %lx -> %lx", Cl, Cl->u.ClValue,
AtomTermAdjust(Cl->u.ClValue));
#endif
Cl->u.ClValue = AtomTermAdjust(Cl->u.ClValue);
}
}
/* TO DO: log update semantics */
/* Get the stored operator */
pc = Cl->ClCode;
do {
op_numbers op = op_from_opcode(pc->opc);
pc->opc = opcode(op);
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "%s\n", op_names[op]);
#endif
switch (op) {
case _Ystop:
case _Nstop:
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "left OK\n");
#endif
return;
/* instructions type ld */
case _try_me:
case _retry_me:
case _trust_me:
case _profiled_retry_me:
case _profiled_trust_me:
case _try_me0:
case _retry_me0:
case _trust_me0:
case _try_me1:
case _retry_me1:
case _trust_me1:
case _try_me2:
case _retry_me2:
case _trust_me2:
case _try_me3:
case _retry_me3:
case _trust_me3:
case _try_me4:
case _retry_me4:
case _trust_me4:
case _spy_or_trymark:
case _try_and_mark:
case _profiled_retry_and_mark:
case _retry_and_mark:
case _try_clause:
case _retry:
case _trust:
case _retry_first:
case _trust_first:
case _retry_tail:
case _trust_tail:
case _retry_head:
case _trust_head:
#ifdef YAPOR
case _getwork:
case _getwork_seq:
case _sync:
#endif
#ifdef TABLING
case _table_try_me_single:
case _table_try_me:
case _table_retry_me:
case _table_trust_me:
case _table_answer_resolution:
case _table_completion:
#endif
pc->u.ld.p = PtoPredAdjust(pc->u.ld.p);
pc->u.ld.d = CodeAddrAdjust(pc->u.ld.d);
pc = NEXTOP(pc,ld);
break;
/* instructions type l */
case _enter_profiling:
case _retry_profiled:
case _try_logical_pred:
case _trust_logical_pred:
case _execute:
case _dexecute:
case _jump:
case _move_back:
case _skip:
case _try_in:
case _jump_if_var:
pc->u.l.l = CodeAddrAdjust(pc->u.l.l);
pc = NEXTOP(pc,l);
break;
/* instructions type EC */
case _alloc_for_logical_pred:
pc->u.EC.ClBase = CodeAddrAdjust(pc->u.EC.ClBase);
pc = NEXTOP(pc,EC);
break;
/* instructions type e */
case _trust_fail:
case _op_fail:
case _cut:
case _cut_t:
case _cut_e:
case _procceed:
case _allocate:
case _deallocate:
case _write_void:
case _write_list:
case _write_l_list:
#if !defined(YAPOR)
case _or_last:
#endif
case _pop:
case _index_pred:
case _undef_p:
case _spy_pred:
case _p_equal:
case _p_dif:
case _p_eq:
case _p_functor:
#ifdef YAPOR
case _getwork_first_time:
#endif
#ifdef TABLING
case _trie_do_var:
case _trie_trust_var:
case _trie_try_var:
case _trie_retry_var:
case _trie_do_val:
case _trie_trust_val:
case _trie_try_val:
case _trie_retry_val:
case _trie_do_atom:
case _trie_trust_atom:
case _trie_try_atom:
case _trie_retry_atom:
case _trie_do_list:
case _trie_trust_list:
case _trie_try_list:
case _trie_retry_list:
case _trie_do_struct:
case _trie_trust_struct:
case _trie_try_struct:
case _trie_retry_struct:
#endif
pc = NEXTOP(pc,e);
break;
/* instructions type x */
case _save_b_x:
case _comit_b_x:
case _get_list:
case _put_list:
case _write_x_var:
case _write_x_val:
case _write_x_loc:
case _p_atom_x:
case _p_atomic_x:
case _p_integer_x:
case _p_nonvar_x:
case _p_number_x:
case _p_var_x:
case _p_db_ref_x:
case _p_primitive_x:
case _p_compound_x:
case _p_float_x:
case _p_cut_by_x:
pc->u.x.x = XAdjust(pc->u.x.x);
pc = NEXTOP(pc,x);
break;
/* instructions type y */
case _save_b_y:
case _comit_b_y:
case _write_y_var:
case _write_y_val:
case _write_y_loc:
case _p_atom_y:
case _p_atomic_y:
case _p_integer_y:
case _p_nonvar_y:
case _p_number_y:
case _p_var_y:
case _p_db_ref_y:
case _p_primitive_y:
case _p_compound_y:
case _p_float_y:
case _p_cut_by_y:
pc->u.y.y = YAdjust(pc->u.y.y);
pc = NEXTOP(pc,y);
break;
/* instructions type sla */
case _fcall:
case _call:
case _either:
case _or_else:
case _p_execute:
case _p_execute_within:
case _p_last_execute_within:
#ifdef YAPOR
case _or_last:
#endif
pc->u.sla.l = CodeAddrAdjust(pc->u.sla.l);
if (pc->u.sla.l2 != NULL) {
pc->u.sla.l2 = CellPtoHeapAdjust(pc->u.sla.l2);
}
pc->u.sla.p = PtoPredAdjust(pc->u.sla.p);
pc->u.sla.p0 = PtoPredAdjust(pc->u.sla.p0);
pc = NEXTOP(pc,sla);
break;
/* instructions type sla, but for functions */
case _call_cpred:
case _call_usercpred:
pc->u.sla.p = PtoPredAdjust(pc->u.sla.p);
pc->u.sla.p0 = PtoPredAdjust(pc->u.sla.p0);
pc->u.sla.l = CCodeAdjust(pc->u.sla.p,pc->u.sla.l);
if (pc->u.sla.l2 != NULL) {
pc->u.sla.l2 = CellPtoHeapAdjust(pc->u.sla.l2);
}
pc = NEXTOP(pc,sla);
break;
/* instructions type xx */
case _get_x_var:
case _get_x_val:
case _glist_valx:
case _gl_void_varx:
case _gl_void_valx:
case _put_x_var:
case _put_x_val:
pc->u.xx.xr = XAdjust(pc->u.xx.xr);
pc->u.xx.xl = XAdjust(pc->u.xx.xl);
pc = NEXTOP(pc,xx);
break;
/* instructions type yx */
case _get_y_var:
case _get_y_val:
case _put_y_var:
case _put_y_val:
case _put_unsafe:
pc->u.yx.x = XAdjust(pc->u.yx.x);
pc->u.yx.y = YAdjust(pc->u.yx.y);
pc = NEXTOP(pc,yx);
break;
/* instructions type xc */
case _get_atom:
case _put_atom:
case _get_float:
case _get_longint:
case _get_bigint:
pc->u.xc.x = XAdjust(pc->u.xc.x);
{
Term t = pc->u.xc.c;
if (IsAtomTerm(t))
pc->u.xc.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.xc.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,xc);
break;
/* instructions type xf */
case _get_struct:
case _put_struct:
pc->u.xf.x = XAdjust(pc->u.xf.x);
pc->u.xf.f = FuncAdjust(pc->u.xf.f);
pc = NEXTOP(pc,xf);
break;
/* instructions type xy */
case _glist_valy:
case _gl_void_vary:
case _gl_void_valy:
pc->u.xy.x = XAdjust(pc->u.xy.x);
pc->u.xy.y = YAdjust(pc->u.xy.y);
pc = NEXTOP(pc,xy);
break;
/* instructions type ox */
case _unify_x_var:
case _unify_x_var_write:
case _unify_l_x_var:
case _unify_l_x_var_write:
case _unify_x_val_write:
case _unify_x_val:
case _unify_l_x_val_write:
case _unify_l_x_val:
case _unify_x_loc_write:
case _unify_x_loc:
case _unify_l_x_loc_write:
case _unify_l_x_loc:
case _save_pair_x_write:
case _save_pair_x:
case _save_appl_x_write:
case _save_appl_x:
pc->u.ox.opcw = opcode(op_from_opcode(pc->u.ox.opcw));
pc->u.ox.x = XAdjust(pc->u.ox.x);
pc = NEXTOP(pc,ox);
break;
/* instructions type oxx */
case _unify_x_var2:
case _unify_x_var2_write:
case _unify_l_x_var2:
case _unify_l_x_var2_write:
pc->u.oxx.opcw = opcode(op_from_opcode(pc->u.oxx.opcw));
pc->u.oxx.xl = XAdjust(pc->u.oxx.xl);
pc->u.oxx.xr = XAdjust(pc->u.oxx.xr);
pc = NEXTOP(pc,oxx);
break;
/* instructions type oy */
case _unify_y_var:
case _unify_y_var_write:
case _unify_l_y_var:
case _unify_l_y_var_write:
case _unify_y_val_write:
case _unify_y_val:
case _unify_l_y_val_write:
case _unify_l_y_val:
case _unify_y_loc_write:
case _unify_y_loc:
case _unify_l_y_loc_write:
case _unify_l_y_loc:
case _save_pair_y_write:
case _save_pair_y:
case _save_appl_y_write:
case _save_appl_y:
pc->u.oy.opcw = opcode(op_from_opcode(pc->u.oy.opcw));
pc->u.oy.y = YAdjust(pc->u.oy.y);
pc = NEXTOP(pc,oy);
break;
/* instructions type o */
case _unify_void_write:
case _unify_void:
case _unify_l_void_write:
case _unify_l_void:
case _unify_list_write:
case _unify_list:
case _unify_l_list_write:
case _unify_l_list:
pc->u.o.opcw = opcode(op_from_opcode(pc->u.o.opcw));
pc = NEXTOP(pc,o);
break;
/* instructions type os */
case _unify_n_voids_write:
case _unify_n_voids:
case _unify_l_n_voids_write:
case _unify_l_n_voids:
pc->u.os.opcw = opcode(op_from_opcode(pc->u.os.opcw));
pc = NEXTOP(pc,os);
break;
/* instructions type oc */
case _unify_atom_write:
case _unify_atom:
case _unify_l_atom_write:
case _unify_l_atom:
case _unify_float:
case _unify_l_float:
case _unify_longint:
case _unify_l_longint:
case _unify_bigint:
case _unify_l_bigint:
pc->u.oc.opcw = opcode(op_from_opcode(pc->u.oc.opcw));
{
Term t = pc->u.oc.c;
if (IsAtomTerm(t))
pc->u.oc.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.oc.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,oc);
break;
/* instructions type osc */
case _unify_n_atoms_write:
case _unify_n_atoms:
pc->u.osc.opcw = opcode(op_from_opcode(pc->u.osc.opcw));
{
Term t = pc->u.osc.c;
if (IsAtomTerm(t))
pc->u.osc.c = AtomTermAdjust(t);
}
pc = NEXTOP(pc,osc);
break;
/* instructions type of */
case _unify_struct_write:
case _unify_struct:
case _unify_l_struc_write:
case _unify_l_struc:
pc->u.of.opcw = opcode(op_from_opcode(pc->u.of.opcw));
pc->u.of.f = FuncAdjust(pc->u.of.f);
pc = NEXTOP(pc,of);
break;
/* instructions type s */
case _write_n_voids:
case _pop_n:
#ifdef TABLING
case _table_new_answer:
#endif
pc = NEXTOP(pc,s);
break;
/* instructions type c */
case _write_atom:
{
Term t = pc->u.c.c;
if (IsAtomTerm(t))
pc->u.c.c = AtomTermAdjust(t);
else if (IsApplTerm(t))
pc->u.c.c = BlobTermAdjust(t);
}
pc = NEXTOP(pc,c);
break;
/* instructions type sc */
case _write_n_atoms:
{
Term t = pc->u.sc.c;
if (IsAtomTerm(t))
pc->u.sc.c = AtomTermAdjust(t);
}
pc = NEXTOP(pc,sc);
break;
/* instructions type f */
case _write_struct:
case _write_l_struc:
pc->u.f.f = FuncAdjust(pc->u.f.f);
pc = NEXTOP(pc,f);
break;
/* instructions type sdl */
case _call_c_wfail:
pc->u.sdl.p = PtoPredAdjust(pc->u.sdl.p);
pc->u.sdl.l = CodeAddrAdjust(pc->u.sdl.l);
pc->u.sdl.d = CCodeAdjust(pc->u.sdl.p,pc->u.sdl.d);
pc = NEXTOP(pc,sdl);
break;
/* instructions type lds */
case _try_c:
case _try_userc:
/* don't need to do no nothing here, initstaff will do it for us
*/
pc->u.lds.p = PtoPredAdjust(pc->u.lds.p);
pc->u.lds.d = CCodeAdjust(pc->u.lds.p,pc->u.lds.d);
pc = NEXTOP(pc,lds);
break;
case _retry_c:
case _retry_userc:
/* don't need to do no nothing here, initstaff will do it for us
pc->u.lds.d = CCodeAdjust(pc->u.lds.d); */
pc->u.lds.p = PtoPredAdjust(pc->u.lds.p);
pc->u.lds.d = NextCCodeAdjust(pc->u.lds.p,pc->u.lds.d);
pc = NEXTOP(pc,lds);
break;
/* instructions type ldl */
case _trust_in:
case _trust_first_in:
case _trust_tail_in:
case _trust_head_in:
pc->u.ldl.p = PtoPredAdjust(pc->u.ldl.p);
pc->u.ldl.d = CodeAddrAdjust(pc->u.ldl.d);
pc->u.ldl.bl = CodeAddrAdjust(pc->u.ldl.bl);
pc = NEXTOP(pc,ldl);
break;
/* instructions type llll */
case _switch_on_type:
case _switch_list_nl:
case _switch_on_head:
pc->u.llll.l1 = CodeAddrAdjust(pc->u.llll.l1);
pc->u.llll.l2 = CodeAddrAdjust(pc->u.llll.l2);
pc->u.llll.l3 = CodeAddrAdjust(pc->u.llll.l3);
pc->u.llll.l4 = CodeAddrAdjust(pc->u.llll.l4);
pc = NEXTOP(pc,llll);
break;
/* instructions type lll */
case _switch_on_nonv:
case _switch_nv_list:
pc->u.lll.l1 = CodeAddrAdjust(pc->u.lll.l1);
pc->u.lll.l2 = CodeAddrAdjust(pc->u.lll.l2);
pc->u.lll.l3 = CodeAddrAdjust(pc->u.lll.l3);
pc = NEXTOP(pc,lll);
break;
/* instructions type cll */
case _if_not_then:
{
Term t = pc->u.cll.c;
if (IsAtomTerm(t))
pc->u.cll.c = AtomTermAdjust(t);
}
pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1);
pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2);
pc = NEXTOP(pc,cll);
break;
/* instructions type ollll */
case _switch_list_nl_prefetch:
pc->u.ollll.pop = opcode(op_from_opcode(pc->u.ollll.pop));
pc->u.ollll.l1 = CodeAddrAdjust(pc->u.ollll.l1);
pc->u.ollll.l2 = CodeAddrAdjust(pc->u.ollll.l2);
pc->u.ollll.l3 = CodeAddrAdjust(pc->u.ollll.l3);
pc->u.ollll.l4 = CodeAddrAdjust(pc->u.ollll.l4);
pc = NEXTOP(pc,ollll);
break;
/* switch_on_func */
case _switch_on_func:
{
int i, j;
CELL *oldcode, *startcode;
i = pc->u.s.s;
startcode = oldcode = (CELL *)NEXTOP(pc,s);
for (j = 0; j < i; ++j) {
Functor oldfunc = (Functor)(oldcode[0]);
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
if (oldfunc != NULL) {
oldcode[0] = (CELL)FuncAdjust(oldfunc);
}
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
rehash(startcode, i, Funcs);
pc = (yamop *)oldcode;
}
break;
/* switch_on_cons */
case _switch_on_cons:
{
int i, j;
CELL *oldcode;
#if !USE_OFFSETS
CELL *startcode;
#endif
i = pc->u.s.s;
#if !USE_OFFSETS
startcode =
#endif
oldcode = (CELL *)NEXTOP(pc,s);
for (j = 0; j < i; ++j) {
#if !USE_OFFSETS
Term oldatom = oldcode[0];
#endif
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
#if !USE_OFFSETS
if (oldatom != 0x0) {
oldcode[0] = AtomTermAdjust(oldatom);
}
#endif
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
#if !USE_OFFSETS
rehash(startcode, i, Atomics);
#endif
pc = (yamop *)oldcode;
}
break;
/* instructions type fll */
case _go_on_func:
pc->u.fll.f = FuncAdjust(pc->u.fll.f);
pc->u.fll.l1 = CodeAddrAdjust(pc->u.fll.l1);
pc->u.fll.l2 = CodeAddrAdjust(pc->u.fll.l2);
pc = NEXTOP(pc,fll);
break;
/* instructions type cll */
case _go_on_cons:
if (IsAtomTerm(pc->u.cll.c))
pc->u.cll.c = AtomTermAdjust(pc->u.cll.c);
pc->u.cll.l1 = CodeAddrAdjust(pc->u.cll.l1);
pc->u.cll.l2 = CodeAddrAdjust(pc->u.cll.l2);
pc = NEXTOP(pc,cll);
break;
/* instructions type sl */
case _if_func:
{
int i, j;
CELL *oldcode;
i = pc->u.s.s;
pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l);
oldcode = (CELL *)NEXTOP(pc,sl);
for (j = 0; j < i; ++j) {
Functor oldfunc = (Functor)(oldcode[0]);
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
if (oldfunc != NULL) {
oldcode[0] = (CELL)FuncAdjust(oldfunc);
}
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
pc = (yamop *)oldcode;
}
}
break;
case _if_cons:
{
int i, j;
CELL *oldcode;
i = pc->u.sl.s;
pc->u.sl.l = CodeAddrAdjust(pc->u.sl.l);
oldcode = (CELL *)NEXTOP(pc,sl);
for (j = 0; j < i; ++j) {
#if !USE_OFFSETS
Term oldatom = oldcode[0];
#endif
CODEADDR oldjmp = (CODEADDR)(oldcode[1]);
#if !USE_OFFSETS
if (oldatom != 0x0) {
oldcode[0] = AtomTermAdjust(oldatom);
}
#endif
oldcode[1] = (CELL)CodeAddrAdjust(oldjmp);
oldcode += 2;
}
pc = (yamop *)oldcode;
}
break;
/* instructions type slll */
case _switch_last:
case _switch_l_list:
pc->u.slll.p = PtoPredAdjust(pc->u.slll.p);
pc->u.slll.l1 = CodeAddrAdjust(pc->u.slll.l1);
pc->u.slll.l2 = CodeAddrAdjust(pc->u.slll.l2);
pc->u.slll.l3 = CodeAddrAdjust(pc->u.slll.l3);
pc = NEXTOP(pc,slll);
break;
/* instructions type xxx */
case _p_plus_vv:
case _p_minus_vv:
case _p_times_vv:
case _p_div_vv:
case _p_and_vv:
case _p_or_vv:
case _p_sll_vv:
case _p_slr_vv:
case _p_arg_vv:
case _p_func2s_vv:
case _p_func2f_xx:
pc->u.xxx.x = XAdjust(pc->u.xxx.x);
pc->u.xxx.x1 = XAdjust(pc->u.xxx.x1);
pc->u.xxx.x2 = XAdjust(pc->u.xxx.x2);
pc = NEXTOP(pc,xxx);
break;
/* instructions type xxc */
case _p_plus_vc:
case _p_minus_cv:
case _p_times_vc:
case _p_div_cv:
case _p_and_vc:
case _p_or_vc:
case _p_sll_vc:
case _p_slr_vc:
case _p_func2s_vc:
pc->u.xxc.x = XAdjust(pc->u.xxc.x);
pc->u.xxc.xi = XAdjust(pc->u.xxc.xi);
pc = NEXTOP(pc,xxc);
break;
case _p_div_vc:
case _p_sll_cv:
case _p_slr_cv:
case _p_arg_cv:
pc->u.xcx.x = XAdjust(pc->u.xcx.x);
pc->u.xcx.xi = XAdjust(pc->u.xcx.xi);
pc = NEXTOP(pc,xcx);
break;
case _p_func2s_cv:
pc->u.xcx.x = XAdjust(pc->u.xcx.x);
if (IsAtomTerm(pc->u.xcx.c))
pc->u.xcx.c = AtomTermAdjust(pc->u.xcx.c);
pc->u.xcx.xi = XAdjust(pc->u.xcx.xi);
pc = NEXTOP(pc,xcx);
break;
/* instructions type xyx */
case _p_func2f_xy:
pc->u.xyx.x = XAdjust(pc->u.xyx.x);
pc->u.xyx.x1 = XAdjust(pc->u.xyx.x1);
pc->u.xyx.y2 = YAdjust(pc->u.xyx.y2);
pc = NEXTOP(pc,xyx);
break;
/* instructions type yxx */
case _p_plus_y_vv:
case _p_minus_y_vv:
case _p_times_y_vv:
case _p_div_y_vv:
case _p_and_y_vv:
case _p_or_y_vv:
case _p_sll_y_vv:
case _p_slr_y_vv:
case _p_arg_y_vv:
case _p_func2s_y_vv:
case _p_func2f_yx:
pc->u.yxx.y = YAdjust(pc->u.yxx.y);
pc->u.yxx.x1 = XAdjust(pc->u.yxx.x1);
pc->u.yxx.x2 = XAdjust(pc->u.yxx.x2);
pc = NEXTOP(pc,yxx);
break;
/* instructions type yyx */
case _p_func2f_yy:
pc->u.yyx.y1 = YAdjust(pc->u.yyx.y1);
pc->u.yyx.y2 = YAdjust(pc->u.yyx.y2);
pc->u.yyx.x = XAdjust(pc->u.yyx.x);
pc = NEXTOP(pc,yyx);
break;
/* instructions type yxc */
case _p_plus_y_vc:
case _p_minus_y_cv:
case _p_times_y_vc:
case _p_div_y_vc:
case _p_div_y_cv:
case _p_and_y_vc:
case _p_or_y_vc:
case _p_sll_y_vc:
case _p_slr_y_vc:
case _p_func2s_y_vc:
pc->u.yxc.y = YAdjust(pc->u.yxc.y);
pc->u.yxc.xi = XAdjust(pc->u.yxc.xi);
pc = NEXTOP(pc,yxc);
break;
/* instructions type ycx */
case _p_sll_y_cv:
case _p_slr_y_cv:
case _p_arg_y_cv:
pc->u.ycx.y = YAdjust(pc->u.ycx.y);
pc->u.ycx.xi = XAdjust(pc->u.ycx.xi);
pc = NEXTOP(pc,ycx);
break;
/* instructions type lxx */
case _p_func2s_y_cv:
pc->u.ycx.y = YAdjust(pc->u.ycx.y);
if (IsAtomTerm(pc->u.ycx.c))
pc->u.ycx.c = AtomTermAdjust(pc->u.ycx.c);
pc->u.ycx.xi = XAdjust(pc->u.ycx.xi);
pc = NEXTOP(pc,ycx);
break;
/* instructions type lxx */
case _call_bfunc_xx:
pc->u.lxx.p = PtoPredAdjust(pc->u.lxx.p);
pc->u.lxx.l = DirectCCodeAdjust(pc->u.lxx.p,pc->u.lxx.l);
pc->u.lxx.x1 = XAdjust(pc->u.lxx.x1);
pc->u.lxx.x2 = XAdjust(pc->u.lxx.x2);
pc = NEXTOP(pc,lxx);
break;
/* instructions type lxy */
case _call_bfunc_yx:
case _call_bfunc_xy:
pc->u.lxy.p = PtoPredAdjust(pc->u.lxy.p);
pc->u.lxy.l = DirectCCodeAdjust(pc->u.lxy.p,pc->u.lxy.l);
pc->u.lxy.x = XAdjust(pc->u.lxy.x);
pc->u.lxy.y = YAdjust(pc->u.lxy.y);
pc = NEXTOP(pc,lxy);
break;
case _call_bfunc_yy:
pc->u.lyy.p = PtoPredAdjust(pc->u.lyy.p);
pc->u.lyy.l = DirectCCodeAdjust(pc->u.lyy.p,pc->u.lyy.l);
pc->u.lyy.y1 = YAdjust(pc->u.lyy.y1);
pc->u.lyy.y2 = YAdjust(pc->u.lyy.y2);
pc = NEXTOP(pc,lyy);
break;
}
} while (TRUE);
}
/*
* Restores a group of clauses for the same predicate, starting with First
* and ending with Last, First may be equal to Last
*/
static void
CleanClauses(CODEADDR First, CODEADDR Last)
{
CODEADDR cl = First;
do {
RestoreClause(ClauseCodeToClause(cl), ASSEMBLING_CLAUSE);
if (cl == Last) return;
cl = NextClause(cl);
} while (TRUE);
}
static void
restore_static_array(StaticArrayEntry *ae)
{
Int sz = -ae->ArrayEArity;
switch (ae->ArrayType) {
case array_of_ints:
case array_of_doubles:
case array_of_chars:
case array_of_uchars:
return;
case array_of_ptrs:
{
AtomEntry **base = (AtomEntry **)AddrAdjust((ADDR)(ae->ValueOfVE.ptrs));
Int i;
ae->ValueOfVE.ptrs = base;
if (ae != NULL) {
for (i=0; i<sz; i++) {
AtomEntry *reg = *base;
if (reg == NULL) {
base++;
} else if (IsOldCode((CELL)reg)) {
*base++ = AtomEntryAdjust(reg);
} else if (IsOldLocalInTR((CELL)reg)) {
*base++ = (AtomEntry *)LocalAddrAdjust((ADDR)reg);
} else if (IsOldGlobal((CELL)reg)) {
*base++ = (AtomEntry *)GlobalAddrAdjust((ADDR)reg);
} else if (IsOldDelay((CELL)reg)) {
*base++ = (AtomEntry *)DelayAddrAdjust((ADDR)reg);
} else if (IsOldTrail((CELL)reg)) {
*base++ = (AtomEntry *)TrailAddrAdjust((ADDR)reg);
} else {
/* oops */
base++;
}
}
}
}
return;
case array_of_atoms:
{
Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.atoms));
Int i;
ae->ValueOfVE.atoms = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
Term reg = *base;
if (reg == 0L) {
base++;
} else {
*base++ = AtomTermAdjust(reg);
}
}
}
}
return;
case array_of_dbrefs:
{
Term *base = (Term *)AddrAdjust((ADDR)(ae->ValueOfVE.dbrefs));
Int i;
ae->ValueOfVE.dbrefs = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
Term reg = *base;
if (reg == 0L) {
base++;
} else {
*base++ = AbsAppl(PtoHeapCellAdjust(RepAppl(reg)));
}
}
}
}
return;
case array_of_terms:
{
DBRef *base = (DBRef *)AddrAdjust((ADDR)(ae->ValueOfVE.terms));
Int i;
ae->ValueOfVE.terms = base;
if (ae != 0L) {
for (i=0; i<sz; i++) {
DBRef reg = *base;
if (reg == NULL) {
base++;
} else {
*base++ = reg = DBRefAdjust(reg);
RestoreDBEntry(reg);
}
}
}
}
return;
}
}
/*
* Clean all the code for a particular predicate, this can get a bit tricky,
* because of the indexing code
*/
static void
CleanCode(PredEntry *pp)
{
CELL flag;
CODEADDR FirstC, LastC;
/* Init takes care of the first 2 cases */
if (pp->ArityOfPE)
pp->FunctorOfPred = FuncAdjust(pp->FunctorOfPred);
else
pp->FunctorOfPred = (Functor)AtomAdjust((Atom)(pp->FunctorOfPred));
if (pp->OwnerFile)
pp->OwnerFile = AtomAdjust(pp->OwnerFile);
pp->OpcodeOfPred = opcode(op_from_opcode(pp->OpcodeOfPred));
if (pp->PredFlags & CPredFlag) {
if (pp->PredFlags & BinaryTestPredFlag) {
pp->TrueCodeOfPred = DirectCCodeAdjust(pp,pp->TrueCodeOfPred);
} else {
/* C, assembly + C */
pp->CodeOfPred = pp->TrueCodeOfPred = CCodeAdjust(pp,pp->TrueCodeOfPred);
}
pp->CodeOfPred = pp->FirstClause = pp->LastClause =
(CODEADDR)AddrAdjust((ADDR)(pp->LastClause));
CleanClauses(pp->FirstClause, pp->FirstClause);
} else if (pp->PredFlags & AsmPredFlag) {
/* assembly */
if (pp->FirstClause) {
pp->CodeOfPred = (CODEADDR)AddrAdjust((ADDR)(pp->CodeOfPred));
pp->FirstClause = (CODEADDR)AddrAdjust((ADDR)(pp->FirstClause));
pp->LastClause = (CODEADDR)AddrAdjust((ADDR)(pp->LastClause));
CleanClauses(pp->FirstClause, pp->FirstClause);
} else {
pp->TrueCodeOfPred = pp->CodeOfPred =
(CODEADDR)(&(pp->OpcodeOfPred));
}
} else {
if (pp->FirstClause)
pp->FirstClause = CodeAddrAdjust(pp->FirstClause);
if (pp->LastClause)
pp->LastClause = CodeAddrAdjust(pp->LastClause);
pp->CodeOfPred = CodeAddrAdjust(pp->CodeOfPred);
pp->TrueCodeOfPred = CodeAddrAdjust(pp->TrueCodeOfPred);
if (pp->NextPredOfModule)
pp->NextPredOfModule = PtoPredAdjust(pp->NextPredOfModule);
flag = pp->PredFlags;
FirstC = pp->FirstClause;
LastC = pp->LastClause;
/* We just have a fail here */
if (FirstC == NIL && LastC == NIL) {
return;
}
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "at %lx Correcting clauses from %lx to %lx\n", *(OPCODE *) FirstC, FirstC, LastC);
#endif
CleanClauses(FirstC, LastC);
if (flag & (DynamicPredFlag|IndexedPredFlag)) {
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Correcting dynamic/indexed code\n");
#endif
RestoreClause(ClauseCodeToClause(pp->TrueCodeOfPred), ASSEMBLING_INDEX);
}
}
/* we are pointing at ourselves */
}
/*
* Restores all of the entries, for a particular atom, we only have problems
* if we find code or data bases
*/
static void
RestoreEntries(PropEntry *pp)
{
while (!EndOfPAEntr(pp)) {
switch(pp->KindOfPE) {
case FunctorProperty:
{
FunctorEntry *fe = (FunctorEntry *)pp;
Prop p0;
fe->NextOfPE =
PropAdjust(fe->NextOfPE);
fe->NameOfFE =
AtomAdjust(fe->NameOfFE);
p0 = fe->PropsOfFE =
PropAdjust(fe->PropsOfFE);
while (!EndOfPAEntr(p0)) {
CleanCode(RepPredProp(p0));
p0 = RepPredProp(p0)->NextOfPE =
PropAdjust(RepPredProp(p0)->NextOfPE);
}
}
break;
case ValProperty:
{
ValEntry *ve = (ValEntry *)pp;
Term tv = ve->ValueOfVE;
ve->NextOfPE =
PropAdjust(ve->NextOfPE);
if (IsAtomTerm(tv))
ve->ValueOfVE = AtomTermAdjust(tv);
}
break;
case ArrayProperty:
{
ArrayEntry *ae = (ArrayEntry *)pp;
ae->NextOfPE =
PropAdjust(ae->NextOfPE);
if (ae->ArrayEArity < 0) {
restore_static_array((StaticArrayEntry *)ae);
} else {
if (ae->NextArrayE != NULL)
ae->NextArrayE = PtoArrayEAdjust(ae->NextArrayE);
if (IsVarTerm(ae->ValueOfVE))
RESET_VARIABLE(&(ae->ValueOfVE));
else {
CELL *ptr = RepAppl(ae->ValueOfVE);
/* in fact it should just be a pointer to the global,
but we'll be conservative.
Notice that the variable should have been reset in restore_program mode.
*/
if (IsOldGlobalPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoGloAdjust(ptr));
} else if (IsOldCodeCellPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoHeapCellAdjust(ptr));
} else if (IsOldLocalInTRPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoLocAdjust(ptr));
} else if (IsOldDelayPtr(ptr)) {
ae->ValueOfVE = AbsAppl(PtoDelayAdjust(ptr));
} else if (IsOldTrailPtr(ptr)) {
ae->ValueOfVE = AbsAppl(CellPtoTRAdjust(ptr));
}
}
}
}
break;
case PEProp:
{
PredEntry *pe = (PredEntry *) pp;
pe->NextOfPE =
PropAdjust(pe->NextOfPE);
CleanCode(pe);
}
break;
case DBProperty:
case LogUpdDBProperty:
case CodeLogUpdDBProperty:
case CodeDBProperty:
#ifdef DEBUG_RESTORE2
YP_fprintf(errout, "Correcting data base clause at %p\n", pp);
#endif
{
DBEntry *de = (DBEntry *) pp;
de->NextOfPE =
PropAdjust(de->NextOfPE);
if (HDiff)
RestoreDB(de);
}
break;
case BBProperty:
{
BlackBoardEntry *bb = (BlackBoardEntry *) pp;
bb->NextOfPE =
PropAdjust(bb->NextOfPE);
if (HDiff)
RestoreBB(bb);
}
break;
case ExpProperty:
case OpProperty:
case ModProperty:
pp->NextOfPE =
PropAdjust(pp->NextOfPE);
break;
default:
/* OOPS */
Error(SYSTEM_ERROR, TermNil,
"Invalid Atom Property %d at %p", pp->KindOfPE, pp);
return;
}
pp = RepProp(pp->NextOfPE);
}
}