d0efa26d8b
Conflicts: OPTYap/tab.insts.i OPTYap/tab.tries.c OPTYap/tab.tries.i
2046 lines
82 KiB
OpenEdge ABL
2046 lines
82 KiB
OpenEdge ABL
/************************************************************************
|
|
** **
|
|
** The YapTab/YapOr/OPTYap systems **
|
|
** **
|
|
** YapTab extends the Yap Prolog engine to support sequential tabling **
|
|
** YapOr extends the Yap Prolog engine to support or-parallelism **
|
|
** OPTYap extends the Yap Prolog engine to support or-parallel tabling **
|
|
** **
|
|
** **
|
|
** Yap Prolog was developed at University of Porto, Portugal **
|
|
** **
|
|
************************************************************************/
|
|
|
|
/*********************
|
|
** Macros **
|
|
*********************/
|
|
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
#define INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY) \
|
|
{ register gt_node_ptr entry_node = (gt_node_ptr) (ENTRY); \
|
|
TrNode_child(entry_node) = (gt_node_ptr) ((UInt) TrNode_child(entry_node) + 1); \
|
|
}
|
|
#define NEW_SUBGOAL_TRIE_NODE(NODE, ENTRY, CHILD, PARENT, NEXT) \
|
|
INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY); \
|
|
new_subgoal_trie_node(NODE, ENTRY, CHILD, PARENT, NEXT)
|
|
#define NEW_ANSWER_TRIE_NODE(NODE, INSTR, ENTRY, CHILD, PARENT, NEXT) \
|
|
INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY); \
|
|
new_answer_trie_node(NODE, INSTR, ENTRY, CHILD, PARENT, NEXT)
|
|
#define NEW_GLOBAL_TRIE_NODE(NODE, ENTRY, CHILD, PARENT, NEXT) \
|
|
INCREMENT_GLOBAL_TRIE_REFERENCE(ENTRY); \
|
|
new_global_trie_node(NODE, ENTRY, CHILD, PARENT, NEXT)
|
|
#else
|
|
#define NEW_SUBGOAL_TRIE_NODE(NODE, ENTRY, CHILD, PARENT, NEXT) \
|
|
new_subgoal_trie_node(NODE, ENTRY, CHILD, PARENT, NEXT)
|
|
#define NEW_ANSWER_TRIE_NODE(NODE, INSTR, ENTRY, CHILD, PARENT, NEXT) \
|
|
new_answer_trie_node(NODE, INSTR, ENTRY, CHILD, PARENT, NEXT)
|
|
#define NEW_GLOBAL_TRIE_NODE(NODE, ENTRY, CHILD, PARENT, NEXT) \
|
|
new_global_trie_node(NODE, ENTRY, CHILD, PARENT, NEXT)
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
|
|
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
#define SUBGOAL_CHECK_INSERT_ENTRY(TAB_ENT, NODE, ENTRY) \
|
|
NODE = global_trie_check_insert_entry(NODE, ENTRY PASS_REGS)
|
|
#define ANSWER_CHECK_INSERT_ENTRY(SG_FR, NODE, ENTRY, INSTR) \
|
|
NODE = global_trie_check_insert_entry(NODE, ENTRY PASS_REGS)
|
|
#else
|
|
#define SUBGOAL_CHECK_INSERT_ENTRY(TAB_ENT, NODE, ENTRY) \
|
|
NODE = subgoal_trie_check_insert_entry(TAB_ENT, NODE, ENTRY PASS_REGS)
|
|
#define ANSWER_CHECK_INSERT_ENTRY(SG_FR, NODE, ENTRY, INSTR) \
|
|
NODE = answer_trie_check_insert_entry(SG_FR, NODE, ENTRY, INSTR PASS_REGS)
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
|
|
|
|
#ifdef INCLUDE_ANSWER_SEARCH_MODE_DIRECTED
|
|
#define ANSWER_SAFE_INSERT_ENTRY(NODE, ENTRY, INSTR) \
|
|
{ ans_node_ptr new_node; \
|
|
NEW_ANSWER_TRIE_NODE(new_node, INSTR, ENTRY, NULL, NODE, NULL); \
|
|
TrNode_child(NODE) = new_node; \
|
|
NODE = new_node; \
|
|
}
|
|
#ifdef THREADS
|
|
#define INVALIDATE_ANSWER_TRIE_NODE(NODE, SG_FR) \
|
|
TrNode_next(NODE) = SgFr_invalid_chain(SG_FR); \
|
|
SgFr_invalid_chain(SG_FR) = NODE
|
|
#else
|
|
#define INVALIDATE_ANSWER_TRIE_NODE(NODE, SG_FR) \
|
|
FREE_ANSWER_TRIE_NODE(NODE)
|
|
#endif /* THREADS */
|
|
#define INVALIDATE_ANSWER_TRIE_LEAF_NODE(NODE, SG_FR) \
|
|
TAG_AS_ANSWER_INVALID_NODE(NODE); \
|
|
TrNode_next(NODE) = SgFr_invalid_chain(SG_FR); \
|
|
SgFr_invalid_chain(SG_FR) = NODE
|
|
#endif /* INCLUDE_ANSWER_SEARCH_MODE_DIRECTED */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** subgoal_trie_check_insert_(gt)_entry **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_SUBGOAL_TRIE_CHECK_INSERT
|
|
#ifndef SUBGOAL_TRIE_LOCK_AT_WRITE_LEVEL /* SUBGOAL_TRIE_LOCK_AT_ENTRY_LEVEL || SUBGOAL_TRIE_LOCK_AT_NODE_LEVEL || ! YAPOR */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline sg_node_ptr subgoal_trie_check_insert_gt_entry(tab_ent_ptr tab_ent, sg_node_ptr parent_node, Term t USES_REGS) {
|
|
#else
|
|
static inline sg_node_ptr subgoal_trie_check_insert_entry(tab_ent_ptr tab_ent, sg_node_ptr parent_node, Term t USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
sg_node_ptr child_node;
|
|
|
|
LOCK_SUBGOAL_NODE(parent_node);
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_SUBGOAL_TRIE_HASH(child_node)) {
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
sg_hash_ptr hash;
|
|
sg_node_ptr chain_node, next_node, *bucket;
|
|
new_subgoal_trie_hash(hash, count_nodes, tab_ent);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (sg_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
{ /* trie nodes with hashing */
|
|
sg_hash_ptr hash;
|
|
sg_node_ptr *bucket;
|
|
int count_nodes = 0;
|
|
hash = (sg_hash_ptr) child_node;
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, Hash_num_buckets(hash));
|
|
child_node = *bucket;
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, *bucket);
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
sg_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
int num_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#else /* SUBGOAL_TRIE_LOCK_AT_WRITE_LEVEL */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline sg_node_ptr subgoal_trie_check_insert_gt_entry(tab_ent_ptr tab_ent, sg_node_ptr parent_node, Term t USES_REGS) {
|
|
#else
|
|
static inline sg_node_ptr subgoal_trie_check_insert_entry(tab_ent_ptr tab_ent, sg_node_ptr parent_node, Term t USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
sg_node_ptr child_node;
|
|
sg_hash_ptr hash;
|
|
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_SUBGOAL_NODE(parent_node);
|
|
if (TrNode_child(parent_node)) {
|
|
sg_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_SUBGOAL_TRIE_HASH(chain_node)) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
hash = (sg_hash_ptr) chain_node;
|
|
goto subgoal_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node);
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_SUBGOAL_TRIE_HASH(child_node)) {
|
|
sg_node_ptr first_node = child_node;
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_SUBGOAL_NODE(parent_node);
|
|
if (first_node != TrNode_child(parent_node)) {
|
|
sg_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_SUBGOAL_TRIE_HASH(chain_node)) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
hash = (sg_hash_ptr) chain_node;
|
|
goto subgoal_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
sg_node_ptr chain_node, next_node, *bucket;
|
|
new_subgoal_trie_hash(hash, count_nodes, tab_ent);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (sg_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
hash = (sg_hash_ptr) child_node;
|
|
subgoal_trie_hash:
|
|
{ /* trie nodes with hashing */
|
|
sg_node_ptr *bucket, first_node;
|
|
int num_buckets, count_nodes = 0;
|
|
|
|
do {
|
|
num_buckets = Hash_num_buckets(hash);
|
|
// __sync_synchronize();
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, num_buckets);
|
|
first_node = child_node = *bucket;
|
|
} while (num_buckets != Hash_num_buckets(hash));
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_SUBGOAL_NODE(parent_node);
|
|
if (num_buckets != Hash_num_buckets(hash)) {
|
|
/* the hash has been expanded */
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
goto subgoal_trie_hash;
|
|
}
|
|
if (first_node != *bucket) {
|
|
sg_node_ptr chain_node = *bucket;
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_SUBGOAL_TRIE_NODE(child_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef SUBGOAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = *bucket;
|
|
#else
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, *bucket);
|
|
} else {
|
|
NEW_SUBGOAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* SUBGOAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
sg_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_SUBGOAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#endif /* SUBGOAL_TRIE_LOCK_LEVEL */
|
|
#endif /* INCLUDE_SUBGOAL_TRIE_CHECK_INSERT */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** answer_trie_check_insert_(gt)_entry **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_ANSWER_TRIE_CHECK_INSERT
|
|
#ifndef ANSWER_TRIE_LOCK_AT_WRITE_LEVEL /* ANSWER_TRIE_LOCK_AT_ENTRY_LEVEL || ANSWER_TRIE_LOCK_AT_NODE_LEVEL || ! YAPOR */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline ans_node_ptr answer_trie_check_insert_gt_entry(sg_fr_ptr sg_fr, ans_node_ptr parent_node, Term t, int instr USES_REGS) {
|
|
#else
|
|
static inline ans_node_ptr answer_trie_check_insert_entry(sg_fr_ptr sg_fr, ans_node_ptr parent_node, Term t, int instr USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
ans_node_ptr child_node;
|
|
|
|
TABLING_ERROR_CHECKING(answer_trie_check_insert_(gt)_entry, IS_ANSWER_LEAF_NODE(parent_node));
|
|
LOCK_ANSWER_NODE(parent_node);
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, NULL);
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_ANSWER_TRIE_HASH(child_node)) {
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, TrNode_child(parent_node));
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
ans_hash_ptr hash;
|
|
ans_node_ptr chain_node, next_node, *bucket;
|
|
new_answer_trie_hash(hash, count_nodes, sg_fr);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (ans_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
{ /* trie nodes with hashing */
|
|
ans_hash_ptr hash;
|
|
ans_node_ptr *bucket;
|
|
int count_nodes = 0;
|
|
hash = (ans_hash_ptr) child_node;
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, Hash_num_buckets(hash));
|
|
child_node = *bucket;
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, *bucket);
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
ans_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
int num_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#else /* ANSWER_TRIE_LOCK_AT_WRITE_LEVEL */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline ans_node_ptr answer_trie_check_insert_gt_entry(sg_fr_ptr sg_fr, ans_node_ptr parent_node, Term t, int instr USES_REGS) {
|
|
#else
|
|
static inline ans_node_ptr answer_trie_check_insert_entry(sg_fr_ptr sg_fr, ans_node_ptr parent_node, Term t, int instr USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
ans_node_ptr child_node;
|
|
ans_hash_ptr hash;
|
|
|
|
TABLING_ERROR_CHECKING(answer_trie_check_insert_(gt)_entry, IS_ANSWER_LEAF_NODE(parent_node));
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, NULL);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_ANSWER_NODE(parent_node);
|
|
if (TrNode_child(parent_node)) {
|
|
ans_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_ANSWER_TRIE_HASH(chain_node)) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
hash = (ans_hash_ptr) chain_node;
|
|
goto answer_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node);
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, NULL);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_ANSWER_TRIE_HASH(child_node)) {
|
|
ans_node_ptr first_node = child_node;
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, first_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_ANSWER_NODE(parent_node);
|
|
if (first_node != TrNode_child(parent_node)) {
|
|
ans_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_ANSWER_TRIE_HASH(chain_node)) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
hash = (ans_hash_ptr) chain_node;
|
|
goto answer_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, first_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
ans_node_ptr chain_node, next_node, *bucket;
|
|
new_answer_trie_hash(hash, count_nodes, sg_fr);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (ans_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
hash = (ans_hash_ptr) child_node;
|
|
answer_trie_hash:
|
|
{ /* trie nodes with hashing */
|
|
ans_node_ptr *bucket, first_node;
|
|
int num_buckets, count_nodes = 0;
|
|
|
|
do {
|
|
num_buckets = Hash_num_buckets(hash);
|
|
// __sync_synchronize();
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, num_buckets);
|
|
first_node = child_node = *bucket;
|
|
} while (num_buckets != Hash_num_buckets(hash));
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, first_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_ANSWER_NODE(parent_node);
|
|
if (num_buckets != Hash_num_buckets(hash)) {
|
|
/* the hash has been expanded */
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
goto answer_trie_hash;
|
|
}
|
|
if (first_node != *bucket) {
|
|
ans_node_ptr chain_node = *bucket;
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_ANSWER_TRIE_NODE(child_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef ANSWER_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = *bucket;
|
|
#else
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, *bucket);
|
|
} else {
|
|
NEW_ANSWER_TRIE_NODE(child_node, instr, t, NULL, parent_node, first_node);
|
|
#endif /* ANSWER_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
ans_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_ANSWER_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#endif /* ANSWER_TRIE_LOCK_LEVEL */
|
|
#endif /* INCLUDE_ANSWER_TRIE_CHECK_INSERT */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** global_trie_check_insert_(gt)_entry **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_GLOBAL_TRIE_CHECK_INSERT
|
|
#ifndef GLOBAL_TRIE_LOCK_AT_WRITE_LEVEL /* GLOBAL_TRIE_LOCK_AT_NODE_LEVEL || ! YAPOR */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline gt_node_ptr global_trie_check_insert_gt_entry(gt_node_ptr parent_node, Term t USES_REGS) {
|
|
#else
|
|
static inline gt_node_ptr global_trie_check_insert_entry(gt_node_ptr parent_node, Term t USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
gt_node_ptr child_node;
|
|
|
|
LOCK_GLOBAL_NODE(parent_node);
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_GLOBAL_TRIE_HASH(child_node)) {
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
gt_hash_ptr hash;
|
|
gt_node_ptr chain_node, next_node, *bucket;
|
|
new_global_trie_hash(hash, count_nodes);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (gt_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
{ /* trie nodes with hashing */
|
|
gt_hash_ptr hash;
|
|
gt_node_ptr *bucket;
|
|
int count_nodes = 0;
|
|
hash = (gt_hash_ptr) child_node;
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, Hash_num_buckets(hash));
|
|
child_node = *bucket;
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t) {
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, *bucket);
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
gt_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
int num_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#else /* GLOBAL_TRIE_LOCK_AT_WRITE_LEVEL */
|
|
#ifdef MODE_GLOBAL_TRIE_ENTRY
|
|
static inline gt_node_ptr global_trie_check_insert_gt_entry(gt_node_ptr parent_node, Term t USES_REGS) {
|
|
#else
|
|
static inline gt_node_ptr global_trie_check_insert_entry(gt_node_ptr parent_node, Term t USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_ENTRY */
|
|
gt_node_ptr child_node;
|
|
gt_hash_ptr hash;
|
|
|
|
child_node = TrNode_child(parent_node);
|
|
if (child_node == NULL) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_GLOBAL_NODE(parent_node);
|
|
if (TrNode_child(parent_node)) {
|
|
gt_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_GLOBAL_TRIE_HASH(chain_node)) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
hash = (gt_hash_ptr) chain_node;
|
|
goto global_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node);
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, NULL);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
TrNode_child(parent_node) = child_node;
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
if (! IS_GLOBAL_TRIE_HASH(child_node)) {
|
|
gt_node_ptr first_node = child_node;
|
|
int count_nodes = 0;
|
|
do {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
} while (child_node);
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_GLOBAL_NODE(parent_node);
|
|
if (first_node != TrNode_child(parent_node)) {
|
|
gt_node_ptr chain_node = TrNode_child(parent_node);
|
|
if (IS_GLOBAL_TRIE_HASH(chain_node)) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
hash = (gt_hash_ptr) chain_node;
|
|
goto global_trie_hash;
|
|
}
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = TrNode_child(parent_node);
|
|
#else
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, TrNode_child(parent_node));
|
|
} else {
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_TRIE_LEVEL) {
|
|
/* alloc a new hash */
|
|
gt_node_ptr chain_node, next_node, *bucket;
|
|
new_global_trie_hash(hash, count_nodes);
|
|
chain_node = child_node;
|
|
do {
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(TrNode_entry(chain_node), BASE_HASH_BUCKETS);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
TrNode_child(parent_node) = (gt_node_ptr) hash;
|
|
} else {
|
|
TrNode_child(parent_node) = child_node;
|
|
}
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
|
|
hash = (gt_hash_ptr) child_node;
|
|
global_trie_hash:
|
|
{ /* trie nodes with hashing */
|
|
gt_node_ptr *bucket, first_node;
|
|
int num_buckets, count_nodes = 0;
|
|
|
|
do {
|
|
num_buckets = Hash_num_buckets(hash);
|
|
// __sync_synchronize();
|
|
bucket = Hash_buckets(hash) + HASH_ENTRY(t, num_buckets);
|
|
first_node = child_node = *bucket;
|
|
} while (num_buckets != Hash_num_buckets(hash));
|
|
while (child_node) {
|
|
if (TrNode_entry(child_node) == t)
|
|
return child_node;
|
|
count_nodes++;
|
|
child_node = TrNode_next(child_node);
|
|
}
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
LOCK_GLOBAL_NODE(parent_node);
|
|
if (num_buckets != Hash_num_buckets(hash)) {
|
|
/* the hash has been expanded */
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
goto global_trie_hash;
|
|
}
|
|
if (first_node != *bucket) {
|
|
gt_node_ptr chain_node = *bucket;
|
|
do {
|
|
if (TrNode_entry(chain_node) == t) {
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
FREE_GLOBAL_TRIE_NODE(child_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return chain_node;
|
|
}
|
|
count_nodes++;
|
|
chain_node = TrNode_next(chain_node);
|
|
} while (chain_node != first_node);
|
|
#ifdef GLOBAL_TRIE_ALLOC_BEFORE_CHECK
|
|
TrNode_next(child_node) = *bucket;
|
|
#else
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, *bucket);
|
|
} else {
|
|
NEW_GLOBAL_TRIE_NODE(child_node, t, NULL, parent_node, first_node);
|
|
#endif /* GLOBAL_TRIE_ALLOC_BEFORE_CHECK */
|
|
}
|
|
*bucket = child_node;
|
|
Hash_num_nodes(hash)++;
|
|
count_nodes++;
|
|
if (count_nodes >= MAX_NODES_PER_BUCKET && Hash_num_nodes(hash) > Hash_num_buckets(hash)) {
|
|
/* expand current hash */
|
|
gt_node_ptr chain_node, next_node, *old_bucket, *old_hash_buckets, *new_hash_buckets;
|
|
num_buckets = Hash_num_buckets(hash) * 2;
|
|
ALLOC_BUCKETS(new_hash_buckets, num_buckets);
|
|
old_hash_buckets = Hash_buckets(hash);
|
|
old_bucket = old_hash_buckets + Hash_num_buckets(hash);
|
|
do {
|
|
if (*--old_bucket) {
|
|
chain_node = *old_bucket;
|
|
do {
|
|
bucket = new_hash_buckets + HASH_ENTRY(TrNode_entry(chain_node), num_buckets);
|
|
next_node = TrNode_next(chain_node);
|
|
TrNode_next(chain_node) = *bucket;
|
|
*bucket = chain_node;
|
|
chain_node = next_node;
|
|
} while (chain_node);
|
|
}
|
|
} while (old_bucket != old_hash_buckets);
|
|
Hash_buckets(hash) = new_hash_buckets;
|
|
Hash_num_buckets(hash) = num_buckets;
|
|
FREE_BUCKETS(old_hash_buckets);
|
|
}
|
|
UNLOCK_GLOBAL_NODE(parent_node);
|
|
return child_node;
|
|
}
|
|
}
|
|
#endif /* GLOBAL_TRIE_LOCK_LEVEL */
|
|
#endif /* INCLUDE_GLOBAL_TRIE_CHECK_INSERT */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** subgoal_search(_global_trie)(_terms)_loop **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_SUBGOAL_SEARCH_LOOP
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
#ifdef GLOBAL_TRIE_FOR_SUBTERMS
|
|
static inline gt_node_ptr subgoal_search_global_trie_terms_loop(Term t, int *subs_arity_ptr, CELL **stack_vars_ptr, CELL *stack_terms USES_REGS) {
|
|
#else
|
|
static inline gt_node_ptr subgoal_search_global_trie_loop(Term t, int *subs_arity_ptr, CELL **stack_vars_ptr USES_REGS) {
|
|
#endif /* GLOBAL_TRIE_FOR_SUBTERMS */
|
|
#else
|
|
#ifdef MODE_TERMS_LOOP
|
|
static inline sg_node_ptr subgoal_search_terms_loop(tab_ent_ptr tab_ent, sg_node_ptr current_node, Term t, int *subs_arity_ptr, CELL **stack_vars_ptr USES_REGS) {
|
|
#else
|
|
static inline sg_node_ptr subgoal_search_loop(tab_ent_ptr tab_ent, sg_node_ptr current_node, Term t, int *subs_arity_ptr, CELL **stack_vars_ptr USES_REGS) {
|
|
#endif /* MODE_TERMS_LOOP */
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
/************************************************************************
|
|
===========
|
|
| |
|
|
| ... |
|
|
| |
|
|
-----------
|
|
| VAR_N | <-- stack_vars
|
|
----------- *
|
|
| ... | /|\
|
|
----------- | subs_arity (N+1)
|
|
| VAR_0 | \|/
|
|
----------- *
|
|
YENV --> | |
|
|
-----------
|
|
| |
|
|
| ... |
|
|
| |
|
|
===========
|
|
| |
|
|
| ... |
|
|
| |
|
|
-----------
|
|
TR --> | | <-- stack_terms_limit
|
|
-----------
|
|
| |
|
|
| ... |
|
|
| |
|
|
----------|
|
|
| TERM_N | <-- stack_terms
|
|
----------| *
|
|
| ... | /|\
|
|
----------| |
|
|
| TERM_1 | |
|
|
----------| |
|
|
| NULL | \|/
|
|
=========== *
|
|
LOCAL_TrailTop --> | |
|
|
-----------
|
|
************************************************************************/
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
gt_node_ptr current_node = GLOBAL_root_gt;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
int subs_arity = *subs_arity_ptr;
|
|
CELL *stack_vars = *stack_vars_ptr;
|
|
#if ! defined(MODE_GLOBAL_TRIE_LOOP) || ! defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
CELL *stack_terms = (CELL *) LOCAL_TrailTop;
|
|
#endif /* ! MODE_GLOBAL_TRIE_LOOP || ! GLOBAL_TRIE_FOR_SUBTERMS */
|
|
CELL *stack_terms_limit = (CELL *) TR;
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1); /* + 1 because initially we stiil haven't done any STACK_POP_DOWN */
|
|
STACK_PUSH_UP(NULL, stack_terms);
|
|
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP)
|
|
/* for the global trie, it is safe to skip the IsVarTerm() and IsAtomOrIntTerm() tests in the first iteration */
|
|
goto subgoal_search_loop_non_atomic;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
/* Needed structures, variables to support rational terms */
|
|
term_array Ts;
|
|
void* CyclicTerm;
|
|
term_array_init(&Ts, 10);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
|
|
do {
|
|
if (IsVarTerm(t)) {
|
|
if (IsTableVarTerm(t)) {
|
|
t = MakeTableVarTerm(VarIndexOfTerm(t));
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
|
|
} else {
|
|
if (subs_arity == MAX_TABLE_VARS)
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: MAX_TABLE_VARS exceeded");
|
|
STACK_PUSH_UP(t, stack_vars);
|
|
*((CELL *)t) = GLOBAL_table_var_enumerator(subs_arity);
|
|
t = MakeTableVarTerm(subs_arity);
|
|
subs_arity = subs_arity + 1;
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
|
|
}
|
|
} else if (IsAtomOrIntTerm(t)) {
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
|
|
#ifdef MODE_TERMS_LOOP
|
|
} else {
|
|
gt_node_ptr entry_node;
|
|
#ifdef GLOBAL_TRIE_FOR_SUBTERMS
|
|
entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
|
|
#else
|
|
entry_node = subgoal_search_global_trie_loop(t, &subs_arity, &stack_vars PASS_REGS);
|
|
#endif /* GLOBAL_TRIE_FOR_SUBTERMS */
|
|
current_node = subgoal_trie_check_insert_gt_entry(tab_ent, current_node, (Term) entry_node PASS_REGS);
|
|
#else /* ! MODE_TERMS_LOOP */
|
|
} else
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsRationalTerm(t)) {
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, t);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP)
|
|
/* for the global trie, it is safe to start here in the first iteration */
|
|
subgoal_search_loop_non_atomic:
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
if (IsPairTerm(t)) {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
CELL *aux_pair = RepPair(t);
|
|
if (aux_pair == PairTermMark) {
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsPairTerm(t) && ! IsRationalTerm(t)) {
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#else
|
|
if (IsPairTerm(t)) {
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
aux_pair = RepPair(t);
|
|
t = Deref(aux_pair[1]);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
|
|
CyclicTerm = term_array_member(Ts, (void *) t);
|
|
}
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
if (t == TermNil) {
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
|
|
} else {
|
|
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
|
|
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
|
|
** up 3 terms has already initially checked for the CompactPairInit term */
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
}
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
} else {
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndTerm);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
}
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
} else if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
} else {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairInit);
|
|
t = Deref(aux_pair[1]);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
|
|
CyclicTerm = term_array_member(Ts, (void *) t);
|
|
}
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
if (t == TermNil) {
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, CompactPairEndList);
|
|
} else {
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
}
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
}
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
} else if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
#else /* ! TRIE_COMPACT_PAIRS */
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = subgoal_search_global_trie_terms_loop(t, &subs_arity, &stack_vars, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
} else
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
if (IsPairTerm(t)) {
|
|
CELL *aux_pair = RepPair(t);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsPair(NULL));
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1);
|
|
STACK_PUSH_UP(Deref(aux_pair[1]), stack_terms);
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
} else if (IsApplTerm(t)) {
|
|
Functor f = FunctorOfTerm(t);
|
|
if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.dbl = FloatOfTerm(t);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[1]);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, u.t_dbl[0]);
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
} else if (f == FunctorLongInt) {
|
|
Int li = LongIntOfTerm(t);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, li);
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
} else if (f == FunctorBigInt || f == FunctorString) {
|
|
CELL *new = Yap_HeapStoreOpaqueTerm(t);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, (CELL)new);
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
} else if (f == FunctorDBRef) {
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unsupported type tag FunctorDBRef");
|
|
} else {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
int i;
|
|
CELL *aux_appl = RepAppl(t);
|
|
SUBGOAL_CHECK_INSERT_ENTRY(tab_ent, current_node, AbsAppl((Term *)f));
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
|
|
for (i = ArityOfFunctor(f); i >= 1; i--) {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_appl[i]) || IsApplTerm(aux_appl[i]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_appl[i]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
|
|
}
|
|
}
|
|
} else {
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "subgoal_search_loop: unknown type tag");
|
|
#endif /* MODE_TERMS_LOOP */
|
|
}
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
} while (t);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_free(&Ts);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
*subs_arity_ptr = subs_arity;
|
|
*stack_vars_ptr = stack_vars;
|
|
return current_node;
|
|
}
|
|
#endif /* INCLUDE_SUBGOAL_SEARCH_LOOP */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** answer_search(_global_trie)(_terms)_loop **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_ANSWER_SEARCH_LOOP
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
#ifdef GLOBAL_TRIE_FOR_SUBTERMS
|
|
static inline gt_node_ptr answer_search_global_trie_terms_loop(Term t, int *vars_arity_ptr, CELL *stack_terms USES_REGS) {
|
|
#else
|
|
static inline gt_node_ptr answer_search_global_trie_loop(Term t, int *vars_arity_ptr USES_REGS) {
|
|
#endif /* GLOBAL_TRIE_FOR_SUBTERMS */
|
|
#else
|
|
#ifdef MODE_TERMS_LOOP
|
|
static inline ans_node_ptr answer_search_terms_loop(sg_fr_ptr sg_fr, ans_node_ptr current_node, Term t, int *vars_arity_ptr USES_REGS) {
|
|
#else
|
|
static inline ans_node_ptr answer_search_loop(sg_fr_ptr sg_fr, ans_node_ptr current_node, Term t, int *vars_arity_ptr USES_REGS) {
|
|
#endif /* MODE_TERMS_LOOP */
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
/************************************************************************
|
|
===========
|
|
| |
|
|
| ... |
|
|
| |
|
|
-----------
|
|
TR --> | VAR_0 | <-- stack_vars_base
|
|
----------- *
|
|
| ... | /|\
|
|
----------- | vars_arity (N+1)
|
|
| VAR_N | \|/
|
|
----------- *
|
|
| | <-- stack_terms_limit
|
|
-----------
|
|
| |
|
|
| ... |
|
|
| |
|
|
----------|
|
|
| TERM_N | <-- stack_terms
|
|
----------| *
|
|
| ... | /|\
|
|
----------| |
|
|
| TERM_1 | |
|
|
----------| |
|
|
| NULL | \|/
|
|
=========== *
|
|
LOCAL_TrailTop --> | |
|
|
-----------
|
|
************************************************************************/
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
gt_node_ptr current_node = GLOBAL_root_gt;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
int vars_arity = *vars_arity_ptr;
|
|
#if ! defined(MODE_GLOBAL_TRIE_LOOP) || ! defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
CELL *stack_terms = (CELL *) LOCAL_TrailTop;
|
|
#endif /* ! MODE_GLOBAL_TRIE_LOOP || ! GLOBAL_TRIE_FOR_SUBTERMS */
|
|
CELL *stack_vars_base = (CELL *) TR;
|
|
#define stack_terms_limit (stack_vars_base + vars_arity)
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
int in_pair = 0;
|
|
#else
|
|
#define in_pair 0
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1); /* + 1 because initially we stiil haven't done any STACK_POP_DOWN */
|
|
STACK_PUSH_UP(NULL, stack_terms);
|
|
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP)
|
|
/* for the global trie, it is safe to skip the IsVarTerm() and IsAtomOrIntTerm() tests in the first iteration */
|
|
goto answer_search_loop_non_atomic;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array Ts;
|
|
void* CyclicTerm;
|
|
term_array_init(&Ts, 10);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
|
|
do {
|
|
if (IsVarTerm(t)) {
|
|
t = Deref(t);
|
|
if (IsTableVarTerm(t)) {
|
|
t = MakeTableVarTerm(VarIndexOfTerm(t));
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_val + in_pair);
|
|
} else {
|
|
if (vars_arity == MAX_TABLE_VARS)
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: MAX_TABLE_VARS exceeded");
|
|
stack_vars_base[vars_arity] = t;
|
|
*((CELL *)t) = GLOBAL_table_var_enumerator(vars_arity);
|
|
t = MakeTableVarTerm(vars_arity);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_var + in_pair);
|
|
vars_arity = vars_arity + 1;
|
|
}
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
in_pair = 0;
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
} else if (IsAtomOrIntTerm(t)) {
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_atom + in_pair);
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
in_pair = 0;
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
#ifdef MODE_TERMS_LOOP
|
|
} else {
|
|
gt_node_ptr entry_node;
|
|
#ifdef GLOBAL_TRIE_FOR_SUBTERMS
|
|
entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
|
|
#else
|
|
entry_node = answer_search_global_trie_loop(t, &vars_arity PASS_REGS);
|
|
#endif /* GLOBAL_TRIE_FOR_SUBTERMS */
|
|
current_node = answer_trie_check_insert_gt_entry(sg_fr, current_node, (Term) entry_node, _trie_retry_gterm + in_pair PASS_REGS);
|
|
#else /* ! MODE_TERMS_LOOP */
|
|
} else
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsRationalTerm(t)) {
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, t, _trie_retry_var + in_pair); //TODO create _trie_.._rational
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP)
|
|
/* for the global trie, it is safe to start here in the first iteration */
|
|
answer_search_loop_non_atomic:
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
if (IsPairTerm(t)) {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
CELL *aux_pair = RepPair(t);
|
|
if (aux_pair == PairTermMark) {
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsPairTerm(t) && ! IsRationalTerm(t)) {
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#else
|
|
if (IsPairTerm(t)) {
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
aux_pair = RepPair(t);
|
|
t = Deref(aux_pair[1]);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
|
|
CyclicTerm = term_array_member(Ts, (void *) t);
|
|
}
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms); // CyclicTerm
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
in_pair = 4;
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
if (t == TermNil) {
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
|
|
} else {
|
|
/* AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2); */
|
|
/* AUX_STACK_CHECK_EXPAND is not necessary here because the situation of pushing **
|
|
** up 3 terms has already initially checked for the CompactPairInit term */
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
in_pair = 4;
|
|
}
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
} else {
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndTerm, _trie_retry_null);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
}
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
} else if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
} else {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairInit, _trie_retry_null + in_pair);
|
|
t = Deref(aux_pair[1]);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsVarTerm(aux_pair[1]) || IsPairTerm(aux_pair[1])) {
|
|
CyclicTerm = term_array_member(Ts, (void *) t);
|
|
}
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
in_pair = 4;
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
if (t == TermNil) {
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, CompactPairEndList, _trie_retry_pair);
|
|
in_pair = 0;
|
|
} else {
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 2);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
STACK_PUSH_UP(AbsPair(PairTermMark), stack_terms);
|
|
in_pair = 4;
|
|
}
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_pair[0]) || IsPairTerm(aux_pair[0]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_pair[0]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
}
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
} else if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
#else /* ! TRIE_COMPACT_PAIRS */
|
|
#if defined(MODE_GLOBAL_TRIE_LOOP) && defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
if (current_node != GLOBAL_root_gt) {
|
|
gt_node_ptr entry_node = answer_search_global_trie_terms_loop(t, &vars_arity, stack_terms PASS_REGS);
|
|
current_node = global_trie_check_insert_gt_entry(current_node, (Term) entry_node PASS_REGS);
|
|
} else
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP && GLOBAL_TRIE_FOR_SUBTERMS */
|
|
if (IsPairTerm(t)) {
|
|
CELL *aux_pair = RepPair(t);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsPair(NULL), _trie_retry_pair);
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1);
|
|
STACK_PUSH_UP(Deref(aux_pair[1]), stack_terms);
|
|
STACK_PUSH_UP(Deref(aux_pair[0]), stack_terms);
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
} else if (IsApplTerm(t)) {
|
|
Functor f = FunctorOfTerm(t);
|
|
if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.dbl = FloatOfTerm(t);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[1], _trie_retry_extension);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, u.t_dbl[0], _trie_retry_extension);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_double);
|
|
} else if (f == FunctorLongInt) {
|
|
Int li = LongIntOfTerm (t);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, li, _trie_retry_extension);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_longint);
|
|
} else if (f == FunctorBigInt || FunctorString) {
|
|
CELL *opq = Yap_HeapStoreOpaqueTerm(t);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_null + in_pair);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, (CELL)opq, _trie_retry_extension);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_bigint);
|
|
} else if (f == FunctorDBRef) {
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unsupported type tag FunctorDBRef");
|
|
} else {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_push(&Ts, (void *) t, (void *) current_node);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
int i;
|
|
CELL *aux_appl = RepAppl(t);
|
|
ANSWER_CHECK_INSERT_ENTRY(sg_fr, current_node, AbsAppl((Term *)f), _trie_retry_appl + in_pair);
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + ArityOfFunctor(f) - 1);
|
|
for (i = ArityOfFunctor(f); i >= 1; i--) {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = NULL;
|
|
if (IsVarTerm(aux_appl[i]) || IsApplTerm(aux_appl[i]))
|
|
CyclicTerm = term_array_member(Ts, (void *) Deref(aux_appl[i]));
|
|
if (CyclicTerm != NULL) {
|
|
STACK_PUSH_UP((Term) CyclicTerm, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(Deref(aux_appl[i]), stack_terms);
|
|
}
|
|
}
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
in_pair = 0;
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
} else {
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_loop: unknown type tag");
|
|
#endif /* MODE_TERMS_LOOP */
|
|
}
|
|
t = STACK_POP_DOWN(stack_terms);
|
|
} while (t);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_free(&Ts);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
*vars_arity_ptr = vars_arity;
|
|
return current_node;
|
|
|
|
#undef stack_terms_limit
|
|
#ifndef TRIE_COMPACT_PAIRS
|
|
#undef in_pair
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
}
|
|
#endif /* INCLUDE_ANSWER_SEARCH_LOOP */
|
|
|
|
|
|
|
|
/**************************************************************
|
|
** answer_search_min_max **
|
|
**************************************************************/
|
|
|
|
#ifdef INCLUDE_ANSWER_SEARCH_MODE_DIRECTED
|
|
static inline ans_node_ptr answer_search_min_max(sg_fr_ptr sg_fr, ans_node_ptr current_node, Term t, int mode USES_REGS) {
|
|
ans_node_ptr child_node;
|
|
Term child_term;
|
|
Term trie_value = 0, term_value = t;
|
|
int cmp;
|
|
|
|
/* start by computing the current value on the trie (trie_value) */
|
|
child_node = TrNode_child(current_node);
|
|
child_term = TrNode_entry(child_node);
|
|
if (IsIntTerm(child_term)) {
|
|
trie_value = child_term;
|
|
} else if (IsApplTerm(child_term)) {
|
|
Functor f = (Functor) RepAppl(child_term);
|
|
child_node = TrNode_child(child_node);
|
|
if (f == FunctorLongInt) {
|
|
trie_value = MkLongIntTerm( (Int) TrNode_entry(child_node) );
|
|
} else if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.t_dbl[0] = TrNode_entry(child_node);
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
child_node = TrNode_child(child_node);
|
|
u.t_dbl[1] = TrNode_entry(child_node);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
trie_value = MkFloatTerm(u.dbl);
|
|
} else if (f == FunctorBigInt) {
|
|
trie_value = AbsAppl( (CELL *) TrNode_entry(child_node) );
|
|
} else
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_min_max: invalid arithmetic value");
|
|
child_node = TrNode_child(child_node);
|
|
}
|
|
|
|
cmp = Yap_acmp( term_value, trie_value PASS_REGS);
|
|
/* worse answer */
|
|
if ((mode == MODE_DIRECTED_MIN && cmp > 0) || (mode == MODE_DIRECTED_MAX && cmp < 0))
|
|
return NULL;
|
|
/* equal answer */
|
|
if (cmp == 0)
|
|
return child_node;
|
|
/* better answer */
|
|
if (IsAtomOrIntTerm(t)) {
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, t, _trie_retry_atom);
|
|
} else if (IsApplTerm(t)) {
|
|
Functor f = FunctorOfTerm(t);
|
|
if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.dbl = FloatOfTerm(t);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, u.t_dbl[1], _trie_retry_extension);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, u.t_dbl[0], _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_double);
|
|
} else if (f == FunctorLongInt) {
|
|
Int li = LongIntOfTerm(t);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, li, _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_longint);
|
|
} else if (f == FunctorBigInt) {
|
|
CELL *li = Yap_HeapStoreOpaqueTerm(t);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, (CELL)li, _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_bigint);
|
|
}
|
|
}
|
|
return current_node;
|
|
}
|
|
#endif /* INCLUDE_ANSWER_SEARCH_MODE_DIRECTED */
|
|
|
|
|
|
|
|
/**********************************************************
|
|
** answer_search_sum **
|
|
**********************************************************/
|
|
|
|
#ifdef INCLUDE_ANSWER_SEARCH_MODE_DIRECTED
|
|
static inline ans_node_ptr answer_search_sum(sg_fr_ptr sg_fr, ans_node_ptr current_node, Term t USES_REGS) {
|
|
ans_node_ptr child_node;
|
|
Term child_term;
|
|
Term trie_value = 0, term_value = t, sum_value = 0;
|
|
|
|
/* start by computing the current value on the trie (trie_value) */
|
|
child_node = TrNode_child(current_node);
|
|
child_term = TrNode_entry(child_node);
|
|
if (IsIntTerm(child_term)) {
|
|
trie_value = child_term;
|
|
} else if (IsApplTerm(child_term)) {
|
|
Functor f = (Functor) RepAppl(child_term);
|
|
child_node = TrNode_child(child_node);
|
|
if (f == FunctorLongInt) {
|
|
trie_value = MkLongIntTerm( (Int) TrNode_entry(child_node) );
|
|
} else if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.t_dbl[0] = TrNode_entry(child_node);
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
child_node = TrNode_child(child_node);
|
|
u.t_dbl[1] = TrNode_entry(child_node);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
trie_value = MkFloatTerm(u.dbl);
|
|
} else if (f == FunctorBigInt) {
|
|
trie_value = AbsAppl( (CELL *) TrNode_entry(child_node) );
|
|
} else
|
|
Yap_Error(INTERNAL_ERROR, TermNil, "answer_search_min_max: invalid arithmetic value");
|
|
child_node = TrNode_child(child_node);
|
|
}
|
|
|
|
sum_value = p_plus(trie_value, term_value PASS_REGS);
|
|
if (IsAtomOrIntTerm(sum_value)) {
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, sum_value, _trie_retry_atom);
|
|
} else if (IsApplTerm(sum_value)) {
|
|
Functor f = FunctorOfTerm(sum_value);
|
|
if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
u.dbl = FloatOfTerm(sum_value);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, u.t_dbl[1], _trie_retry_extension);
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, u.t_dbl[0], _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_double);
|
|
} else if (f == FunctorLongInt) {
|
|
Int li = LongIntOfTerm(sum_value);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, li, _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_longint);
|
|
} else if (f == FunctorBigInt) {
|
|
CELL *li = Yap_HeapStoreOpaqueTerm(sum_value);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_null);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, (CELL)li, _trie_retry_extension);
|
|
ANSWER_SAFE_INSERT_ENTRY(current_node, AbsAppl((Term *)f), _trie_retry_bigint);
|
|
}
|
|
}
|
|
return current_node;
|
|
}
|
|
#endif /* INCLUDE_ANSWER_SEARCH_MODE_DIRECTED */
|
|
|
|
|
|
|
|
/***************************************************************
|
|
** invalidate_answer_trie **
|
|
***************************************************************/
|
|
|
|
#ifdef INCLUDE_ANSWER_SEARCH_MODE_DIRECTED
|
|
static void invalidate_answer_trie(ans_node_ptr current_node, sg_fr_ptr sg_fr, int position USES_REGS) {
|
|
if (IS_ANSWER_TRIE_HASH(current_node)) {
|
|
ans_hash_ptr hash;
|
|
ans_node_ptr *bucket, *last_bucket;
|
|
hash = (ans_hash_ptr) current_node;
|
|
bucket = Hash_buckets(hash);
|
|
last_bucket = bucket + Hash_num_buckets(hash);
|
|
do {
|
|
current_node = *bucket;
|
|
if (current_node) {
|
|
ans_node_ptr next_node = TrNode_next(current_node);
|
|
if (IS_ANSWER_LEAF_NODE(current_node)) {
|
|
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
|
|
} else {
|
|
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
|
|
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
|
|
}
|
|
while (next_node) {
|
|
current_node = next_node;
|
|
next_node = TrNode_next(current_node);
|
|
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
|
|
}
|
|
}
|
|
} while (++bucket != last_bucket);
|
|
if (Hash_next(hash))
|
|
Hash_previous(Hash_next(hash)) = Hash_previous(hash);
|
|
if (Hash_previous(hash))
|
|
Hash_next(Hash_previous(hash)) = Hash_next(hash);
|
|
else
|
|
SgFr_hash_chain(sg_fr) = Hash_next(hash);
|
|
FREE_BUCKETS(Hash_buckets(hash));
|
|
FREE_ANSWER_TRIE_HASH(hash);
|
|
} else {
|
|
if (position == TRAVERSE_POSITION_FIRST) {
|
|
ans_node_ptr next_node = TrNode_next(current_node);
|
|
if (IS_ANSWER_LEAF_NODE(current_node)) {
|
|
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
|
|
} else {
|
|
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
|
|
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
|
|
}
|
|
while (next_node) {
|
|
current_node = next_node;
|
|
next_node = TrNode_next(current_node);
|
|
invalidate_answer_trie(current_node, sg_fr, TRAVERSE_POSITION_NEXT PASS_REGS);
|
|
}
|
|
} else {
|
|
if (IS_ANSWER_LEAF_NODE(current_node)) {
|
|
INVALIDATE_ANSWER_TRIE_LEAF_NODE(current_node, sg_fr);
|
|
} else {
|
|
invalidate_answer_trie(TrNode_child(current_node), sg_fr, TRAVERSE_POSITION_FIRST PASS_REGS);
|
|
INVALIDATE_ANSWER_TRIE_NODE(current_node, sg_fr);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
#endif /* INCLUDE_ANSWER_SEARCH_MODE_DIRECTED */
|
|
|
|
|
|
|
|
/************************************************************************
|
|
** load_(answer|substitution)_loop **
|
|
************************************************************************/
|
|
|
|
#ifdef INCLUDE_LOAD_ANSWER_LOOP
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
static inline CELL *load_substitution_loop(gt_node_ptr current_node, int *vars_arity_ptr, CELL *stack_terms USES_REGS) {
|
|
#else
|
|
static inline CELL *load_answer_loop(ans_node_ptr current_node USES_REGS) {
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
/************************************************************************
|
|
===========
|
|
| |
|
|
| ... |
|
|
| |
|
|
-----------
|
|
TR --> | VAR_0 | <-- stack_vars_base
|
|
----------- *
|
|
| ... | /|\
|
|
----------- | vars_arity (N+1)
|
|
| VAR_N | \|/
|
|
----------- *
|
|
| | <-- stack_terms_limit
|
|
-----------
|
|
| |
|
|
| ... |
|
|
| |
|
|
----------|
|
|
| TERM_N | <-- stack_terms
|
|
----------| *
|
|
| ... | /|\
|
|
----------| | stack_terms_pair_offset (TRIE_COMPACT_PAIRS)
|
|
| TERM_1 | \|/
|
|
=========== *
|
|
LOCAL_TrailTop --> | | <-- stack_terms_base (TRIE_COMPACT_PAIRS)
|
|
-----------
|
|
************************************************************************/
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
int vars_arity = *vars_arity_ptr;
|
|
#else
|
|
int vars_arity = 0;
|
|
CELL *stack_terms = (CELL *) LOCAL_TrailTop;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
CELL *stack_vars_base = (CELL *) TR;
|
|
#define stack_terms_limit (stack_vars_base + vars_arity)
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
#define stack_terms_base ((CELL *) LOCAL_TrailTop)
|
|
int stack_terms_pair_offset = 0;
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
Term t = TrNode_entry(current_node);
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
current_node = TrNode_parent(current_node);
|
|
#else
|
|
current_node = (ans_node_ptr) UNTAG_ANSWER_NODE(TrNode_parent(current_node));
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array Ts;
|
|
void* CyclicTerm;
|
|
term_array_init(&Ts, 10);
|
|
Term RationalTermTMP; // a temporary temp to be used from the rational code
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
|
|
do {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
CyclicTerm = term_array_member(Ts, (void *) current_node);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
if (IsVarTerm(t)) {
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS) && TrNode_child((gt_node_ptr) t) != (gt_node_ptr)(1)) { //TODO: substitute the != 1 test to something more appropriate
|
|
/* Rational term */
|
|
RationalTermTMP = (Term) term_array_member(Ts, (void *) t);
|
|
if (RationalTermTMP) {
|
|
/* rational term is assigned a variable already */
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
|
|
STACK_PUSH_UP(RationalTermTMP, stack_terms);
|
|
} else {
|
|
RationalTermTMP = MkVarTerm();
|
|
STACK_PUSH_UP(RationalTermTMP, stack_terms);
|
|
/* memorize the rational term and assign it a variable */
|
|
term_array_push(&Ts, (void *) t, (void *) RationalTermTMP);
|
|
}
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
{
|
|
#if ! defined(MODE_GLOBAL_TRIE_LOOP) || defined(GLOBAL_TRIE_FOR_SUBTERMS)
|
|
if (t > VarIndexOfTableTerm(MAX_TABLE_VARS)) {
|
|
stack_terms = load_substitution_loop((gt_node_ptr) t, &vars_arity, stack_terms PASS_REGS);
|
|
} else
|
|
#endif /* ! MODE_GLOBAL_TRIE_LOOP || GLOBAL_TRIE_FOR_SUBTERMS */
|
|
{ int var_index = VarIndexOfTableTerm(t);
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit - vars_arity + var_index + 1);
|
|
if (var_index >= vars_arity) {
|
|
while (vars_arity < var_index)
|
|
stack_vars_base[vars_arity++] = 0;
|
|
stack_vars_base[vars_arity++] = MkVarTerm();
|
|
} else if (stack_vars_base[var_index] == 0)
|
|
stack_vars_base[var_index] = MkVarTerm();
|
|
STACK_PUSH_UP(stack_vars_base[var_index], stack_terms);
|
|
}
|
|
}
|
|
} else if (IsAtomOrIntTerm(t)) {
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (CyclicTerm) {
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 4);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms); // Add a rational term marker necessary as we read both ways the stack //
|
|
STACK_PUSH_UP(t, stack_terms); // Add the term //
|
|
STACK_PUSH_UP(CyclicTerm, stack_terms); // Add the variable that the term will unify with //
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms); // Add a rational term marker necessary as we read both ways the stack //
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
} else if (IsPairTerm(t)) {
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
if (t == CompactPairInit) {
|
|
Term *stack_aux = stack_terms_base - stack_terms_pair_offset;
|
|
Term head, tail = STACK_POP_UP(stack_aux);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsRationalTerm(tail)) {
|
|
Yap_Error(INTERNAL_ERROR, tail, "Rational element of a Rational Term appears as the first Tail of a list");
|
|
}
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
while (STACK_NOT_EMPTY(stack_aux, stack_terms)) {
|
|
head = STACK_POP_UP(stack_aux);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (IsRationalTerm(head)) {
|
|
head = STACK_POP_UP(stack_aux); // thats the rational term
|
|
RationalTermTMP = STACK_POP_UP(stack_aux); // that is the variable to unify with
|
|
(void) STACK_POP_UP(stack_aux); // eat the second rational mark
|
|
tail = MkPairTerm(head, tail);
|
|
Yap_unify(RationalTermTMP, tail);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
tail = MkPairTerm(head, tail);
|
|
}
|
|
stack_terms = stack_terms_base - stack_terms_pair_offset;
|
|
stack_terms_pair_offset = (int) STACK_POP_DOWN(stack_terms);
|
|
STACK_PUSH_UP(tail, stack_terms);
|
|
} else { /* CompactPairEndList / CompactPairEndTerm */
|
|
Term last;
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit + 1);
|
|
last = STACK_POP_DOWN(stack_terms);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
RationalTermTMP = TermNil;
|
|
if (IsRationalTerm(last)) { // rather unlikely case the rational term is the last of a list
|
|
RationalTermTMP = STACK_POP_DOWN(stack_terms); // in this case we need to invert the term with the end of list
|
|
last = STACK_POP_DOWN(stack_terms); // variable to unify with
|
|
(void) STACK_POP_DOWN(stack_terms); // eat the second rational mark
|
|
}
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(stack_terms_pair_offset, stack_terms);
|
|
stack_terms_pair_offset = (int) (stack_terms_base - stack_terms);
|
|
if (t == CompactPairEndList)
|
|
STACK_PUSH_UP(TermNil, stack_terms);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (RationalTermTMP && RationalTermTMP != TermNil) {
|
|
/* most probably this never occurs */
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
STACK_PUSH_UP(last, stack_terms);
|
|
STACK_PUSH_UP(RationalTermTMP, stack_terms);
|
|
STACK_PUSH_UP((Term) RationalMark, stack_terms);
|
|
} else
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
STACK_PUSH_UP(last, stack_terms);
|
|
}
|
|
#else /* ! TRIE_COMPACT_PAIRS */
|
|
Term head = STACK_POP_DOWN(stack_terms);
|
|
Term tail = STACK_POP_DOWN(stack_terms);
|
|
t = MkPairTerm(head, tail);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
} else if (IsApplTerm(t)) {
|
|
Functor f = (Functor) RepAppl(t);
|
|
if (f == FunctorDouble) {
|
|
union {
|
|
Term t_dbl[sizeof(Float)/sizeof(Term)];
|
|
Float dbl;
|
|
} u;
|
|
t = TrNode_entry(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
u.t_dbl[0] = t;
|
|
#if SIZEOF_DOUBLE == 2 * SIZEOF_INT_P
|
|
t = TrNode_entry(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
u.t_dbl[1] = t;
|
|
#endif /* SIZEOF_DOUBLE x SIZEOF_INT_P */
|
|
current_node = TrNode_parent(current_node);
|
|
t = MkFloatTerm(u.dbl);
|
|
} else if (f == FunctorLongInt) {
|
|
Int li = TrNode_entry(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
t = MkLongIntTerm(li);
|
|
} else if (f == FunctorBigInt || f == FunctorString) {
|
|
CELL *ptr = (CELL *)TrNode_entry(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
t = AbsAppl( ptr );
|
|
} else {
|
|
int f_arity = ArityOfFunctor(f);
|
|
t = Yap_MkApplTerm(f, f_arity, stack_terms);
|
|
stack_terms += f_arity;
|
|
}
|
|
AUX_STACK_CHECK_EXPAND(stack_terms, stack_terms_limit);
|
|
STACK_PUSH_UP(t, stack_terms);
|
|
}
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
if (CyclicTerm) {
|
|
RationalTermTMP = STACK_POP_DOWN(stack_terms);
|
|
if IsRationalTerm(RationalTermTMP) {
|
|
//printf("Special Case\n");
|
|
} else if (IsPairTerm(RationalTermTMP)) {
|
|
Yap_unify((Term) CyclicTerm, RationalTermTMP);
|
|
} else if (IsApplTerm(RationalTermTMP)) {
|
|
Yap_unify((Term) CyclicTerm, RationalTermTMP);
|
|
}
|
|
STACK_PUSH_UP(RationalTermTMP, stack_terms);
|
|
}
|
|
RationalTermTMP = TermNil;
|
|
CyclicTerm = NULL;
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
t = TrNode_entry(current_node);
|
|
current_node = TrNode_parent(current_node);
|
|
} while (current_node);
|
|
#ifdef TRIE_RATIONAL_TERMS
|
|
term_array_free(&Ts);
|
|
#endif /* RATIONAL TERM SUPPORT FOR TRIES */
|
|
#ifdef MODE_GLOBAL_TRIE_LOOP
|
|
*vars_arity_ptr = vars_arity;
|
|
#endif /* MODE_GLOBAL_TRIE_LOOP */
|
|
return stack_terms;
|
|
|
|
#undef stack_terms_limit
|
|
#ifdef TRIE_COMPACT_PAIRS
|
|
#undef stack_terms_base
|
|
#endif /* TRIE_COMPACT_PAIRS */
|
|
}
|
|
#endif /* INCLUDE_LOAD_ANSWER_LOOP */
|
|
|
|
|
|
|
|
/***************************
|
|
** Undef Macros **
|
|
***************************/
|
|
|
|
#undef INCREMENT_GLOBAL_TRIE_REFERENCE
|
|
#undef NEW_SUBGOAL_TRIE_NODE
|
|
#undef NEW_ANSWER_TRIE_NODE
|
|
#undef NEW_GLOBAL_TRIE_NODE
|
|
#undef SUBGOAL_CHECK_INSERT_ENTRY
|
|
#undef ANSWER_CHECK_INSERT_ENTRY
|