This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/exo_interval.yap
Vítor Santos Costa 3009987985 update docs
2014-09-11 14:06:57 -05:00

233 lines
4.6 KiB
Prolog

% This file has been included as an YAP library by Vitor Santos Costa, 2013
% it implements a very simple interval solver designed to interact with the exo
% data-base.
% It assumes simple queries and a contiguous interval,
% and does not really expect to do non-trivial
% constraint propagation and solving.
/** @defgroup Exo_Intervals Exo Intervals
@ingroup YAPLibrary
@{
This package assumes you use exo-compilation, that is, that you loaded
the pedicate using the `exo` option to load_files/2, In this
case, YAP includes a package for improved search on intervals of
integers.
The package is activated by `udi` declarations that state what is
the argument of interest:
~~~~~{.prolog}
:- udi(diagnoses(exo_interval,?,?)).
:- load_files(db, [consult(exo)]).
~~~~~
It is designed to optimise the following type of queries:
~~~~~{.prolog}
?- max(X, diagnoses(X, 9, Y), X).
?- min(X, diagnoses(X, 9, 36211117), X).
?- X #< Y, min(X, diagnoses(X, 9, 36211117), X ), diagnoses(Y, 9, _).
~~~~~
The first argument gives the time, the second the patient, and the
third the condition code. The first query should find the last time
the patient 9 had any code reported, the second looks for the first
report of code 36211117, and the last searches for reports after this
one. All queries run in constant or log(n) time.
*/
/** @pred max( _X_, _Vs_)
First Argument is the greatest element of a list.
+ lex_order( _Vs_)
All elements must be ordered.
The following predicates control search:
*/
/** @pred max(+ _Expression_)
Maximizes _Expression_ within the current constraint store. This is
the same as computing the supremum and equating the expression to that
supremum.
*/
/** @pred min( _X_, _Vs_)
First Argument is the least element of a list.
*/
/** @pred min(+ _Expression_)
Minimizes _Expression_ within the current constraint store. This is
the same as computing the infimum and equation the expression to that
infimum.
*/
:- module(exo_interval,
[max/2,
min/2,
any/2,
max/1,
min/1,
maximum/1,
minimum/1,
any/1,
(#<)/2,
(#>)/2,
(#=<)/2,
(#>=)/2,
(#=)/2,
op(700, xfx, (#>)),
op(700, xfx, (#<)),
op(700, xfx, (#>=)),
op(700, xfx, (#=<)),
op(700, xfx, (#=))]).
:- meta_predicate max(?,0), min(?,0), any(?,0).
max(X, G) :-
insert_atts(X, i(_,_,max)),
call(G).
min(X, G) :-
insert_atts(X, i(_,_,min)),
call(G).
max(X) :-
insert_atts(X, i(_,_,max)).
maximum(X) :-
insert_atts(X, i(_,_,maximum)).
any(X) :-
insert_atts(X, i(_,_,any)).
min(X) :-
insert_atts(X, i(_,_,min)).
minimum(X) :-
insert_atts(X, i(_,_,minimum)).
least(X) :-
insert_atts(X, i(_,_,least)).
X #> Y :-
( var(X) -> insert_atts(X, i(Y,_,_))
;
( var(Y) -> insert_atts(Y, i(_,X,_) ) ;
true
)
;
var(Y) -> insert_atts(Y, i(_,X,_))
;
X > Y
).
X #>= Y :-
( var(X) -> insert_atts(X, i(Y-1,_,_))
;
X >= Y
).
X #< Y :-
( var(X) -> insert_atts(X, i(_,Y,_))
;
X < Y
).
X #=< Y :-
( var(X) -> insert_atts(X, i(Y+1,_,_))
;
X =< Y
).
X #= Y :-
( var(X) -> insert_atts(X, i(Y-1,Y+1,_)) ;
X =:= Y
).
attribute_goals(X) -->
{ get_attr(X, exo_interval, Op) },
( { Op = max } -> [max(X)] ;
{ Op = min } -> [min(X)] ;
{ Op = '>'(Y) } -> [X #> Y] ;
{ Op = '<'(Y) } -> [X #< Y] ;
{ Op = range(A,B,C) } ->
range_min(A,X),
range_max(B,X),
range_op(C, X)
).
range_min(Y, _X) -->
{ var(Y) }, !,
[].
range_min(Y, X) -->
[X #> Y].
range_max(Y, _X) -->
{ var(Y) }, !,
[].
range_max(Y, X) -->
[X #< Y].
range_op(Y, _X) -->
{ var(Y) }, !,
[].
range_op(Y, X) -->
{ Op =.. [Y, X] },
[Op].
insert_atts(V, Att) :-
( nonvar(V) ->
throw( error(uninstantion_error(V), exo_interval) )
; attvar(V) ->
get_attr(V, exo_interval, Att0),
expand_atts(Att, Att0, NAtt)
;
NAtt = Att
),
put_attr(V, exo_interval, NAtt).
expand_atts(i(A1, B1, C1), i(A2, B2, C2), i(A3,B3,C3)) :-
expand_min(A1, A2, A3),
expand_max(B1, B2, B3),
expand_op(C1, C2, C3).
expand_min(A1, A2, A3) :-
(var(A1) -> A3 = A2;
var(A2) -> A3 = A1;
ground(A1), ground(A2) -> A3 is max(A1,A2) ;
A3 = max(A1,A2)
).
expand_max(A1, A2, A3) :-
(var(A1) -> A3 = A2;
var(A2) -> A3 = A1;
ground(A1), ground(A2) -> A3 is min(A1,A2) ;
A3 = min(A1,A2)
).
expand_op(A1, A2, A3) :-
(var(A1) -> A3 = A2;
var(A2) -> A3 = A1;
A1 == A2 -> A3 = A1;
A1 == unique -> A3 = unique;
A2 == unique -> A3 = unique;
A2 == min, A1 = max -> A3 = unique;
A1 == min, A2 = max -> A3 = unique;
A1 == min -> A3 = min; A2 == min -> A3 = min;
A1 == max -> A3 = max; A2 == max -> A3 = max;
A3 = any
).