This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/library/yap2swi/yap2swi.c
Vitor Santos Costa b5a5e10544 fix warning.
2009-06-04 10:26:27 -05:00

2274 lines
51 KiB
C

/* yap2swi.c */
/*
* Project: jpl for Yap Prolog
* Author: Steve Moyle and Vitor Santos Costa
* Email: steve.moyle@comlab.ox.ac.uk
* Date: 21 January 2002
* Copyright (c) 2002 Steve Moyle. All rights reserved.
*/
//=== includes ===============================================================
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <wchar.h>
#include <assert.h>
#include <Yap.h>
#include <Yatom.h>
#include <eval.h>
#if HAVE_MATH_H
#include <math.h>
#endif
#if HAVE_ERRNO_H
#include <errno.h>
#endif
#define PL_KERNEL 1
#include <SWI-Stream.h>
#include <SWI-Prolog.h>
#ifdef USE_GMP
#include <gmp.h>
#endif
#ifdef __WIN32__
/* Windows */
#include <fcntl.h>
#endif
#define BUF_SIZE 256
#define TMP_BUF_SIZE 2*BUF_SIZE
#define BUF_RINGS 16
static inline atom_t
AtomToSWIAtom(Atom at)
{
return (atom_t)at;
}
static inline Atom
SWIAtomToAtom(atom_t at)
{
return (Atom)at;
}
static inline functor_t
FunctorToSWIFunctor(Functor at)
{
return (functor_t)at;
}
static inline Functor
SWIFunctorToFunctor(functor_t at)
{
return (Functor)at;
}
static void
PredicateInfo(void *p, Atom* a, unsigned long int* arity, Term* m)
{
PredEntry *pd = (PredEntry *)p;
if (pd->ArityOfPE) {
*arity = pd->ArityOfPE;
*a = NameOfFunctor(pd->FunctorOfPred);
} else {
*arity = 0;
*a = (Atom)(pd->FunctorOfPred);
}
if (pd->ModuleOfPred)
*m = pd->ModuleOfPred;
else
*m = TermProlog;
}
static void
UserCPredicate(char *a, CPredicate def, unsigned long int arity, Term mod, int flags)
{
PredEntry *pe;
Term cm = CurrentModule;
CurrentModule = mod;
Yap_InitCPred(a, arity, def, UserCPredFlag);
if (arity == 0) {
pe = RepPredProp(PredPropByAtom(Yap_LookupAtom(a),mod));
} else {
Functor f = Yap_MkFunctor(Yap_LookupAtom(a), arity);
pe = RepPredProp(PredPropByFunc(f,mod));
}
pe->PredFlags |= (CArgsPredFlag|flags);
CurrentModule = cm;
}
char buffers[TMP_BUF_SIZE+BUF_SIZE*BUF_RINGS];
static int buf_index = 0;
static char *
alloc_ring_buf(void)
{
int ret = buf_index;
buf_index++;
if (buf_index == BUF_RINGS)
buf_index = 0;
return buffers+(TMP_BUF_SIZE+ret*BUF_SIZE);
}
/* SWI: void PL_agc_hook(void) */
X_API PL_agc_hook_t
PL_agc_hook(PL_agc_hook_t entry)
{
return (PL_agc_hook_t)YAP_AGCRegisterHook((YAP_agc_hook)entry);
}
/* SWI: char* PL_atom_chars(atom_t atom)
YAP: char* AtomName(Atom) */
X_API char* PL_atom_chars(atom_t a) /* SAM check type */
{
return AtomName(SWIAtomToAtom(a));
}
/* SWI: term_t PL_copy_term_ref(term_t from)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API term_t PL_copy_term_ref(term_t from)
{
return YAP_InitSlot(Yap_GetFromSlot(from));
}
X_API term_t PL_new_term_ref(void)
{
term_t to = Yap_NewSlots(1);
return to;
}
X_API term_t PL_new_term_refs(int n)
{
term_t to = Yap_NewSlots(n);
return to;
}
X_API void PL_reset_term_refs(term_t after)
{
term_t new = Yap_NewSlots(1);
YAP_RecoverSlots(after-new);
}
/* begin PL_get_* functions =============================*/
/* SWI: int PL_get_arg(int index, term_t t, term_t a)
YAP: YAP_Term YAP_ArgOfTerm(int argno, YAP_Term t)*/
X_API int PL_get_arg(int index, term_t ts, term_t a)
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !YAP_IsApplTerm(t) ) {
if (YAP_IsPairTerm(t)) {
if (index == 1){
Yap_PutInSlot(a,YAP_HeadOfTerm(t));
return 1;
} else if (index == 2) {
Yap_PutInSlot(a,YAP_TailOfTerm(t));
return 1;
}
}
return 0;
}
Yap_PutInSlot(a,YAP_ArgOfTerm(index, t));
return 1;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_atom(term_t ts, atom_t *a)
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !IsAtomTerm(t))
return 0;
*a = AtomToSWIAtom(AtomOfTerm(t));
return 1;
}
/* SWI: int PL_get_atom_chars(term_t t, char **s)
YAP: char* AtomName(Atom) */
X_API int PL_get_atom_chars(term_t ts, char **a) /* SAM check type */
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!IsAtomTerm(t))
return 0;
*a = RepAtom(AtomOfTerm(t))->StrOfAE;
return 1;
}
/*
int PL_get_chars(term_t +t, char **s, unsigned flags) Convert the
argument term t to a 0-terminated C-string. flags is a bitwise
disjunction from two groups of constants. The first specifies which
term-types should converted and the second how the argument is
stored. Below is a specification of these constants. BUF_RING
implies, if the data is not static (as from an atom), the data is
copied to the next buffer from a ring of sixteen (16) buffers. This is a
convenient way of converting multiple arguments passed to a foreign
predicate to C-strings. If BUF_MALLOC is used, the data must be
freed using free() when not needed any longer.
CVT_ATOM Convert if term is an atom
CVT_STRING Convert if term is a string
CVT_LIST Convert if term is a list of integers between 1 and 255
CVT_INTEGER Convert if term is an integer (using %d)
CVT_FLOAT Convert if term is a float (using %f)
CVT_NUMBER Convert if term is a integer or float
CVT_ATOMIC Convert if term is atomic
CVT_VARIABLE Convert variable to print-name
CVT_ALL Convert if term is any of the above, except for variables
BUF_DISCARDABLE Data must copied immediately
BUF_RING Data is stored in a ring of buffers
BUF_MALLOC Data is copied to a new buffer returned by malloc(3)
*/
static int CvtToStringTerm(YAP_Term t, char *buf, char *buf_max)
{
*buf++ = '\"';
while (YAP_IsPairTerm(t)) {
YAP_Term hd = YAP_HeadOfTerm(t);
long int i;
if (!YAP_IsIntTerm(hd))
return 0;
i = YAP_IntOfTerm(hd);
if (i <= 0 || i >= 255)
return 0;
if (!YAP_IsIntTerm(hd))
return 0;
*buf++ = i;
if (buf == buf_max)
return 0;
t = YAP_TailOfTerm(t);
}
if (t != TermNil)
return 0;
if (buf+1 == buf_max)
return 0;
buf[0] = '\"';
buf[1] = '\0';
return 1;
}
char *bf, *bf_lim;
static void
buf_writer(int c)
{
if (bf == bf_lim) {
return;
}
*bf++ = c;
}
#if !HAVE_SNPRINTF
#define snprintf(X,Y,Z,A) sprintf(X,Z,A)
#endif
X_API int PL_get_chars(term_t l, char **sp, unsigned flags)
{
YAP_Term t = Yap_GetFromSlot(l);
char *tmp;
if (!(flags & BUF_RING)) {
tmp = alloc_ring_buf();
} else {
tmp = buffers;
}
*sp = tmp;
if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_ALL)))
return 0;
if (IsWideAtom(at))
/* will this always work? */
snprintf(*sp,BUF_SIZE,"%ls",RepAtom(at)->WStrOfAE);
else
*sp = RepAtom(at)->StrOfAE;
return 1;
} else if (YAP_IsIntTerm(t)) {
if (!(flags & (CVT_INTEGER|CVT_NUMBER|CVT_ATOMIC|CVT_ALL)))
return 0;
snprintf(tmp,BUF_SIZE,"%ld",YAP_IntOfTerm(t));
} else if (YAP_IsFloatTerm(t)) {
if (!(flags & (CVT_FLOAT|CVT_ATOMIC|CVT_NUMBER|CVT_ALL)))
return 0;
snprintf(tmp,BUF_SIZE,"%f",YAP_FloatOfTerm(t));
} else if (flags & CVT_STRING) {
if (CvtToStringTerm(t,tmp,tmp+BUF_SIZE) == 0)
return 0;
} else {
bf = tmp;
bf_lim = tmp+(BUF_SIZE-1);
YAP_Write(t,buf_writer,0);
if (bf == bf_lim)
return 0;
*bf = '\0';
}
if (flags & BUF_MALLOC) {
char *nbf = YAP_AllocSpaceFromYap(strlen(tmp)+1);
if (nbf == NULL)
return 0;
strncpy(nbf,tmp,BUF_SIZE);
*sp = nbf;
}
return 1;
}
X_API int PL_get_nchars(term_t l, size_t *len, char **sp, unsigned flags)
{
int out = PL_get_chars(l, sp, flags);
if (!out) return out;
*len = strlen(*sp);
return out;
}
/* same as get_chars, but works on buffers of wide chars */
X_API int PL_get_wchars(term_t l, size_t *len, wchar_t **wsp, unsigned flags)
{
Term t = Yap_GetFromSlot(l);
if (IsVarTerm(t)) {
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars");
return 0;
}
if (flags & CVT_ATOM) {
if (IsAtomTerm(t)) {
Atom at = AtomOfTerm(t);
if (!(flags & (CVT_ATOM|CVT_ATOMIC|CVT_ALL)))
return 0;
if (IsWideAtom(at)) {
/* will this always work? */
*wsp = RepAtom(at)->WStrOfAE;
} else {
char *sp = RepAtom(at)->StrOfAE;
size_t sz;
sz = strlen(sp);
if (flags & BUF_MALLOC) {
int i;
wchar_t *nbf = (wchar_t *)YAP_AllocSpaceFromYap((sz+1)*sizeof(wchar_t));
if (nbf == NULL) {
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars: lack of memory");
return 0;
}
*wsp = nbf;
for (i=0; i<= sz; i++)
*nbf++ = *sp++;
} else if (flags & BUF_DISCARDABLE) {
wchar_t *buf = (wchar_t *)buffers;
int i;
if ((sz+1)*sizeof(wchar_t) >= BUF_SIZE) {
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars: wcstombs");
return 0;
}
*wsp = buf;
for (i=0; i<= sz; i++)
*buf++ = *sp++;
} else {
wchar_t *tmp = (wchar_t *)alloc_ring_buf();
int i;
if ((sz+1)*sizeof(wchar_t) >= BUF_SIZE) {
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars: wcstombs");
return 0;
}
*wsp = tmp;
for (i=0; i<= sz; i++)
*tmp++ = *sp++;
}
return 1;
}
}
}
if (flags & CVT_EXCEPTION)
YAP_Error(0, 0L, "PL_get_wchars");
return 0;
}
/* SWI: int PL_get_functor(term_t t, functor_t *f)
YAP: YAP_Functor YAP_FunctorOfTerm(Term) */
X_API int PL_get_functor(term_t ts, functor_t *f)
{
Term t = Yap_GetFromSlot(ts);
if ( IsAtomTerm(t)) {
*f = t;
} else {
*f = FunctorToSWIFunctor(FunctorOfTerm(t));
}
return 1;
}
/* SWI: int PL_get_float(term_t t, double *f)
YAP: double YAP_FloatOfTerm(Term) */
X_API int PL_get_float(term_t ts, double *f) /* SAM type check*/
{
YAP_Term t = Yap_GetFromSlot(ts);
if ( !YAP_IsFloatTerm(t))
return 0;
*f = YAP_FloatOfTerm(t);
return 1;
}
X_API int PL_get_head(term_t ts, term_t h)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,YAP_HeadOfTerm(t));
return 1;
}
/* SWI: int PL_get_integer(term_t t, int *i)
YAP: long int YAP_IntOfTerm(Term) */
X_API int PL_get_integer(term_t ts, int *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) )
return 0;
*i = YAP_IntOfTerm(t);
return 1;
}
/* SWI: int PL_get_bool(term_t t, int *i)
YAP: long int YAP_AtomOfTerm(Term) */
X_API int PL_get_bool(term_t ts, int *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
Atom at;
if (!IsAtomTerm(t) )
return 0;
at = AtomOfTerm(t);
if (at == AtomTrue) {
*i = TRUE;
return 1;
}
if (at == AtomFalse) {
*i = FALSE;
return 1;
}
return 0;
}
X_API int PL_get_long(term_t ts, long *i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (long)dbl == 0.0) {
*i = (long)dbl;
return 1;
}
}
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
}
X_API int PL_get_int64(term_t ts, int64_t *i)
{
#if SIZE_OF_LONG_INT==8
return PL_get_long(ts, (long *)i);
#else
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) ) {
if (YAP_IsFloatTerm(t)) {
double dbl = YAP_FloatOfTerm(t);
if (dbl - (int64_t)dbl == 0.0) {
*i = (int64_t)dbl;
return 1;
}
#if USE_GMP
} else if (YAP_IsBigNumTerm(t)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return 0;
}
mpz_get_str (s, 10, &g);
sscanf(s, "%lld", (long long int *)i);
return 1;
#endif
}
return 0;
}
*i = YAP_IntOfTerm(t);
return 1;
#endif
}
X_API int PL_get_list(term_t ts, term_t h, term_t tl)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(h,YAP_HeadOfTerm(t));
Yap_PutInSlot(tl,YAP_TailOfTerm(t));
return 1;
}
X_API int PL_get_list_chars(term_t l, char **sp, unsigned flags)
{
if (flags & (CVT_ATOM|CVT_STRING|CVT_INTEGER|CVT_FLOAT|CVT_NUMBER|CVT_ATOMIC|CVT_VARIABLE|CVT_ALL))
return 0;
return PL_get_chars(l, sp, CVT_LIST|flags);
}
/* SWI: int PL_get_module(term_t t, module_t *m) */
X_API int PL_get_module(term_t ts, module_t *m)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!IsAtomTerm(t) )
return FALSE;
*m = (module_t)t;
return TRUE;
}
/* SWI: int PL_new_module(term_t t, module_t *m) */
X_API module_t PL_new_module(atom_t swiat)
{
Atom at = SWIAtomToAtom(swiat);
Term t;
WRITE_LOCK(RepAtom(at)->ARWLock);
t = Yap_Module(MkAtomTerm(at));
WRITE_UNLOCK(RepAtom(at)->ARWLock);
return (module_t)t;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_name_arity(term_t ts, atom_t *name, int *arity)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (IsAtomTerm(t)) {
*name = AtomToSWIAtom(AtomOfTerm(t));
*arity = 0;
return 1;
}
if (YAP_IsApplTerm(t)) {
Functor f = FunctorOfTerm(t);
*name = AtomToSWIAtom(NameOfFunctor(f));
*arity = ArityOfFunctor(f);
return 1;
}
if (YAP_IsPairTerm(t)) {
*name = AtomToSWIAtom(AtomDot);
*arity = 2;
return 1;
}
return 0;
}
/* SWI: int PL_get_atom(term_t t, YAP_Atom *a)
YAP: YAP_Atom YAP_AtomOfTerm(Term) */
X_API int PL_get_nil(term_t ts)
{
Term t = Yap_GetFromSlot(ts);
return ( t == TermNil );
}
/* SWI: int PL_get_pointer(term_t t, int *i)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_get_pointer(term_t ts, void **i)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsIntTerm(t) )
return 0;
*i = (void *)YAP_IntOfTerm(t);
return 1;
}
/* SWI: int PL_get_atom_chars(term_t t, char **s)
YAP: char* AtomName(Atom) */
X_API int PL_get_string(term_t ts, char **sp, int *lenp) /* SAM check type */
{
YAP_Term t = Yap_GetFromSlot(ts);
char *to;
int len;
if (!YAP_IsPairTerm(t))
return 0;
if (!YAP_StringToBuffer(t, buffers, TMP_BUF_SIZE))
return(FALSE);
len = strlen(buffers);
to = (char *)Yap_NewSlots((len/sizeof(YAP_Term))+1);
strncpy(to, buffers, TMP_BUF_SIZE);
*sp = to;
return 1;
}
X_API int PL_get_tail(term_t ts, term_t tl)
{
YAP_Term t = Yap_GetFromSlot(ts);
if (!YAP_IsPairTerm(t) ) {
return 0;
}
Yap_PutInSlot(tl,YAP_TailOfTerm(t));
return 1;
}
/* end PL_get_* functions =============================*/
/* begin PL_new_* functions =============================*/
/* SWI: atom_t PL_new_atom(const char *)
YAP: YAP_Atom LookupAtom(char *) */
/* SAM should the following be used instead?
YAP_Atom FullLookupAtom(char *)
*/
X_API atom_t PL_new_atom(const char *c)
{
return AtomToSWIAtom(Yap_LookupAtom((char *)c));
}
X_API atom_t PL_new_atom_wchars(int len, const wchar_t *c)
{
atom_t at;
int i;
for (i=0;i<len;i++) {
if (c[i] > 255) break;
}
if (i!=len) {
wchar_t *nbf = (wchar_t *)YAP_AllocSpaceFromYap((len+1)*sizeof(wchar_t));
for (i=0;i<len;i++)
nbf[i] = c[i];
nbf[len]='\0';
at = AtomToSWIAtom(Yap_LookupMaybeWideAtom(nbf));
YAP_FreeSpaceFromYap(nbf);
} else {
char *nbf = (char *)YAP_AllocSpaceFromYap((len+1)*sizeof(char));
for (i=0;i<len;i++)
nbf[i] = c[i];
nbf[len]='\0';
at = AtomToSWIAtom(Yap_LookupAtom(nbf));
YAP_FreeSpaceFromYap(nbf);
}
return at;
}
X_API char *PL_atom_nchars(atom_t name, size_t *sp)
{
Atom at = SWIAtomToAtom(name);
if (IsWideAtom(at)) {
wchar_t *c = RepAtom(at)->WStrOfAE;
*sp = wcslen(c);
return (char *)c;
} else {
char *c = RepAtom(at)->StrOfAE;
*sp = strlen(c);
return c;
}
}
X_API wchar_t *PL_atom_wchars(atom_t name, size_t *sp)
{
Atom at = SWIAtomToAtom(name);
if (!IsWideAtom(at))
return NULL;
*sp = wcslen(RepAtom(at)->WStrOfAE);
return RepAtom(at)->WStrOfAE;
}
X_API functor_t PL_new_functor(atom_t name, int arity)
{
functor_t f;
Atom at = SWIAtomToAtom(name);
if (arity == 0) {
f = FunctorToSWIFunctor((Functor)MkAtomTerm(at));
} else {
f = FunctorToSWIFunctor(Yap_MkFunctor(at,arity));
}
return f;
}
X_API atom_t PL_functor_name(functor_t f)
{
if (IsAtomTerm(f)) {
return AtomToSWIAtom(AtomOfTerm((Term)SWIFunctorToFunctor(f)));
} else {
return AtomToSWIAtom(NameOfFunctor(SWIFunctorToFunctor(f)));
}
}
X_API int PL_functor_arity(functor_t f)
{
if (IsAtomTerm(f)) {
return 0;
} else {
return ArityOfFunctor(SWIFunctorToFunctor(f));
}
}
/* end PL_new_* functions =============================*/
/* begin PL_put_* functions =============================*/
X_API void PL_cons_functor(term_t d, functor_t f,...)
{
va_list ap;
int arity, i;
YAP_Term *tmp = (YAP_CELL *)buffers;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d, (YAP_Term)f);
return;
}
arity = ArityOfFunctor(ff);
if (arity > TMP_BUF_SIZE/sizeof(YAP_CELL)) {
fprintf(stderr,"PL_cons_functor: arity too large (%d)\n", arity);
return;
}
va_start (ap, f);
for (i = 0; i < arity; i++) {
tmp[i] = Yap_GetFromSlot(va_arg(ap, term_t));
}
va_end (ap);
if (arity == 2 && ff == FunctorDot)
Yap_PutInSlot(d,YAP_MkPairTerm(tmp[0],tmp[1]));
else
Yap_PutInSlot(d,YAP_MkApplTerm((YAP_Functor)ff,arity,tmp));
}
X_API void PL_cons_functor_v(term_t d, functor_t f,term_t a0)
{
int arity;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(d,(Term)ff);
return;
}
arity = ArityOfFunctor(ff);
if (arity == 2 && ff == FunctorDot)
Yap_PutInSlot(d,YAP_MkPairTerm(Yap_GetFromSlot(a0),Yap_GetFromSlot(a0+1)));
else
Yap_PutInSlot(d,YAP_MkApplTerm((YAP_Functor)ff,arity,YAP_AddressFromSlot(a0)));
}
X_API void PL_cons_list(term_t d, term_t h, term_t t)
{
Yap_PutInSlot(d,YAP_MkPairTerm(Yap_GetFromSlot(h),Yap_GetFromSlot(t)));
}
X_API void PL_put_atom(term_t t, atom_t a)
{
Yap_PutInSlot(t,MkAtomTerm(SWIAtomToAtom(a)));
}
X_API void PL_put_atom_chars(term_t t, const char *s)
{
Yap_PutInSlot(t,MkAtomTerm(Yap_LookupAtom((char *)s)));
}
X_API void PL_put_float(term_t t, double fl)
{
Yap_PutInSlot(t,YAP_MkFloatTerm(fl));
}
X_API void PL_put_functor(term_t t, functor_t f)
{
long int arity;
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)ff)) {
Yap_PutInSlot(t,(Term)ff);
} else {
arity = ArityOfFunctor(ff);
if (arity == 2 && ff == FunctorDot)
Yap_PutInSlot(t,YAP_MkNewPairTerm());
else
Yap_PutInSlot(t,YAP_MkNewApplTerm((YAP_Functor)ff,arity));
}
}
X_API void PL_put_integer(term_t t, long n)
{
Yap_PutInSlot(t,YAP_MkIntTerm(n));
}
X_API void PL_put_int64(term_t t, int64_t n)
{
#if USE_GMP
char s[64];
MP_INT rop;
sprintf(s, "%lld", (long long int)n);
mpz_init_set_str (&rop, s, 10);
Yap_PutInSlot(t,YAP_MkBigNumTerm((void *)&rop));
#endif
}
X_API void PL_put_list(term_t t)
{
Yap_PutInSlot(t,YAP_MkNewPairTerm());
}
X_API void PL_put_list_chars(term_t t, const char *s)
{
Yap_PutInSlot(t,YAP_BufferToString((char *)s));
}
X_API void PL_put_nil(term_t t)
{
Yap_PutInSlot(t,TermNil);
}
/* SWI: void PL_put_pointer(term_t -t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API void PL_put_pointer(term_t t, void *ptr)
{
YAP_Term tptr = YAP_MkIntTerm((long int)ptr);
Yap_PutInSlot(t,tptr);
}
X_API void PL_put_string_chars(term_t t, const char *s)
{
Yap_PutInSlot(t,YAP_BufferToString((char *)s));
}
X_API void PL_put_term(term_t d, term_t s)
{
Yap_PutInSlot(d,Yap_GetFromSlot(s));
}
X_API void PL_put_variable(term_t t)
{
Yap_PutInSlot(t,YAP_MkVarTerm());
}
/* end PL_put_* functions =============================*/
/* SWI: int PL_raise_exception(term_t exception)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_raise_exception(term_t exception)
{
YAP_Throw(Yap_GetFromSlot(exception));
return 0;
}
#define ATOM_instantiation_error AtomToSWIAtom(AtomInstantiationError)
#define ATOM_max_files AtomToSWIAtom(AtomMaxFiles)
#define ATOM_no_memory AtomToSWIAtom(AtomNoMemory)
#define ATOM_procedure AtomToSWIAtom(AtomProcedure)
#define ATOM_system_error AtomToSWIAtom(AtomSystemError)
#define ATOM_variable AtomToSWIAtom(AtomVariable)
#define FUNCTOR_error2 FunctorToSWIFunctor(FunctorError)
#define FUNCTOR_context2 FunctorToSWIFunctor(FunctorContext2)
#define FUNCTOR_divide2 FunctorToSWIFunctor(FunctorSlash)
#define FUNCTOR_domain_error2 FunctorToSWIFunctor(FunctorDomainError)
#define FUNCTOR_existence_error2 FunctorToSWIFunctor(FunctorExistenceError)
#define FUNCTOR_evaluation_error1 FunctorToSWIFunctor(FunctorEvaluationError)
#define FUNCTOR_not_implemented2 FunctorToSWIFunctor(FunctorNotImplemented)
#define FUNCTOR_permission_error3 FunctorToSWIFunctor(FunctorPermissionError)
#define FUNCTOR_representation_error1 FunctorToSWIFunctor(FunctorRepresentationError)
#define FUNCTOR_resource_error1 FunctorToSWIFunctor(FunctorResourceError)
#define FUNCTOR_timeout_error2 FunctorToSWIFunctor(FunctorTimeoutError)
#define FUNCTOR_type_error2 FunctorToSWIFunctor(FunctorTypeError)
#define ERR_NO_ERROR 0
#define ERR_INSTANTIATION 1 /* void */
#define ERR_TYPE 2 /* atom_t expected, term_t value */
#define ERR_DOMAIN 3 /* atom_t domain, term_t value */
#define ERR_REPRESENTATION 4 /* atom_t what */
#define ERR_MODIFY_STATIC_PROC 5 /* predicate_t proc */
#define ERR_EVALUATION 6 /* atom_t what */
#define ERR_AR_TYPE 7 /* atom_t expected, Number value */
#define ERR_NOT_EVALUABLE 8 /* functor_t func */
#define ERR_DIV_BY_ZERO 9 /* void */
#define ERR_FAILED 10 /* predicate_t proc */
#define ERR_FILE_OPERATION 11 /* atom_t action, atom_t type, term_t */
#define ERR_PERMISSION 12 /* atom_t type, atom_t op, term_t obj*/
#define ERR_NOT_IMPLEMENTED 13 /* const char *what */
#define ERR_EXISTENCE 14 /* atom_t type, term_t obj */
#define ERR_STREAM_OP 15 /* atom_t action, term_t obj */
#define ERR_RESOURCE 16 /* atom_t resource */
#define ERR_NOMEM 17 /* void */
#define ERR_SYSCALL 18 /* void */
#define ERR_SHELL_FAILED 19 /* term_t command */
#define ERR_SHELL_SIGNALLED 20 /* term_t command, int signal */
#define ERR_AR_UNDEF 21 /* void */
#define ERR_AR_OVERFLOW 22 /* void */
#define ERR_AR_UNDERFLOW 23 /* void */
#define ERR_UNDEFINED_PROC 24 /* Definition def */
#define ERR_SIGNALLED 25 /* int sig, char *name */
#define ERR_CLOSED_STREAM 26 /* IOSTREAM * */
#define ERR_BUSY 27 /* mutexes */
#define ERR_PERMISSION_PROC 28 /* op, type, Definition */
#define ERR_DDE_OP 29 /* op, error */
#define ERR_SYNTAX 30 /* what */
#define ERR_SHARED_OBJECT_OP 31 /* op, error */
#define ERR_TIMEOUT 32 /* op, object */
#define ERR_NOT_IMPLEMENTED_PROC 33 /* name, arity */
#define ERR_FORMAT 34 /* message */
#define ERR_FORMAT_ARG 35 /* seq, term */
#define ERR_OCCURS_CHECK 36 /* Word, Word */
#define ERR_CHARS_TYPE 37 /* char *, term */
#define ERR_MUST_BE_VAR 38 /* int argn, term_t term */
static char *
OsError(void)
{
#ifdef HAVE_STRERROR
#ifdef __WINDOWS__
return NULL;
#else
return strerror(errno);
#endif
#else /*HAVE_STRERROR*/
static char errmsg[64];
#ifdef __unix__
extern int sys_nerr;
#if !EMX
extern char *sys_errlist[];
#endif
extern int errno;
if ( errno < sys_nerr )
return sys_errlist[errno];
#endif
Ssprintf(errmsg, "Unknown Error (%d)", errno);
return errmsg;
#endif /*HAVE_STRERROR*/
}
X_API int PL_error(const char *pred, int arity, const char *msg, int id, ...)
{
term_t formal, swi, predterm, msgterm, except;
va_list args;
formal = PL_new_term_ref();
swi = PL_new_term_ref();
predterm = PL_new_term_ref();
msgterm = PL_new_term_ref();
except = PL_new_term_ref();
if ( msg == ((char *)(-1)) )
{ if ( errno == EPLEXCEPTION )
return FALSE;
msg = OsError();
}
/* This would really require having pl-error.c, but we'll make do so as */
va_start(args, id);
switch(id) {
case ERR_INSTANTIATION:
err_instantiation:
PL_unify_atom(formal, ATOM_instantiation_error);
break;
case ERR_TYPE: /* ERR_INSTANTIATION if var(actual) */
{ atom_t expected = va_arg(args, atom_t);
term_t actual = va_arg(args, term_t);
if ( PL_is_variable(actual) && expected != ATOM_variable )
goto err_instantiation;
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_type_error2,
PL_ATOM, expected,
PL_TERM, actual);
break;
}
case ERR_DOMAIN: /* ERR_INSTANTIATION if var(arg) */
{ atom_t domain = va_arg(args, atom_t);
term_t arg = va_arg(args, term_t);
if ( PL_is_variable(arg) )
goto err_instantiation;
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_domain_error2,
PL_ATOM, domain,
PL_TERM, arg);
break;
}
case ERR_REPRESENTATION:
{ atom_t what = va_arg(args, atom_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_representation_error1,
PL_ATOM, what);
break;
}
case ERR_NOT_IMPLEMENTED_PROC:
{ const char *name = va_arg(args, const char *);
int arity = va_arg(args, int);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_not_implemented2,
PL_ATOM, ATOM_procedure,
PL_FUNCTOR, FUNCTOR_divide2,
PL_CHARS, name,
PL_INT, arity);
break;
}
case ERR_EXISTENCE:
{ atom_t type = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_existence_error2,
PL_ATOM, type,
PL_TERM, obj);
break;
}
case ERR_PERMISSION:
{ atom_t type = va_arg(args, atom_t);
atom_t op = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_permission_error3,
PL_ATOM, type,
PL_ATOM, op,
PL_TERM, obj);
break;
}
case ERR_SYSCALL:
{ const char *op = va_arg(args, const char *);
if ( !msg )
msg = op;
switch(errno)
{ case ENOMEM:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_no_memory);
break;
default:
PL_unify_atom(formal, ATOM_system_error);
break;
}
break;
}
case ERR_TIMEOUT:
{ atom_t op = va_arg(args, atom_t);
term_t obj = va_arg(args, term_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_timeout_error2,
PL_ATOM, op,
PL_TERM, obj);
break;
}
case ERR_FILE_OPERATION:
{ atom_t action = va_arg(args, atom_t);
atom_t type = va_arg(args, atom_t);
term_t file = va_arg(args, term_t);
switch(errno)
{ case EACCES:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_permission_error3,
PL_ATOM, action,
PL_ATOM, type,
PL_TERM, file);
break;
case EMFILE:
case ENFILE:
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_max_files);
break;
#ifdef EPIPE
case EPIPE:
if ( !msg )
msg = "Broken pipe";
/*FALLTHROUGH*/
#endif
default: /* what about the other cases? */
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_existence_error2,
PL_ATOM, type,
PL_TERM, file);
break;
}
break;
}
case ERR_NOMEM:
{ PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_resource_error1,
PL_ATOM, ATOM_no_memory);
break;
}
case ERR_EVALUATION:
{ atom_t what = va_arg(args, atom_t);
PL_unify_term(formal,
PL_FUNCTOR, FUNCTOR_evaluation_error1,
PL_ATOM, what);
break;
}
default:
fprintf(stderr, "unimplemented SWI error %d\n",id);
goto err_instantiation;
}
va_end(args);
if ( pred )
{ PL_unify_term(predterm,
PL_FUNCTOR, FUNCTOR_divide2,
PL_CHARS, pred,
PL_INT, arity);
}
if ( msg )
{
PL_put_atom_chars(msgterm, msg);
}
PL_unify_term(swi,
PL_FUNCTOR, FUNCTOR_context2,
PL_TERM, predterm,
PL_TERM, msgterm);
PL_unify_term(except,
PL_FUNCTOR, FUNCTOR_error2,
PL_TERM, formal,
PL_TERM, swi);
return PL_raise_exception(except);
}
/* begin PL_unify_* functions =============================*/
X_API int PL_unify(term_t t1, term_t t2)
{
return YAP_Unify(Yap_GetFromSlot(t1),Yap_GetFromSlot(t2));
}
/* SWI: int PL_unify_atom(term_t ?t, atom *at)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom(term_t t, atom_t at)
{
YAP_Term cterm = MkAtomTerm(SWIAtomToAtom(at));
return YAP_Unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_chars(term_t t, const char *s)
{
Atom catom = Yap_LookupAtom((char *)s);
Term cterm = MkAtomTerm(catom);
return Yap_unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_atom_chars(term_t ?t, const char *chars)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_atom_nchars(term_t t, size_t len, const char *s)
{
Atom catom;
YAP_Term cterm;
char *buf = (char *)YAP_AllocSpaceFromYap(len+1);
if (!buf)
return FALSE;
strncpy(buf, s, len);
buf[len] = '\0';
catom = Yap_LookupAtom(buf);
free(buf);
cterm = MkAtomTerm(catom);
return YAP_Unify(Yap_GetFromSlot(t),cterm);
}
/* SWI: int PL_unify_float(term_t ?t, double f)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_float(term_t t, double f)
{
YAP_Term fterm = YAP_MkFloatTerm(f);
return YAP_Unify(Yap_GetFromSlot(t),fterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_integer(term_t t, long n)
{
YAP_Term iterm = YAP_MkIntTerm(n);
return YAP_Unify(Yap_GetFromSlot(t),iterm);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_functor(term_t t, functor_t f)
{
YAP_Term tt = Yap_GetFromSlot(t);
Functor ff = SWIFunctorToFunctor(f);
if (YAP_IsVarTerm(tt))
return YAP_Unify(tt, YAP_MkNewApplTerm((YAP_Functor)ff,YAP_ArityOfFunctor((YAP_Functor)f)));
if (YAP_IsPairTerm(tt))
return ff == FunctorDot;
if (!YAP_IsApplTerm(tt))
return FALSE;
return ff == FunctorOfTerm(tt);
}
/* SWI: int PL_unify_integer(term_t ?t, long n)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_int64(term_t t, int64_t n)
{
#if USE_GMP
YAP_Term iterm;
char s[64];
MP_INT rop;
sprintf(s, "%lld", (long long int)n);
mpz_init_set_str (&rop, s, 10);
iterm = YAP_MkBigNumTerm((void *)&rop);
return YAP_Unify(Yap_GetFromSlot(t),iterm);
#else
return FALSE;
#endif
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list(term_t tt, term_t h, term_t tail)
{
Term t = Deref(Yap_GetFromSlot(tt));
if (IsVarTerm(t)) {
Term pairterm = Yap_MkNewPairTerm();
Yap_unify(t, pairterm);
/* avoid calling deref */
t = pairterm;
} else if (!IsPairTerm(t)) {
return FALSE;
}
Yap_PutInSlot(h,HeadOfTerm(t));
Yap_PutInSlot(tail,TailOfTerm(t));
return TRUE;
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_list_chars(term_t t, const char *chars)
{
YAP_Term chterm = YAP_BufferToString((char *)chars);
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_nil(term_t ?l)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_nil(term_t l)
{
YAP_Term nilterm = TermNil;
return YAP_Unify(Yap_GetFromSlot(l), nilterm);
}
/* SWI: int PL_unify_pointer(term_t ?t, void *ptr)
YAP: NO EQUIVALENT */
/* SAM TO DO */
X_API int PL_unify_pointer(term_t t, void *ptr)
{
YAP_Term ptrterm = YAP_MkIntTerm((long int)ptr);
return YAP_Unify(Yap_GetFromSlot(t), ptrterm);
}
/* SWI: int PL_unify_list(term_t ?t, term_t +h, term_t -t)
YAP long int unify(YAP_Term* a, Term* b) */
X_API int PL_unify_string_chars(term_t t, const char *chars)
{
YAP_Term chterm = YAP_BufferToString((char *)chars);
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
*/
X_API int PL_unify_wchars(term_t t, int type, size_t len, const pl_wchar_t *chars)
{
YAP_Term chterm;
if (len == (size_t)-1)
len = wcslen(chars);
switch (type) {
case PL_ATOM:
chterm = MkAtomTerm(Yap_LookupMaybeWideAtom((wchar_t *)chars));
break;
case PL_STRING:
case PL_CODE_LIST:
chterm = YAP_NWideBufferToString(chars, len);
break;
case PL_CHAR_LIST:
chterm = YAP_NWideBufferToAtomList(chars, len);
break;
default:
/* should give error?? */
return FALSE;
}
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
/* SWI: int PL_unify_wchars(term_t ?t, int type, size_t len,, const pl_wchar_t *s)
*/
X_API int PL_unify_wchars_diff(term_t t, term_t tail, int type, size_t len, const pl_wchar_t *chars)
{
YAP_Term chterm;
if (len == (size_t)-1)
len = wcslen(chars);
switch (type) {
case PL_STRING:
case PL_CODE_LIST:
chterm = YAP_NWideBufferToDiffList(chars, Yap_GetFromSlot(tail), len);
break;
case PL_CHAR_LIST:
chterm = YAP_NWideBufferToAtomDiffList(chars, Yap_GetFromSlot(tail), len);
break;
default:
/* should give error?? */
return FALSE;
}
return YAP_Unify(Yap_GetFromSlot(t), chterm);
}
typedef struct {
int type;
union {
functor_t f;
term_t t;
atom_t a;
long l;
int i;
double dbl;
char *s;
struct {
size_t n;
char *s;
} ns;
struct {
size_t n;
wchar_t *w;
} nw;
void *p;
wchar_t *w;
} arg;
} arg_types;
static Atom
LookupMaxAtom(size_t n, char *s)
{
Atom catom;
char *buf = (char *)Yap_AllocCodeSpace(n+1);
if (!buf)
return FALSE;
strncpy(buf, s, n);
buf[n] = '\0';
catom = Yap_LookupAtom(buf);
Yap_FreeCodeSpace(buf);
return catom;
}
static Atom
LookupMaxWideAtom(size_t n, wchar_t *s)
{
Atom catom;
wchar_t *buf = (wchar_t *)Yap_AllocCodeSpace((n+1)*sizeof(wchar_t));
if (!buf)
return FALSE;
wcsncpy(buf, s, n);
buf[n] = '\0';
catom = Yap_LookupMaybeWideAtom(buf);
Yap_FreeAtomSpace((ADDR)buf);
return catom;
}
static YAP_Term
MkBoolTerm(int b)
{
if (b)
return MkAtomTerm(AtomTrue);
else
return MkAtomTerm(AtomFalse);
}
#define MAX_DEPTH 64
typedef struct {
int nels;
CELL *ptr;
} stack_el;
/* SWI: int PL_unify_term(term_t ?t1, term_t ?t2)
YAP long int YAP_Unify(YAP_Term* a, Term* b) */
X_API int PL_unify_term(term_t l,...)
{
va_list ap;
int type;
int nels = 1;
int depth = 1;
Term a[1], *pt;
stack_el stack[MAX_DEPTH];
va_start (ap, l);
pt = a;
while (depth > 0) {
while (nels > 0) {
type = va_arg(ap, int);
nels--;
switch(type) {
case PL_VARIABLE:
*pt++ = MkVarTerm();
break;
case PL_BOOL:
*pt++ = MkBoolTerm(va_arg(ap, int));
break;
case PL_ATOM:
*pt++ = MkAtomTerm(SWIAtomToAtom(va_arg(ap, atom_t)));
break;
case PL_INTEGER:
*pt++ = MkIntegerTerm(va_arg(ap, long));
break;
case PL_SHORT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_INT:
*pt++ = MkIntegerTerm(va_arg(ap, int));
break;
case PL_FLOAT:
*pt++ = MkFloatTerm(va_arg(ap, double));
break;
case PL_STRING:
*pt++ = YAP_BufferToString(va_arg(ap, char *));
break;
case PL_CHARS:
*pt++ = MkAtomTerm(Yap_LookupAtom(va_arg(ap, char *)));
break;
case PL_NCHARS:
{
size_t sz = va_arg(ap, size_t);
*pt++ = MkAtomTerm(LookupMaxAtom(sz,va_arg(ap, char *)));
}
break;
case PL_NWCHARS:
{
size_t sz = va_arg(ap, size_t);
*pt++ = MkAtomTerm(LookupMaxWideAtom(sz,va_arg(ap, wchar_t *)));
}
break;
case PL_TERM:
{
Term t = Yap_GetFromSlot(va_arg(ap, size_t));
if (IsVarTerm(t) && VarOfTerm(t) >= ASP && VarOfTerm(t) < LCL0) {
Yap_unify(*pt++, t);
}
else {
*pt++ = t;
}
}
break;
case PL_POINTER:
*pt++ = MkIntegerTerm((Int)va_arg(ap, void *));
break;
case PL_INT64:
#if SIZE_OF_LONG_INT==8
*pt++ = MkIntegerTerm((Int)va_arg(ap, long int));
#elif USE_GMP
{
char s[64];
MP_INT rop;
sprintf(s, "%lld", va_arg(ap, long long int));
mpz_init_set_str (&rop, s, 10);
*pt++ = YAP_MkBigNumTerm((void *)&rop);
}
#else
fprintf(stderr, "PL_unify_term: PL_int64 not supported\n");
exit(1);
#endif
break;
case PL_FUNCTOR:
{
functor_t f = va_arg(ap, functor_t);
Functor ff = SWIFunctorToFunctor(f);
UInt arity = ArityOfFunctor(ff);
if (!arity) {
*pt++ = MkAtomTerm((Atom)f);
} else {
Term t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"ERROR: very deep term in PL_unify_term, change MAX_DEPTH from %d\n", MAX_DEPTH);
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_FUNCTOR_CHARS:
{
char *fname = va_arg(ap, char *);
size_t arity = va_arg(ap, size_t);
if (!arity) {
*pt++ = MkAtomTerm(Yap_LookupAtom(fname));
} else {
Functor ff = Yap_MkFunctor(Yap_LookupAtom(fname),arity);
Term t = Yap_MkNewApplTerm(ff, arity);
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth-1].ptr = pt+1;
depth++;
}
*pt = t;
if (ff == FunctorDot)
pt = RepPair(t);
else
pt = RepAppl(t)+1;
nels = arity;
}
}
break;
case PL_LIST:
{
Term t = Yap_MkNewPairTerm();
if (nels) {
if (depth == MAX_DEPTH) {
fprintf(stderr,"very deep term in PL_unify_term\n");
return FALSE;
}
stack[depth-1].nels = nels;
stack[depth].ptr = pt+1;
depth++;
}
*pt = t;
pt = RepPair(t);
nels = 2;
}
break;
default:
fprintf(stderr, "PL_unify_term: %d not supported\n", type);
exit(1);
}
}
depth--;
if (depth) {
pt = stack[depth-1].ptr;
nels = stack[depth-1].nels;
}
}
va_end (ap);
return YAP_Unify(Yap_GetFromSlot(l),a[0]);
}
/* end PL_unify_* functions =============================*/
/* SWI: void PL_register_atom(atom_t atom) */
/* SAM TO DO */
X_API void PL_register_atom(atom_t atom)
{
Yap_AtomGetHold(SWIAtomToAtom(atom));
}
/* SWI: void PL_unregister_atom(atom_t atom) */
/* SAM TO DO */
X_API void PL_unregister_atom(atom_t atom)
{
Yap_AtomReleaseHold(SWIAtomToAtom(atom));
}
X_API int PL_get_string_chars(term_t t, char **s, int *len)
{
/* there are no such objects in Prolog */
return FALSE;
}
X_API int PL_term_type(term_t t)
{
/* YAP_ does not support strings as different objects */
YAP_Term v = Yap_GetFromSlot(t);
if (YAP_IsVarTerm(v)) {
return PL_VARIABLE;
} else if (IsAtomTerm(v)) {
return PL_ATOM;
} else if (YAP_IsIntTerm(v)) {
return PL_INTEGER;
} else if (YAP_IsFloatTerm(v)) {
return PL_FLOAT;
} else {
return PL_TERM;
}
}
X_API int PL_is_atom(term_t t)
{
return IsAtomTerm(Yap_GetFromSlot(t));
}
X_API int PL_is_atomic(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return !YAP_IsVarTerm(t) || !YAP_IsApplTerm(t) || !YAP_IsPairTerm(t);
}
X_API int PL_is_compound(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return (YAP_IsApplTerm(t) || YAP_IsPairTerm(t));
}
X_API int PL_is_functor(term_t ts, functor_t f)
{
YAP_Term t = Yap_GetFromSlot(ts);
Functor ff = SWIFunctorToFunctor(f);
if (YAP_IsApplTerm(t)) {
return FunctorOfTerm(t) == (Functor)ff;
} else if (YAP_IsPairTerm(t)) {
return FunctorOfTerm(t) == FunctorDot;
} else
return 0;
}
X_API int PL_is_float(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsFloatTerm(t);
}
X_API int PL_is_integer(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsIntTerm(t);
}
X_API int PL_is_list(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return Yap_IsListTerm(t);
}
X_API int PL_is_number(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsIntTerm(t) || YAP_IsFloatTerm(t);
}
X_API int PL_is_string(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
while (YAP_IsPairTerm(t)) {
YAP_Term hd = YAP_HeadOfTerm(t);
long int i;
if (!YAP_IsIntTerm(hd))
return 0;
i = YAP_IntOfTerm(hd);
if (i <= 0 || i >= 255)
return 0;
if (!YAP_IsIntTerm(hd))
return 0;
t = YAP_TailOfTerm(t);
}
if (t != TermNil)
return 0;
return FALSE;
}
X_API int PL_is_variable(term_t ts)
{
YAP_Term t = Yap_GetFromSlot(ts);
return YAP_IsVarTerm(t);
}
X_API int PL_compare(term_t ts1, term_t ts2)
{
YAP_Term t1 = Yap_GetFromSlot(ts1);
YAP_Term t2 = Yap_GetFromSlot(ts2);
return YAP_CompareTerms(t1, t2);
}
X_API record_t
PL_record(term_t ts)
{
Term t = Yap_GetFromSlot(ts);
return (record_t)Yap_StoreTermInDB(t, 0);
}
X_API void
PL_recorded(record_t db, term_t ts)
{
Term t = Yap_FetchTermFromDB((DBTerm *)db);
Yap_PutInSlot(ts,t);
}
X_API void
PL_erase(record_t db)
{
Yap_ReleaseTermFromDB((DBTerm *)db);
}
X_API void PL_halt(int e)
{
YAP_Halt(e);
}
X_API int PL_action(int action,...)
{
va_list ap;
va_start (ap, action);
switch (action) {
case PL_ACTION_TRACE:
fprintf(stderr, "PL_ACTION_TRACE not supported\n");
break;
case PL_ACTION_DEBUG:
fprintf(stderr, "PL_ACTION_DEBUG not supported\n");
break;
case PL_ACTION_BACKTRACE:
fprintf(stderr, "PL_ACTION_BACKTRACE not supported\n");
break;
case PL_ACTION_HALT:
{
int halt_arg = va_arg(ap, int);
YAP_Halt(halt_arg);
}
break;
case PL_ACTION_ABORT:
{
YAP_Throw(MkAtomTerm(Yap_LookupAtom("abort")));
}
break;
case PL_ACTION_BREAK:
fprintf(stderr, "PL_ACTION_BREAK not supported\n");
break;
case PL_ACTION_GUIAPP:
fprintf(stderr, "PL_ACTION_GUIAPP not supported\n");
break;
case PL_ACTION_WRITE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_FLUSH:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
case PL_ACTION_ATTACH_CONSOLE:
fprintf(stderr, "PL_ACTION_WRITE not supported\n");
break;
}
va_end (ap);
return 0;
}
X_API fid_t
PL_open_foreign_frame(void)
{
return 0;
}
X_API void
PL_close_foreign_frame(fid_t f)
{
}
X_API void
PL_rewind_foreign_frame(fid_t f)
{
}
X_API void
PL_discard_foreign_frame(fid_t f)
{
if (f)
fprintf(stderr,"WARNING: PL_discard_foreign_frame not fully implemented!!\n");
/* Missing: undo Trail!! */
}
X_API term_t
PL_exception(qid_t q)
{
YAP_Term t;
if (YAP_GoalHasException(&t)) {
term_t to = Yap_NewSlots(1);
Yap_PutInSlot(to,t);
return to;
} else {
return 0L;
}
}
X_API int
PL_initialise(int myargc, char **myargv)
{
YAP_init_args init_args;
init_args.Argv = myargv;
init_args.Argc = myargc;
init_args.SavedState = "startup.yss";
init_args.HeapSize = 0;
init_args.StackSize = 0;
init_args.TrailSize = 0;
init_args.YapLibDir = NULL;
init_args.YapPrologBootFile = NULL;
init_args.HaltAfterConsult = FALSE;
init_args.FastBoot = FALSE;
init_args.NumberWorkers = 1;
init_args.SchedulerLoop = 10;
init_args.DelayedReleaseLoad = 3;
return YAP_Init(&init_args);
}
X_API int
PL_is_initialised(int *argc, char ***argv)
{
return TRUE;
}
X_API module_t
PL_context(void)
{
return (module_t)YAP_CurrentModule();
}
X_API int
PL_strip_module(term_t raw, module_t *m, term_t plain)
{
YAP_Term t = YAP_StripModule(Yap_GetFromSlot(raw),(YAP_Term *)m);
if (!t)
return FALSE;
Yap_PutInSlot(plain, t);
return TRUE;
}
X_API atom_t PL_module_name(module_t m)
{
Term t;
Atom at = AtomOfTerm((Term)m);
WRITE_LOCK(RepAtom(at)->ARWLock);
t = Yap_Module(MkAtomTerm(at));
WRITE_UNLOCK(RepAtom(at)->ARWLock);
return AtomToSWIAtom(at);
}
X_API predicate_t PL_pred(functor_t f, module_t m)
{
Functor ff = SWIFunctorToFunctor(f);
if (IsAtomTerm((Term)f)) {
return YAP_Predicate(YAP_AtomOfTerm((Term)f),0,(YAP_Module)m);
} else {
return YAP_Predicate((YAP_Atom)NameOfFunctor(ff),ArityOfFunctor(ff),(YAP_Module)m);
}
}
X_API predicate_t PL_predicate(const char *name, int arity, const char *m)
{
int mod;
if (m == NULL)
mod = YAP_CurrentModule();
else
mod = MkAtomTerm(Yap_LookupAtom((char *)m));
return YAP_Predicate(YAP_LookupAtom((char *)name),
arity,
mod);
}
X_API void PL_predicate_info(predicate_t p,atom_t *name, int *arity, module_t *m)
{
PredEntry *pd = (PredEntry *)p;
Atom aname;
if (pd->ArityOfPE) {
*arity = pd->ArityOfPE;
aname = NameOfFunctor(pd->FunctorOfPred);
} else {
*arity = 0;
aname = (Atom)(pd->FunctorOfPred);
}
if (pd->ModuleOfPred)
*m = (module_t)pd->ModuleOfPred;
else
*m = (module_t)TermProlog;
*name = AtomToSWIAtom(aname);
}
typedef struct open_query_struct {
int open;
int state;
YAP_Term g;
} open_query;
open_query execution;
X_API qid_t PL_open_query(module_t ctx, int flags, predicate_t p, term_t t0)
{
Atom yname;
unsigned long int arity;
Term m;
Term t[2];
/* ignore flags and module for now */
if (execution.open != 0) {
YAP_Error(0, 0L, "only one query at a time allowed\n");
}
execution.open=1;
execution.state=0;
PredicateInfo((PredEntry *)p, &yname, &arity, &m);
t[0] = YAP_ModuleName(m);
if (arity == 0) {
t[1] = MkAtomTerm(yname);
} else {
Functor f = Yap_MkFunctor(yname, arity);
t[1] = Yap_MkApplTerm(f,arity,Yap_AddressFromSlot(t0));
}
execution.g = Yap_MkApplTerm(Yap_MkFunctor(Yap_LookupAtom(":"),2),2,t);
return &execution;
}
X_API int PL_next_solution(qid_t qi)
{
int result;
if (qi->open != 1) return 0;
if (qi->state == 0) {
result = YAP_RunGoal(qi->g);
} else {
result = YAP_RestartGoal();
}
qi->state = 1;
if (result == 0) {
qi->open = 0;
}
return result;
}
X_API void PL_cut_query(qid_t qi)
{
YAP_PruneGoal();
qi->open = 0;
}
X_API void PL_close_query(qid_t qi)
{
/* need to implement backtracking here */
if (qi->open != 1)
return;
YAP_PruneGoal();
YAP_RestartGoal();
qi->open = 0;
}
X_API int PL_call_predicate(module_t ctx, int flags, predicate_t p, term_t t0)
{
qid_t qi = PL_open_query(ctx, flags, p, t0);
int ret = PL_next_solution(qi);
PL_cut_query(qi);
return ret;
}
X_API int PL_call(term_t tp, module_t m)
{
YAP_Term t[2], g;
t[0] = YAP_ModuleName((YAP_Module)m);
t[1] = Yap_GetFromSlot(tp);
g = YAP_MkApplTerm(YAP_MkFunctor(YAP_LookupAtom(":"),2),2,t);
return YAP_RunGoal(g);
}
X_API void PL_register_foreign_in_module(const char *module, const char *name, int arity, foreign_t (*function)(void), int flags)
{
Term tmod;
Int nflags = 0;
if (flags & (PL_FA_NOTRACE|PL_FA_CREF)) {
fprintf(stderr,"PL_register_foreign_in_module called with non-implemented flag %x when creating predicate %s:%s/%d\n", flags, module, name, arity);
}
if (module == NULL) {
tmod = CurrentModule;
} else {
tmod = MkAtomTerm(Yap_LookupAtom((char *)module));
}
if (flags & PL_FA_VARARGS) {
nflags = SWIEnvPredFlag;
}
if (flags & PL_FA_TRANSPARENT) {
nflags |= ModuleTransparentPredFlag;
} else {
nflags |= CArgsPredFlag;
}
if (flags & PL_FA_NONDETERMINISTIC) {
Yap_InitCPredBack((char *)name, arity, sizeof(struct foreign_context)/sizeof(CELL), (CPredicate)function, (CPredicate)function, UserCPredFlag|nflags);
} else {
UserCPredicate((char *)name,(CPredicate)function,arity,tmod,nflags);
}
}
X_API void PL_register_extensions(PL_extension *ptr)
{
PL_load_extensions(ptr);
}
X_API void PL_load_extensions(PL_extension *ptr)
{
/* ignore flags for now */
while(ptr->predicate_name != NULL) {
PL_register_foreign_in_module(NULL, ptr->predicate_name, ptr->arity, ptr->function, ptr->flags);
ptr++;
}
}
X_API int PL_handle_signals(void)
{
if (EX) {
return -1;
}
fprintf(stderr,"PL_handle_signals not implemented\n");
return 0;
}
X_API int PL_is_inf(term_t st)
{
Term t = Deref(Yap_GetFromSlot(st));
Float fl;
if (IsVarTerm(t)) return FALSE;
if (!IsFloatTerm(t)) return FALSE;
fl = FloatOfTerm(t);
return isinf(fl);
}
X_API int PL_thread_self(void)
{
return YAP_ThreadSelf();
}
X_API int PL_thread_attach_engine(const PL_thread_attr_t *attr)
{
int wid = YAP_ThreadSelf();
if (wid < 0) {
/* we do not have an engine */
if (attr) {
YAP_thread_attr yapt;
int wid;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = (YAP_Term)attr->alias;
yapt.cancel = attr->cancel;
wid = YAP_ThreadCreateEngine(&yapt);
} else {
wid = YAP_ThreadCreateEngine(NULL);
}
if (wid < 0)
return -1;
if (YAP_ThreadAttachEngine(wid)) {
return wid;
}
return -1;
} else {
/* attach myself again */
YAP_ThreadAttachEngine(wid);
return wid;
}
}
X_API int PL_thread_destroy_engine(void)
{
int wid = YAP_ThreadSelf();
if (wid < 0) {
/* we do not have an engine */
return FALSE;
}
YAP_ThreadDetachEngine(wid);
return YAP_ThreadDestroyEngine(wid);
}
X_API int
PL_thread_at_exit(void (*function)(void *), void *closure, int global)
{
/* don't do nothing for now */
fprintf(stderr,"%% YAP ERROR: PL_thread_at_exit not implemented yet\n");
return TRUE;
}
X_API PL_engine_t
PL_create_engine(const PL_thread_attr_t *attr)
{
if (attr) {
YAP_thread_attr yapt;
yapt.ssize = attr->local_size;
yapt.tsize = attr->global_size;
yapt.alias = (YAP_Term)attr->alias;
yapt.cancel = attr->cancel;
return (PL_engine_t)YAP_ThreadCreateEngine(&yapt);
} else {
return (PL_engine_t)YAP_ThreadCreateEngine(NULL);
}
}
X_API int
PL_destroy_engine(PL_engine_t e)
{
return YAP_ThreadDestroyEngine((YAP_Int)e);
}
X_API int
PL_set_engine(PL_engine_t engine, PL_engine_t *old)
{
long int cwid = YAP_ThreadSelf();
if (*old) *old = (PL_engine_t)cwid;
if (engine == PL_ENGINE_CURRENT)
return PL_ENGINE_SET;
if (engine < 0) /* should really check if engine does not exist */
return PL_ENGINE_INVAL;
if (!(YAP_ThreadAttachEngine((long int)engine))) {
return PL_ENGINE_INUSE;
}
return PL_ENGINE_SET;
}
X_API void *
PL_malloc(int sz)
{
return YAP_AllocSpaceFromYap(sz);
}
X_API void
PL_free(void *obj)
{
return YAP_FreeSpaceFromYap(obj);
}
X_API int
PL_eval_expression_to_int_64_ex(term_t t, int64_t *val)
{
Term res = Yap_Eval(Yap_GetFromSlot(t));
if (!res) {
return FALSE;
}
if (IsIntegerTerm(res)) {
*val = IntegerOfTerm(res);
return TRUE;
#if SIZEOF_LONG_INT==4 && USE_GMP
} else if (YAP_IsBigNumTerm(res)) {
MP_INT g;
char s[64];
YAP_BigNumOfTerm(t, (void *)&g);
if (mpz_sizeinbase(&g,2) > 64) {
return PL_error(NULL,0,NULL, ERR_EVALUATION, AtomToSWIAtom(Yap_LookupAtom("int_overflow")));
}
mpz_get_str (s, 10, &g);
sscanf(s, "%lld", (long long int *)val);
return 1;
#endif
}
PL_error(NULL,0,NULL, ERR_TYPE, AtomToSWIAtom(Yap_LookupAtom("integer_expression")));
return FALSE;
}
static int
SWI_ctime(void)
{
#if HAVE_CTIME
time_t tim;
#endif
YAP_Term t1 = YAP_ARG1;
if (YAP_IsVarTerm(t1)) {
YAP_Error(0,t1,"bad argumento to ctime");
return FALSE;
}
#if HAVE_CTIME
tim = (time_t)YAP_IntOfTerm(t1);
return YAP_Unify(YAP_BufferToString(ctime(&tim)), YAP_ARG2);
#else
YAP_Error(0,0L,"convert_time requires ctime");
return FALSE;
#endif
}
void Yap_swi_install(void);
void
Yap_swi_install(void)
{
YAP_UserCPredicate("ctime", SWI_ctime, 2);
}
#ifdef _WIN32
#include <windows.h>
int WINAPI PROTO(win_yap2swi, (HANDLE, DWORD, LPVOID));
int WINAPI win_yap2swi(HANDLE hinst, DWORD reason, LPVOID reserved)
{
switch (reason)
{
case DLL_PROCESS_ATTACH:
break;
case DLL_PROCESS_DETACH:
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
}
return 1;
}
#endif