139 lines
2.7 KiB
Prolog
139 lines
2.7 KiB
Prolog
|
|
:- style_check(all).
|
|
|
|
:- use_module(library(matrix)).
|
|
:- use_module(library(maplist)).
|
|
|
|
t1 :-
|
|
X <== matrix([1,2,3,4,5,6],[dim=[3,2]]),
|
|
writeln(X).
|
|
|
|
t2 :-
|
|
length(L, 10),
|
|
X <== matrix(L, [dim=[2,5]]),
|
|
writeln(X).
|
|
|
|
t3 :-
|
|
numbers(1, 100, L),
|
|
X <== matrix(L, [dim=[10,10]]),
|
|
Y <== X[1..2+3,_],
|
|
writeln(Y).
|
|
|
|
t4 :-
|
|
numbers(1, 100, L),
|
|
X <== matrix(L, [dim=[10,10]]),
|
|
X1 <== matrix(X[1..2+3,_], [dim=[2,10]]),
|
|
Y <== [size=size(X1),max=max(X1),min=min(X1)],
|
|
writeln(Y).
|
|
|
|
numbers(I0, I1, Vals) :-
|
|
( I0 =< I1 -> Vals = [I0|MVals], I01 is I0+1, numbers(I01, I1, MVals) ;
|
|
Vals = [] ).
|
|
|
|
t5 :-
|
|
numbers(1, 100, L),
|
|
X <== matrix(L, [dim=[10,10]]),
|
|
writeln('diagonal:'),
|
|
for([I in 0..9, J in I..I], Y^(Y <== X[I,J], writeln(Y) ) ).
|
|
t6 :-
|
|
Len = 10,
|
|
LenSq is Len*Len,
|
|
Len1 is Len-1,
|
|
numbers(1, LenSq, L),
|
|
X <== matrix(L, [dim=[Len,Len]]),
|
|
Y <== matrix(L, [dim=[Len,Len]]),
|
|
Z <== matrix(L, [dim=[Len,Len]]),
|
|
writeln('product:'),
|
|
for([I in 0..Len1, J in 0..Len1], step(X,Y,Z,I,J) ),
|
|
O <== list(Z),
|
|
writeln(O).
|
|
|
|
% core step of matrix multiplication: row I per column J
|
|
step(X,Y,Z,I,J) :-
|
|
Xs <== X[I,_], % row I
|
|
Ys <== Y[_,J], % col J
|
|
foldl(addprod, Xs, Ys, 0, P), % scalar product, fold accumulates the result in two last arguments
|
|
Z[I,J] <== P.
|
|
|
|
addprod(X, Y, S0, S) :-
|
|
S is S0+X*Y.
|
|
|
|
t7 :-
|
|
t7(10).
|
|
|
|
t7(Len) :-
|
|
LenSq is Len*Len,
|
|
Len1 is Len-1,
|
|
numbers(1, LenSq, L),
|
|
X <== matrix(L, [dim=[Len,Len]]),
|
|
Y <== matrix(L, [dim=[Len,Len]]),
|
|
Z <== matrix(L, [dim=[Len,Len]]),
|
|
writeln('product:'),
|
|
for([I in 0..Len1, J in 0..Len1], step(X,Y,Z,I,J) , 0, O),
|
|
writeln(O).
|
|
|
|
% core step of matrix multiplication: row I per column J
|
|
step(X,Y,Z,I,J,S0,SF) :-
|
|
Xs <== X[I,_], % row I
|
|
Ys <== Y[_,J], % col J
|
|
foldl(addprod, Xs, Ys, 0, P), % scalar product, fold accumulates the result
|
|
SF is S0+P, % total sum (checksum)
|
|
Z[I,J] <== P.
|
|
|
|
|
|
t8 :-
|
|
Len is 2*3*4*5,
|
|
L <== 1..Len,
|
|
X <== matrix(L, [dim=[5,4,3,2]]),
|
|
writeln('list:'),
|
|
OL <== list( X ),
|
|
LL <== lists( X ),
|
|
writeln(OL),
|
|
writeln(LL).
|
|
|
|
|
|
t9 :-
|
|
N1 = 1,
|
|
X = array[0..N1,0..N1] of [1,2,3,4],
|
|
Z = array[0..N1,0..N1] of _,
|
|
for([I in 0..N1, J in I..N1], Z[I,J] <== X[I,J] - X[J,I]),
|
|
O <== list(Z),
|
|
writeln(O).
|
|
|
|
t10 :-
|
|
N1 = 1,
|
|
X = array[0..N1,0..N1] of 1:4,
|
|
O <== list(X-2),
|
|
writeln(O),
|
|
O1 <== list(X)+2,
|
|
writeln(O1),
|
|
O2 <== list(X-X),
|
|
writeln(O2).
|
|
|
|
t11 :-
|
|
N = 3,
|
|
X = array[1..N,1..N] of 1:9,
|
|
O <== X[1,1],
|
|
writeln(O),
|
|
O1 <== X[2,_],
|
|
writeln(O1),
|
|
O2 <== X[_,2],
|
|
writeln(O2).
|
|
|
|
t12 :-
|
|
N = 8,
|
|
N2 is N*N,
|
|
X = array[N,N] of 1:N2,
|
|
N1 is N-1,
|
|
for([I in 0..N1, J in 0..N1], plus(X[I,J]), 0, AccF),
|
|
writeln(sum=AccF).
|
|
|
|
t13 :-
|
|
N = 2,
|
|
N2 is N*N,
|
|
X = array[1..N,1..N] of 1:N2,
|
|
Y = array[1..N,1..N] of _,
|
|
Y[1,_] <== X[_,1],
|
|
L <== list(Y),
|
|
writeln(out=L).
|
|
|