783ae4b9a0
improve redblack trees and use it to reimplement association lists and to have better implementation of several graph algorithms. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@1591 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
331 lines
8.9 KiB
Prolog
331 lines
8.9 KiB
Prolog
% File : dgraphs.yap
|
|
% Author : Vitor Santos Costa
|
|
% Updated: 2006
|
|
% Purpose: Directed Graph Processing Utilities.
|
|
|
|
:- module( dgraphs,
|
|
[
|
|
dgraph_new/1,
|
|
dgraph_add_edge/4,
|
|
dgraph_add_edges/3,
|
|
dgraph_add_vertex/3,
|
|
dgraph_add_vertices/3,
|
|
dgraph_del_edge/4,
|
|
dgraph_del_edges/3,
|
|
dgraph_del_vertex/3,
|
|
dgraph_del_vertices/3,
|
|
dgraph_edges/2,
|
|
dgraph_vertices/2,
|
|
dgraph_neighbors/2,
|
|
dgraph_neighbours/2,
|
|
dgraph_complement/2,
|
|
dgraph_transpose/2,
|
|
dgraph_compose/3,
|
|
dgraph_transitive_closure/2,
|
|
dgraph_symmetric_closure/2,
|
|
dgraph_top_sort/2]).
|
|
|
|
:- use_module(library(rbtrees),
|
|
[rb_new/1,
|
|
rb_empty/1,
|
|
rb_lookup/3,
|
|
rb_apply/4,
|
|
rb_insert/4,
|
|
rb_visit/2,
|
|
rb_keys/2,
|
|
rb_delete/3,
|
|
rb_map/3,
|
|
rb_clone/3,
|
|
ord_list_to_rbtree/2]).
|
|
|
|
:- use_module(library(ordsets),
|
|
[ord_insert/3,
|
|
ord_union/3,
|
|
ord_subtract/3,
|
|
ord_del_element/3,
|
|
ord_member/2]).
|
|
|
|
dgraph_new(Vertices) :-
|
|
rb_new(Vertices).
|
|
|
|
dgraph_add_edge(V1,V2,Vs0,Vs2) :-
|
|
dgraph_new_edge(V1,V2,Vs0,Vs1),
|
|
dgraph_add_vertex(V2,Vs1,Vs2).
|
|
|
|
dgraph_add_edges(Edges, V0, VF) :-
|
|
rb_empty(V0), !,
|
|
sort(Edges,SortedEdges),
|
|
all_vertices_in_edges(SortedEdges,Vertices),
|
|
sort(Vertices,SortedVertices),
|
|
edges2graphl(SortedVertices, SortedEdges, GraphL),
|
|
ord_list_to_rbtree(GraphL, VF).
|
|
dgraph_add_edges(Edges) -->
|
|
{
|
|
sort(Edges,SortedEdges),
|
|
all_vertices_in_edges(SortedEdges,Vertices),
|
|
sort(Vertices,SortedVertices)
|
|
},
|
|
dgraph_add_egdes(SortedVertices,SortedEdges).
|
|
|
|
all_vertices_in_edges([],[]).
|
|
all_vertices_in_edges([V1-V2|Edges],[V1,V2|Vertices]) :-
|
|
all_vertices_in_edges(Edges,Vertices).
|
|
|
|
edges2graphl([], [], []).
|
|
edges2graphl([V|Vertices], [V-V1|SortedEdges], [V-[V1|Children]|GraphL]) :- !,
|
|
get_extra_children(SortedEdges,V,Children,RemEdges),
|
|
edges2graphl(Vertices, RemEdges, GraphL).
|
|
edges2graphl([V|Vertices], SortedEdges, [V-[]|GraphL]) :-
|
|
edges2graphl(Vertices, SortedEdges, GraphL).
|
|
|
|
|
|
dgraph_add_egdes([],[]) --> [].
|
|
dgraph_add_egdes([V|Vs],[V-V1|Es]) --> !,
|
|
{ get_extra_children(Es,V,Children,REs) },
|
|
dgraph_update_vertex(V,[V1|Children]),
|
|
dgraph_add_egdes(Vs,REs).
|
|
dgraph_add_egdes([V|Vs],Es) --> !,
|
|
dgraph_update_vertex(V,[]),
|
|
dgraph_add_egdes(Vs,Es).
|
|
|
|
get_extra_children([V-C|Es],V,[C|Children],REs) :- !,
|
|
get_extra_children(Es,V,Children,REs).
|
|
get_extra_children(Es,_,[],Es).
|
|
|
|
dgraph_update_vertex(V,Children, Vs0, Vs) :-
|
|
rb_apply(Vs0, V, add_edges(Children), Vs), !.
|
|
dgraph_update_vertex(V,Children, Vs0, Vs) :-
|
|
rb_insert(Vs0,V,Children,Vs).
|
|
|
|
add_edges(E0,E1,E) :-
|
|
ord_union(E0,E1,E).
|
|
|
|
dgraph_new_edge(V1,V2,Vs0,Vs) :-
|
|
rb_apply(Vs0, V1, insert_edge(V2), Vs), !.
|
|
dgraph_new_edge(V1,V2,Vs0,Vs) :-
|
|
rb_insert(Vs0,V1,[V2],Vs).
|
|
|
|
insert_edge(V2, Children0, Children) :-
|
|
ord_insert(Children0,V2,Children).
|
|
|
|
dgraph_add_vertices([]) --> [].
|
|
dgraph_add_vertices([V|Vs]) -->
|
|
dgraph_add_vertex(V),
|
|
dgraph_add_vertices(Vs).
|
|
|
|
|
|
dgraph_add_vertex(V,Vs0,Vs0) :-
|
|
rb_lookup(V,_,Vs0), !.
|
|
dgraph_add_vertex(V, Vs0, Vs) :-
|
|
rb_insert(Vs0, V, [], Vs).
|
|
|
|
dgraph_edges(Vs,Edges) :-
|
|
rb_visit(Vs,L0),
|
|
cvt2edges(L0,Edges).
|
|
|
|
dgraph_vertices(Vs,Vertices) :-
|
|
rb_keys(Vs,Vertices).
|
|
|
|
cvt2edges([],[]).
|
|
cvt2edges([V-Children|L0],Edges) :-
|
|
children2edges(Children,V,Edges,Edges0),
|
|
cvt2edges(L0,Edges0).
|
|
|
|
children2edges([],_,Edges,Edges).
|
|
children2edges([Child|L0],V,[V-Child|EdgesF],Edges0) :-
|
|
children2edges(L0,V,EdgesF,Edges0).
|
|
|
|
dgraph_neighbours(V,Vertices,Children) :-
|
|
rb_lookup(V,Children,Vertices).
|
|
dgraph_neighbors(V,Vertices,Children) :-
|
|
rb_lookup(V,Children,Vertices).
|
|
|
|
add_vertices(Graph, [], Graph).
|
|
add_vertices(Graph, [V|Vertices], NewGraph) :-
|
|
rb_insert(Graph, V, [], IntGraph),
|
|
add_vertices(IntGraph, Vertices, NewGraph).
|
|
|
|
|
|
dgraph_complement(Vs0,VsF) :-
|
|
dgraph_vertices(Vs0,Vertices),
|
|
rb_map(Vs0,complement(Vertices),VsF).
|
|
|
|
complement(Vs,Children,NewChildren) :-
|
|
ord_subtract(Vs,Children,NewChildren).
|
|
|
|
dgraph_del_edge(V1,V2,Vs0,Vs1) :-
|
|
rb_apply(Vs0, V1, delete_edge(V2), Vs1).
|
|
|
|
dgraph_del_edges(Edges) -->
|
|
{
|
|
sort(Edges,SortedEdges)
|
|
},
|
|
continue_del_edges(SortedEdges).
|
|
|
|
continue_del_edges([]) --> [].
|
|
continue_del_edges([V-V1|Es]) --> !,
|
|
{ get_extra_children(Es,V,Children,REs) },
|
|
contract_vertex(V,[V1|Children]),
|
|
continue_del_edges(REs).
|
|
|
|
contract_vertex(V,Children, Vs0, Vs) :-
|
|
rb_apply(Vs0, V, del_edges(Children), Vs).
|
|
|
|
del_edges(ToRemove,E0,E) :-
|
|
ord_subtract(E0,ToRemove,E).
|
|
|
|
dgraph_del_vertex(V,Vs0,Vsf) :-
|
|
rb_delete(Vs0, V, Vs1),
|
|
rb_map(Vs1, delete_edge(V), Vsf).
|
|
|
|
delete_edge(V, Edges0, Edges) :-
|
|
ord_del_element(Edges0, V, Edges).
|
|
|
|
dgraph_del_vertices(Vs) -->
|
|
{ sort(Vs,SortedVs) },
|
|
delete_all(SortedVs),
|
|
delete_remaining_edges(SortedVs).
|
|
|
|
% it would be nice to be able to delete a set of elements from an RB tree
|
|
% but I don't how to do it yet.
|
|
delete_all([]) --> [].
|
|
delete_all([V|Vs],Vs0,Vsf) :-
|
|
rb_delete(Vs0, V, Vsi),
|
|
delete_all(Vs,Vsi,Vsf).
|
|
|
|
delete_remaining_edges(SortedVs,Vs0,Vsf) :-
|
|
rb_map(Vs0, del_edges(SortedVs), Vsf).
|
|
|
|
dgraph_transpose(Graph, TGraph) :-
|
|
rb_visit(Graph, Edges),
|
|
rb_clone(Graph, TGraph, NewNodes),
|
|
tedges(Edges,UnsortedTEdges),
|
|
sort(UnsortedTEdges,TEdges),
|
|
fill_nodes(NewNodes,TEdges).
|
|
|
|
tedges([],[]).
|
|
tedges([V-Vs|Edges],TEdges) :-
|
|
fill_tedges(Vs, V, TEdges, TEdges0),
|
|
tedges(Edges,TEdges0).
|
|
|
|
fill_tedges([], _, TEdges, TEdges).
|
|
fill_tedges([V1|Vs], V, [V1-V|TEdges], TEdges0) :-
|
|
fill_tedges(Vs, V, TEdges, TEdges0).
|
|
|
|
|
|
fill_nodes([],[]).
|
|
fill_nodes([V-[Child|MoreChildren]|Nodes],[V-Child|Edges]) :- !,
|
|
get_extra_children(Edges,V,MoreChildren,REdges),
|
|
fill_nodes(Nodes,REdges).
|
|
fill_nodes([_-[]|Edges],TEdges) :-
|
|
fill_nodes(Edges,TEdges).
|
|
|
|
dgraph_compose(T1,T2,CT) :-
|
|
rb_visit(T1,Nodes),
|
|
compose(Nodes,T2,NewNodes),
|
|
dgraph_new(CT0),
|
|
dgraph_add_edges(NewNodes,CT0,CT).
|
|
|
|
compose([],_,[]).
|
|
compose([V-Children|Nodes],T2,NewNodes) :-
|
|
compose2(Children,V,T2,NewNodes,NewNodes0),
|
|
compose(Nodes,T2,NewNodes0).
|
|
|
|
compose2([],_,_,NewNodes,NewNodes).
|
|
compose2([C|Children],V,T2,NewNodes,NewNodes0) :-
|
|
rb_lookup(C, GrandChildren, T2),
|
|
compose3(GrandChildren, V, NewNodes,NewNodesI),
|
|
compose2(Children,V,T2,NewNodesI,NewNodes0).
|
|
|
|
compose3([], _, NewNodes, NewNodes).
|
|
compose3([GC|GrandChildren], V, [V-GC|NewNodes], NewNodes0) :-
|
|
compose3(GrandChildren, V, NewNodes, NewNodes0).
|
|
|
|
dgraph_transitive_closure(G,Closure) :-
|
|
dgraph_edges(G,Edges),
|
|
continue_closure(Edges,G,Closure).
|
|
|
|
continue_closure([], Closure, Closure) :- !.
|
|
continue_closure(Edges, G, Closure) :-
|
|
transit_graph(Edges,G,NewEdges),
|
|
dgraph_add_edges(NewEdges, G, GN),
|
|
continue_closure(NewEdges, GN, Closure).
|
|
|
|
transit_graph([],_,[]).
|
|
transit_graph([V-V1|Edges],G,NewEdges) :-
|
|
rb_lookup(V1, GrandChildren, G),
|
|
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges),
|
|
transit_graph(Edges, G, MoreEdges).
|
|
|
|
transit_graph2([], _, _, NewEdges, NewEdges).
|
|
transit_graph2([GC|GrandChildren], V, G, NewEdges, MoreEdges) :-
|
|
is_edge(V,GC,G), !,
|
|
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges).
|
|
transit_graph2([GC|GrandChildren], V, G, [V-GC|NewEdges], MoreEdges) :-
|
|
transit_graph2(GrandChildren, V, G, NewEdges, MoreEdges).
|
|
|
|
is_edge(V1,V2,G) :-
|
|
rb_lookup(V1,Children,G),
|
|
ord_member(Children, V2).
|
|
|
|
dgraph_symmetric_closure(G,S) :-
|
|
dgraph_edges(G, Edges),
|
|
invert_edges(Edges, InvertedEdges),
|
|
dgraph_add_edges(InvertedEdges, G, S).
|
|
|
|
invert_edges([], []).
|
|
invert_edges([V1-V2|Edges], [V2-V1|InvertedEdges]) :-
|
|
invert_edges(Edges, InvertedEdges).
|
|
|
|
dgraph_top_sort(G,Q) :-
|
|
% O(E)
|
|
rb_visit(G, Vs),
|
|
% O(E)
|
|
invert_and_link(Vs, Links, UnsortedInvertedEdges, AllVs, Q),
|
|
% O(V)
|
|
rb_clone(G, LinkedG, Links),
|
|
% O(Elog(E))
|
|
sort(UnsortedInvertedEdges, InvertedEdges),
|
|
% O(E)
|
|
dgraph_vertices(G, AllVs),
|
|
start_queue(AllVs, InvertedEdges, Q, RQ),
|
|
continue_queue(Q, LinkedG, RQ).
|
|
|
|
invert_and_link([], [], [], [], []).
|
|
invert_and_link([V-Vs|Edges], [V-NVs|ExtraEdges], UnsortedInvertedEdges, [V|AllVs],[_|Q]) :-
|
|
inv_links(Vs, NVs, V, UnsortedInvertedEdges, UnsortedInvertedEdges0),
|
|
invert_and_link(Edges, ExtraEdges, UnsortedInvertedEdges0, AllVs, Q).
|
|
|
|
inv_links([],[],_,UnsortedInvertedEdges,UnsortedInvertedEdges).
|
|
inv_links([V2|Vs],[l(V2,A,B,S,E)|VLnks],V1,[V2-e(A,B,S,E)|UnsortedInvertedEdges],UnsortedInvertedEdges0) :-
|
|
inv_links(Vs,VLnks,V1,UnsortedInvertedEdges,UnsortedInvertedEdges0).
|
|
|
|
dup([], []).
|
|
dup([_|AllVs], [_|Q]) :-
|
|
dup(AllVs, Q).
|
|
|
|
start_queue([], [], RQ, RQ).
|
|
start_queue([V|AllVs], [V-e(S,B,S,E)|InvertedEdges], Q, RQ) :- !,
|
|
link_edges(InvertedEdges, V, B, S, E, RemainingEdges),
|
|
start_queue(AllVs, RemainingEdges, Q, RQ).
|
|
start_queue([V|AllVs], InvertedEdges, [V|Q], RQ) :-
|
|
start_queue(AllVs, InvertedEdges, Q, RQ).
|
|
|
|
link_edges([V-e(A,B,S,E)|InvertedEdges], V, A, S, E, RemEdges) :- !,
|
|
link_edges(InvertedEdges, V, B, S, E, RemEdges).
|
|
link_edges(RemEdges, _, A, _, A, RemEdges).
|
|
|
|
continue_queue([], _, []).
|
|
continue_queue([V|Q], LinkedG, RQ) :-
|
|
rb_lookup(V, Links, LinkedG),
|
|
close_links(Links, RQ, RQ0),
|
|
% not clear whether I should deleted V from LinkedG
|
|
continue_queue(Q, LinkedG, RQ0).
|
|
|
|
close_links([], RQ, RQ).
|
|
close_links([l(V,A,A,S,E)|Links], RQ, RQ0) :-
|
|
( S == E -> RQ = [V| RQ1] ; RQ = RQ1),
|
|
close_links(Links, RQ1, RQ0).
|
|
|
|
|