which included commits to RCS files with non-trunk default branches. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
		
			
				
	
	
		
			669 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			669 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
%  clp(q,r)                                         version 1.3.3 %
 | 
						|
%                                                                 %
 | 
						|
%  (c) Copyright 1992,1993,1994,1995                              %
 | 
						|
%  Austrian Research Institute for Artificial Intelligence (OFAI) %
 | 
						|
%  Schottengasse 3                                                %
 | 
						|
%  A-1010 Vienna, Austria                                         %
 | 
						|
%                                                                 %
 | 
						|
%  File:   arith.pl                                               %
 | 
						|
%  Author: Christian Holzbaur           christian@ai.univie.ac.at %
 | 
						|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
						|
 | 
						|
 | 
						|
%
 | 
						|
% common code for R,Q, runtime predicates
 | 
						|
%
 | 
						|
% linearize evaluation, collect vars
 | 
						|
%
 | 
						|
% Todo: +) limited encoding length option
 | 
						|
%	+) 2 stage compilation: a) linearization
 | 
						|
%				b) specialization to R or Q
 | 
						|
%
 | 
						|
%
 | 
						|
 | 
						|
l2conj( [],	true).
 | 
						|
l2conj( [X|Xs], Conj) :-
 | 
						|
  ( Xs = [], Conj = X
 | 
						|
  ; Xs = [_|_], Conj = (X,Xc), l2conj( Xs, Xc)
 | 
						|
  ).
 | 
						|
 | 
						|
% ----------------------------------------------------------------------
 | 
						|
 | 
						|
%
 | 
						|
% float/1 coercion is allowed only at the outermost level in Q
 | 
						|
%
 | 
						|
compile_Q( Term, R, Code) :-
 | 
						|
  linearize( Term, Res, Linear),
 | 
						|
  specialize_Q( Linear, Code, Ct),
 | 
						|
  ( Res = boolean,  Ct = []
 | 
						|
  ; Res = float(R), Ct = []
 | 
						|
  ; Res = rat(N,D), Ct = [ putq(D,N,R) ]
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% assumes normalized params and puts a normalized result
 | 
						|
%
 | 
						|
compile_Qn( Term, R, Code) :-
 | 
						|
  linearize( Term, Res, Linear),
 | 
						|
  specialize_Qn( Linear, Code, Ct),
 | 
						|
  ( Res = boolean,  Ct = []
 | 
						|
  ; Res = float(R), Ct = []
 | 
						|
  ; Res = rat(N,D), Ct = [ putq(D,N,R) ]
 | 
						|
  ).
 | 
						|
 | 
						|
 | 
						|
compile_case_signum_Qn( Term, Lt,Z,Gt, Code) :-
 | 
						|
  linearize( Term, rat(N,_), Linear),
 | 
						|
  specialize_Qn( Linear, Code,
 | 
						|
      [
 | 
						|
	  compare( Rel, N, 0),
 | 
						|
	  ( Rel = <, Lt
 | 
						|
	  ; Rel = =, Z
 | 
						|
	  ; Rel = >, Gt
 | 
						|
	  )
 | 
						|
      ]).
 | 
						|
 | 
						|
 | 
						|
specialize_Qn( []) --> [].
 | 
						|
specialize_Qn( [Op|Ops]) -->
 | 
						|
  specialize_Qn( Op),
 | 
						|
  specialize_Qn( Ops).
 | 
						|
%
 | 
						|
specialize_Qn( op_var(rat(N,D),Var))   --> [ Var=rat(N,D) ]. % <--- here is the difference ---
 | 
						|
specialize_Qn( op_integer(rat(I,1),I)) --> [].
 | 
						|
specialize_Qn( op_rat(rat(N,D),N,D))   --> [].
 | 
						|
specialize_Qn( op_float(rat(N,D),X))   --> [], { float_rat( X, N,D) }.
 | 
						|
specialize_Qn( apply(R,Func)) -->
 | 
						|
  specialize_Q_fn( Func, R).
 | 
						|
 | 
						|
 | 
						|
specialize_Q( []) --> [].
 | 
						|
specialize_Q( [Op|Ops]) -->
 | 
						|
  specialize_Q( Op),
 | 
						|
  specialize_Q( Ops).
 | 
						|
%
 | 
						|
specialize_Q( op_var(rat(N,D),Var))   --> [ getq(Var,N,D) ].
 | 
						|
specialize_Q( op_integer(rat(I,1),I)) --> [].
 | 
						|
specialize_Q( op_rat(rat(N,D),N,D))   --> [], { D > 0 }.
 | 
						|
specialize_Q( op_float(rat(N,D),X))   --> [], { float_rat( X, N,D) }.
 | 
						|
specialize_Q( apply(R,Func)) -->
 | 
						|
  specialize_Q_fn( Func, R).
 | 
						|
 | 
						|
specialize_Q_fn( +rat(N,D),			rat(N,D)) --> [].
 | 
						|
specialize_Q_fn( numer(rat(N,_)),		rat(N,1)) --> [].
 | 
						|
specialize_Q_fn( denom(rat(_,D)),		rat(D,1)) --> [].
 | 
						|
specialize_Q_fn( -rat(N0,D),			rat(N,D)) --> [ N is -N0 ].
 | 
						|
specialize_Q_fn( abs(rat(Nx,Dx)),		rat(N,D)) --> [ N is abs(Nx) ], {D=Dx}.
 | 
						|
specialize_Q_fn( signum(rat(Nx,Dx)),		rat(N,D)) --> [ signumq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( floor(rat(Nx,Dx)),		rat(N,D)) --> [ floorq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( ceiling(rat(Nx,Dx)),		rat(N,D)) --> [ ceilingq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( truncate(rat(Nx,Dx)),		rat(N,D)) --> [ truncateq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( round(rat(Nx,Dx)),		rat(N,D)) --> [ roundq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( log(rat(Nx,Dx)),		rat(N,D)) --> [ logq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( exp(rat(Nx,Dx)),		rat(N,D)) --> [ expq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( sin(rat(Nx,Dx)),		rat(N,D)) --> [ sinq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( cos(rat(Nx,Dx)),		rat(N,D)) --> [ cosq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( tan(rat(Nx,Dx)),		rat(N,D)) --> [ tanq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( asin(rat(Nx,Dx)),		rat(N,D)) --> [ asinq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( acos(rat(Nx,Dx)),		rat(N,D)) --> [ acosq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( atan(rat(Nx,Dx)),		rat(N,D)) --> [ atanq( Nx,Dx, N,D) ].
 | 
						|
specialize_Q_fn( float(rat(Nx,Dx)),		float(F)) --> [ rat_float( Nx,Dx, F) ].
 | 
						|
%
 | 
						|
specialize_Q_fn( rat(Nx,Dx)+rat(Ny,Dy), 	rat(N,D)) --> [ addq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)-rat(Ny,Dy), 	rat(N,D)) --> [ subq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)*rat(Ny,Dy), 	rat(N,D)) --> [ mulq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)/rat(Ny,Dy), 	rat(N,D)) --> [ divq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( exp(rat(Nx,Dx),rat(Ny,Dy)),	rat(N,D)) --> [ expq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( min(rat(Nx,Dx),rat(Ny,Dy)),	rat(N,D)) --> [ minq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
specialize_Q_fn( max(rat(Nx,Dx),rat(Ny,Dy)),	rat(N,D)) --> [ maxq( Nx,Dx, Ny,Dy, N,D) ].
 | 
						|
%
 | 
						|
specialize_Q_fn( rat(Nx,Dx)  <	rat(Ny,Dy),	boolean)  --> [ comq( Nx,Dx, Ny,Dy, <) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)  >	rat(Ny,Dy),	boolean)  --> [ comq( Ny,Dy, Nx,Dx, <) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)  =< rat(Ny,Dy),	boolean)  --> [ comq( Nx,Dx, Ny,Dy, Rel), Rel \== (>) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx)  >= rat(Ny,Dy),	boolean)  --> [ comq( Ny,Dy, Nx,Dx, Rel), Rel \== (>) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx) =\= rat(Ny,Dy),	boolean)  --> [ comq( Nx,Dx, Ny,Dy, Rel), Rel \== (=) ].
 | 
						|
specialize_Q_fn( rat(Nx,Dx) =:= rat(Ny,Dy),	boolean)  -->
 | 
						|
  %
 | 
						|
  % *normalized* rationals
 | 
						|
  %
 | 
						|
  ( {Nx = Ny} -> [] ; [ Nx = Ny ] ),
 | 
						|
  ( {Dx = Dy} -> [] ; [ Dx = Dy ] ).
 | 
						|
 | 
						|
% ----------------------------------------------------------------------
 | 
						|
 | 
						|
compile_R( Term, R, Code) :-
 | 
						|
  linearize( Term, Res, Linear),
 | 
						|
  specialize_R( Linear, Code, Ct),
 | 
						|
  ( Res == boolean ->
 | 
						|
      Ct = [], R = boolean
 | 
						|
  ; float(Res) ->
 | 
						|
      Ct = [ R=Res ]
 | 
						|
  ;
 | 
						|
      Ct = [ R is Res ]
 | 
						|
  ).
 | 
						|
 | 
						|
compile_case_signum_R( Term, Lt,Z,Gt, Code) :-
 | 
						|
  eps( Eps, NegEps),
 | 
						|
  linearize( Term, Res, Linear),
 | 
						|
  specialize_R( Linear, Code,
 | 
						|
    [
 | 
						|
	Rv is Res,
 | 
						|
	( Rv < NegEps -> Lt
 | 
						|
	; Rv > Eps    -> Gt
 | 
						|
	;		 Z
 | 
						|
	)
 | 
						|
    ]).
 | 
						|
 | 
						|
specialize_R( []) --> [].
 | 
						|
specialize_R( [Op|Ops]) -->
 | 
						|
  specialize_R( Op),
 | 
						|
  specialize_R( Ops).
 | 
						|
%
 | 
						|
specialize_R( op_var(Var,Var)) --> [].
 | 
						|
specialize_R( op_integer(R,I)) --> [], { R is float(I) }.
 | 
						|
specialize_R( op_rat(R,N,D))   --> [], { rat_float( N,D, R) }.
 | 
						|
specialize_R( op_float(F,F))   --> [].
 | 
						|
specialize_R( apply(R,Func)) -->
 | 
						|
  specialize_R_fn( Func, R).
 | 
						|
 | 
						|
specialize_R_fn( signum(X),		S) -->
 | 
						|
  ( {var(X)} ->
 | 
						|
      {Xe=X}
 | 
						|
  ;
 | 
						|
      [ Xe is X ]
 | 
						|
  ),
 | 
						|
  {
 | 
						|
    eps( Eps, NegEps)
 | 
						|
  },
 | 
						|
  [
 | 
						|
    ( Xe < NegEps -> S = -1.0
 | 
						|
    ; Xe > Eps	  -> S =  1.0
 | 
						|
    ;		     S =  0.0
 | 
						|
    )
 | 
						|
  ].
 | 
						|
 | 
						|
specialize_R_fn( +X,			X) --> [].
 | 
						|
specialize_R_fn( -X,			-X) --> [].
 | 
						|
specialize_R_fn( abs(X),		abs(X)) --> [].
 | 
						|
specialize_R_fn( floor(X),		float(floor(/*float?*/X))) --> [].
 | 
						|
specialize_R_fn( ceiling(X),		float(ceiling(/*float?*/X))) --> [].
 | 
						|
specialize_R_fn( truncate(X),		float(truncate(/*float?*/X))) --> [].
 | 
						|
specialize_R_fn( round(X),		float(round(/*float?*/X))) --> [].
 | 
						|
specialize_R_fn( log(X),		log(X))  --> [].
 | 
						|
specialize_R_fn( exp(X),		exp(X)) --> [].
 | 
						|
specialize_R_fn( sin(X),		sin(X)) --> [].
 | 
						|
specialize_R_fn( cos(X),		cos(X)) --> [].
 | 
						|
specialize_R_fn( tan(X),		tan(X)) --> [].
 | 
						|
specialize_R_fn( asin(X),		asin(X)) --> [].
 | 
						|
specialize_R_fn( acos(X),		acos(X)) --> [].
 | 
						|
specialize_R_fn( atan(X),		atan(X)) --> [].
 | 
						|
specialize_R_fn( float(X),		float(X)) --> [].
 | 
						|
%
 | 
						|
specialize_R_fn( X+Y,			X+Y) --> [].
 | 
						|
specialize_R_fn( X-Y,			X-Y) --> [].
 | 
						|
specialize_R_fn( X*Y,			X*Y) --> [].
 | 
						|
specialize_R_fn( X/Y,			X/Y) --> [].
 | 
						|
specialize_R_fn( exp(X,Y),		exp(X,Y)) --> [].
 | 
						|
specialize_R_fn( min(X,Y),		min(X,Y)) --> [].
 | 
						|
specialize_R_fn( max(X,Y),		max(X,Y)) --> [].
 | 
						|
/**/
 | 
						|
%
 | 
						|
% An absolute eps is of course not very meaningful.
 | 
						|
% An eps scaled by the magnitude of the operands participating
 | 
						|
% in the comparison is too expensive to support in Prolog on the
 | 
						|
% other hand ...
 | 
						|
%
 | 
						|
%
 | 
						|
%		 -eps	0  +eps
 | 
						|
%   ---------------[----|----]----------------
 | 
						|
%	     < 0		  > 0
 | 
						|
%      <-----------]	     [----------->
 | 
						|
%	    =< 0
 | 
						|
%      <---------------------]
 | 
						|
%				  >= 0
 | 
						|
%		   [--------------------->
 | 
						|
%
 | 
						|
%
 | 
						|
specialize_R_fn( X  <  Y, boolean)  -->
 | 
						|
  {
 | 
						|
    eps( Eps, NegEps)
 | 
						|
  },
 | 
						|
  ( {X==0} ->
 | 
						|
      [ Y > Eps ]
 | 
						|
  ; {Y==0} ->
 | 
						|
      [ X < NegEps ]
 | 
						|
  ;
 | 
						|
      [ X-Y < NegEps ]
 | 
						|
  ).
 | 
						|
specialize_R_fn( X  >  Y, boolean)  --> specialize_R_fn( Y  < X, boolean).
 | 
						|
specialize_R_fn( X  =< Y, boolean)  -->
 | 
						|
  {
 | 
						|
    eps( Eps, _)
 | 
						|
  },
 | 
						|
  [ X-Y < Eps ].
 | 
						|
specialize_R_fn( X  >= Y, boolean)  --> specialize_R_fn( Y =< X, boolean).
 | 
						|
specialize_R_fn( X =:= Y, boolean)  -->
 | 
						|
  {
 | 
						|
    eps( Eps, NegEps)
 | 
						|
  },
 | 
						|
  ( {X==0} ->
 | 
						|
	[ Y >= NegEps, Y =< Eps ]
 | 
						|
  ; {Y==0} ->
 | 
						|
	[ X >= NegEps, X =< Eps ]
 | 
						|
  ;
 | 
						|
	[
 | 
						|
	  Diff is X-Y,
 | 
						|
	  Diff =< Eps,
 | 
						|
	  Diff >= NegEps
 | 
						|
	]
 | 
						|
  ).
 | 
						|
specialize_R_fn( X =\= Y, boolean)  -->
 | 
						|
  {
 | 
						|
    eps( Eps, NegEps)
 | 
						|
  },
 | 
						|
  [
 | 
						|
    Diff is X-Y,
 | 
						|
    ( Diff < NegEps -> true ; Diff > Eps )
 | 
						|
  ].
 | 
						|
/**/
 | 
						|
 | 
						|
/**
 | 
						|
%
 | 
						|
% b30427, pp.218
 | 
						|
%
 | 
						|
specialize_R_fn( X  >  Y, boolean)  --> specialize_R_fn( Y  < X, boolean).
 | 
						|
specialize_R_fn( X  <  Y, boolean)  -->
 | 
						|
  [ scaled_eps(X,Y,E), Y-X > E ].
 | 
						|
 | 
						|
specialize_R_fn( X  >= Y, boolean)  --> specialize_R_fn( Y =< X, boolean).
 | 
						|
specialize_R_fn( X  =< Y, boolean)  -->
 | 
						|
  [ scaled_eps(X,Y,E), X-Y =< E ].	% \+ >
 | 
						|
 | 
						|
specialize_R_fn( X =:= Y, boolean)  -->
 | 
						|
  [ scaled_eps(X,Y,E), abs(X-Y) =< E ].
 | 
						|
 | 
						|
specialize_R_fn( X =\= Y, boolean)  -->
 | 
						|
  [ scaled_eps(X,Y,E), abs(X-Y) > E ].
 | 
						|
 | 
						|
 | 
						|
scaled_eps( X, Y, Eps) :-
 | 
						|
  exponent( X, Ex),
 | 
						|
  exponent( Y, Ey),
 | 
						|
  arith_eps( E),
 | 
						|
  Max is max(Ex,Ey),
 | 
						|
  ( Max < 0 ->
 | 
						|
     Eps is E/(1<<Max)
 | 
						|
  ;
 | 
						|
     Eps is E*(1<<Max)
 | 
						|
  ).
 | 
						|
 | 
						|
exponent( X, E) :-
 | 
						|
  A is abs(X),
 | 
						|
  float_rat( A, N, D),
 | 
						|
  E is msb(N+1)-msb(D).
 | 
						|
**/
 | 
						|
 | 
						|
% ----------------------------------------------------------------------
 | 
						|
 | 
						|
linearize( Term, Res, Linear) :-
 | 
						|
  linearize( Term, Res, Vs,[], Lin, []),
 | 
						|
  keysort( Vs, Vss),
 | 
						|
  ( Vss = [],	  Linear = Lin
 | 
						|
  ; Vss = [V|Vt], join_vars( Vt, V, Linear, Lin)
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% flatten the evaluation, collect variables, shared by Q,R,...
 | 
						|
%
 | 
						|
linearize( X,	     R, [X-R|Vs],Vs) --> {var(X)}, !,	[ ].
 | 
						|
linearize( X,	     R, Vs,Vs) --> {integer(X)}, !,	[ op_integer(R,X) ].
 | 
						|
linearize( X,	     R, Vs,Vs) --> {float(X)}, !,	[ op_float(R,X) ].
 | 
						|
linearize( rat(N,D), R, Vs,Vs) --> !,			[ op_rat(R,N,D) ].
 | 
						|
linearize( Term,     R, V0,V1) -->
 | 
						|
  {
 | 
						|
    functor( Term, N, A),
 | 
						|
    functor( Skeleton, N, A)
 | 
						|
  },
 | 
						|
  linearize_args( A, Term, Skeleton, V0,V1),		[ apply(R,Skeleton) ].
 | 
						|
 | 
						|
linearize_args( 0, _, _, Vs,Vs) --> [].
 | 
						|
linearize_args( N, T, S, V0,V2) -->
 | 
						|
  {
 | 
						|
    arg( N, T, Arg),
 | 
						|
    arg( N, S, Res),
 | 
						|
    N1 is N-1
 | 
						|
  },
 | 
						|
  linearize( Arg, Res, V0,V1),
 | 
						|
  linearize_args( N1, T, S, V1,V2).
 | 
						|
 | 
						|
join_vars( [],	      Y-Ry) --> [ op_var(Ry,Y) ].
 | 
						|
join_vars( [X-Rx|Xs], Y-Ry) -->
 | 
						|
  ( {X==Y} ->
 | 
						|
      {Rx=Ry},
 | 
						|
      join_vars( Xs, Y-Ry)
 | 
						|
  ;
 | 
						|
      [ op_var(Ry,Y) ],
 | 
						|
      join_vars( Xs, X-Rx)
 | 
						|
  ).
 | 
						|
 | 
						|
% ---------------------------------- runtime system ---------------------------
 | 
						|
 | 
						|
%
 | 
						|
% C candidate
 | 
						|
%
 | 
						|
limit_encoding_length( 0,D, _,	  0,D) :- !.		% msb ...
 | 
						|
limit_encoding_length( N,D, Bits, Nl,Dl) :-
 | 
						|
  Shift is min(max(msb(abs(N)),msb(D))-Bits,
 | 
						|
	       min(msb(abs(N)),msb(D))),
 | 
						|
  Shift > 0,
 | 
						|
  !,
 | 
						|
  Ns is N>>Shift,
 | 
						|
  Ds is D>>Shift,
 | 
						|
  Gcd is gcd(Ns,Ds),
 | 
						|
  Nl is Ns//Gcd,
 | 
						|
  Dl is Ds//Gcd.
 | 
						|
limit_encoding_length( N,D, _, N,D).
 | 
						|
 | 
						|
 | 
						|
%
 | 
						|
% No longer backconvert to integer
 | 
						|
%
 | 
						|
% putq( 1, N, N) :- !.
 | 
						|
putq( D, N, rat(N,D)).
 | 
						|
 | 
						|
getq( Exp,	N,D) :- var( Exp), !, 
 | 
						|
  raise_exception( instantiation_error(getq(Exp,N,D),1)).
 | 
						|
getq( I,	I,1) :- integer(I), !.
 | 
						|
getq( F,	N,D) :- float( F), !, float_rat( F, N,D).
 | 
						|
getq( rat(N,D), N,D) :-
 | 
						|
  integer( N),
 | 
						|
  integer( D),
 | 
						|
  D > 0,
 | 
						|
  1 =:= gcd(N,D).
 | 
						|
 | 
						|
%
 | 
						|
% actually just a joke to have this stuff in Q ...
 | 
						|
%
 | 
						|
 expq( N,D, N1,D1) :- rat_float( N,D, X), F is	exp(X), float_rat( F, N1,D1).
 | 
						|
 logq( N,D, N1,D1) :- rat_float( N,D, X), F is	log(X), float_rat( F, N1,D1).
 | 
						|
 sinq( N,D, N1,D1) :- rat_float( N,D, X), F is	sin(X), float_rat( F, N1,D1).
 | 
						|
 cosq( N,D, N1,D1) :- rat_float( N,D, X), F is	cos(X), float_rat( F, N1,D1).
 | 
						|
 tanq( N,D, N1,D1) :- rat_float( N,D, X), F is	tan(X), float_rat( F, N1,D1).
 | 
						|
asinq( N,D, N1,D1) :- rat_float( N,D, X), F is asin(X), float_rat( F, N1,D1).
 | 
						|
acosq( N,D, N1,D1) :- rat_float( N,D, X), F is acos(X), float_rat( F, N1,D1).
 | 
						|
atanq( N,D, N1,D1) :- rat_float( N,D, X), F is atan(X), float_rat( F, N1,D1).
 | 
						|
 | 
						|
%
 | 
						|
% for integer powers we can do it in Q
 | 
						|
%
 | 
						|
expq( Nx,Dx, Ny,Dy, N,D) :-
 | 
						|
  ( Dy =:= 1 ->
 | 
						|
     ( Ny >= 0 ->
 | 
						|
	powq( Ny, Nx,Dx, 1,1, N,D)
 | 
						|
     ;
 | 
						|
	Nabs is -Ny,
 | 
						|
	powq( Nabs, Nx,Dx, 1,1, N1,D1),
 | 
						|
	( N1 < 0 ->
 | 
						|
	   N is -D1, D is -N1
 | 
						|
	;
 | 
						|
	   N = D1, D = N1
 | 
						|
	)
 | 
						|
     )
 | 
						|
  ;
 | 
						|
     rat_float( Nx,Dx, Fx),
 | 
						|
     rat_float( Ny,Dy, Fy),
 | 
						|
     F is exp(Fx,Fy),
 | 
						|
     float_rat( F, N, D)
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% positive integer powers of rational
 | 
						|
%
 | 
						|
powq( 0, _, _,	Nt,Dt, Nt,Dt) :- !.
 | 
						|
powq( 1, Nx,Dx, Nt,Dt, Nr,Dr) :- !, mulq( Nx,Dx, Nt,Dt, Nr,Dr).
 | 
						|
powq( N, Nx,Dx, Nt,Dt, Nr,Dr) :-
 | 
						|
  N1 is N >> 1,
 | 
						|
  ( N /\ 1 =:= 0 ->
 | 
						|
      Nt1 = Nt, Dt1 = Dt
 | 
						|
  ;
 | 
						|
      mulq( Nx,Dx, Nt,Dt, Nt1,Dt1)
 | 
						|
  ),
 | 
						|
  mulq( Nx,Dx, Nx,Dx, Nxx,Dxx),
 | 
						|
  powq( N1, Nxx,Dxx, Nt1,Dt1, Nr,Dr).
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
%
 | 
						|
% the choicepoint ruins the party ...
 | 
						|
%
 | 
						|
mulq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Na,Db),
 | 
						|
  ( Gcd1 =:= 1 -> Na1=Na,Db1=Db; Na1 is Na//Gcd1,Db1 is Db//Gcd1 ),
 | 
						|
  Gcd2 is gcd(Nb,Da),
 | 
						|
  ( Gcd2 =:= 1 -> Nb1=Nb,Da1=Da; Nb1 is Nb//Gcd2,Da1 is Da//Gcd2 ),
 | 
						|
  Nc is Na1 * Nb1,
 | 
						|
  Dc is Da1 * Db1.
 | 
						|
*/
 | 
						|
mulq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Na,Db),
 | 
						|
  Na1 is Na//Gcd1,
 | 
						|
  Db1 is Db//Gcd1,
 | 
						|
  Gcd2 is gcd(Nb,Da),
 | 
						|
  Nb1 is Nb//Gcd2,
 | 
						|
  Da1 is Da//Gcd2,
 | 
						|
  Nc is Na1 * Nb1,
 | 
						|
  Dc is Da1 * Db1.
 | 
						|
 | 
						|
/*
 | 
						|
divq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Na,Nb),
 | 
						|
  ( Gcd1 =:= 1 -> Na1=Na,Nb1=Nb; Na1 is Na//Gcd1,Nb1 is Nb//Gcd1 ),
 | 
						|
  Gcd2 is gcd(Da,Db),
 | 
						|
  ( Gcd2 =:= 1 -> Da1=Da,Db1=Db; Da1 is Da//Gcd2,Db1 is Db//Gcd2 ),
 | 
						|
  ( Nb1 < 0 ->			% keep denom positive !!!
 | 
						|
     Nc is -(Na1 * Db1),
 | 
						|
     Dc is Da1 * (-Nb1)
 | 
						|
  ;
 | 
						|
     Nc is Na1 * Db1,
 | 
						|
     Dc is Da1 * Nb1
 | 
						|
  ).
 | 
						|
*/
 | 
						|
divq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Na,Nb),
 | 
						|
  Na1 is Na//Gcd1,
 | 
						|
  Nb1 is Nb//Gcd1,
 | 
						|
  Gcd2 is gcd(Da,Db),
 | 
						|
  Da1 is Da//Gcd2,
 | 
						|
  Db1 is Db//Gcd2,
 | 
						|
  ( Nb1 < 0 ->			% keep denom positive !!!
 | 
						|
     Nc is -(Na1 * Db1),
 | 
						|
     Dc is Da1 * (-Nb1)
 | 
						|
  ;
 | 
						|
     Nc is Na1 * Db1,
 | 
						|
     Dc is Da1 * Nb1
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% divq_11( Nb,Db, Nc,Dc) :- divq( 1,1, Nb,Db, Nc,Dc).
 | 
						|
%
 | 
						|
divq_11( Nb,Db, Nc,Dc) :-
 | 
						|
  ( Nb < 0 ->			% keep denom positive !!!
 | 
						|
     Nc is -Db,
 | 
						|
     Dc is -Nb
 | 
						|
  ;
 | 
						|
     Nc is Db,
 | 
						|
     Dc is Nb
 | 
						|
  ).
 | 
						|
 | 
						|
'divq_-11'( Nb,Db, Nc,Dc) :-
 | 
						|
  ( Nb < 0 ->			% keep denom positive !!!
 | 
						|
     Nc is Db,
 | 
						|
     Dc is -Nb
 | 
						|
  ;
 | 
						|
     Nc is -Db,
 | 
						|
     Dc is Nb
 | 
						|
  ).
 | 
						|
 | 
						|
/*
 | 
						|
addq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Da,Db),
 | 
						|
  ( Gcd1 =:= 1 -> 			% This is the case (for random input) with
 | 
						|
					% probability 6/(pi**2).
 | 
						|
     Nc is Na*Db + Nb*Da,
 | 
						|
     Dc is Da*Db
 | 
						|
  ;
 | 
						|
     T is Na*(Db//Gcd1) + Nb*(Da//Gcd1),
 | 
						|
     Gcd2 is gcd(T,Gcd1),
 | 
						|
     Nc is T//Gcd2,
 | 
						|
     Dc is (Da//Gcd1) * (Db//Gcd2)
 | 
						|
  ).
 | 
						|
*/
 | 
						|
addq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Da,Db),
 | 
						|
  T is Na*(Db//Gcd1) + Nb*(Da//Gcd1),
 | 
						|
  Gcd2 is gcd(T,Gcd1),
 | 
						|
  Nc is T//Gcd2,
 | 
						|
  Dc is (Da//Gcd1) * (Db//Gcd2).
 | 
						|
 | 
						|
/*
 | 
						|
subq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Da,Db),
 | 
						|
  ( Gcd1 =:= 1 -> 			% This is the case (for random input) with
 | 
						|
					% probability 6/(pi**2).
 | 
						|
     Nc is Na*Db - Nb*Da,
 | 
						|
     Dc is Da*Db
 | 
						|
  ;
 | 
						|
     T is Na*(Db//Gcd1) - Nb*(Da//Gcd1),
 | 
						|
     Gcd2 is gcd(T,Gcd1),
 | 
						|
     Nc is T//Gcd2,
 | 
						|
     Dc is (Da//Gcd1) * (Db//Gcd2)
 | 
						|
  ).
 | 
						|
*/
 | 
						|
subq( Na,Da, Nb,Db, Nc,Dc) :-
 | 
						|
  Gcd1 is gcd(Da,Db),
 | 
						|
  T is Na*(Db//Gcd1) - Nb*(Da//Gcd1),
 | 
						|
  Gcd2 is gcd(T,Gcd1),
 | 
						|
  Nc is T//Gcd2,
 | 
						|
  Dc is (Da//Gcd1) * (Db//Gcd2).
 | 
						|
 | 
						|
comq( Na,Da, Nb,Db, S) :-	% todo: avoid multiplication by looking a signs first !!!
 | 
						|
  Xa is Na * Db,
 | 
						|
  Xb is Nb * Da,
 | 
						|
  compare( S, Xa, Xb).
 | 
						|
 | 
						|
minq( Na,Da, Nb,Db, N,D) :-
 | 
						|
  comq( Na,Da, Nb,Db, Rel),
 | 
						|
  ( Rel = =, N=Na, D=Da
 | 
						|
  ; Rel = <, N=Na, D=Da
 | 
						|
  ; Rel = >, N=Nb, D=Db
 | 
						|
  ).
 | 
						|
 | 
						|
maxq( Na,Da, Nb,Db, N,D) :-
 | 
						|
  comq( Na,Da, Nb,Db, Rel),
 | 
						|
  ( Rel = =, N=Nb, D=Db
 | 
						|
  ; Rel = <, N=Nb, D=Db
 | 
						|
  ; Rel = >, N=Na, D=Da
 | 
						|
  ).
 | 
						|
 | 
						|
signumq( N,_, S,1) :-
 | 
						|
  compare( Rel, N, 0),
 | 
						|
  rel2sig( Rel, S).
 | 
						|
 | 
						|
rel2sig( <, -1).
 | 
						|
rel2sig( >,  1).
 | 
						|
rel2sig( =,  0).
 | 
						|
 | 
						|
 | 
						|
 | 
						|
% -----------------------------------------------------------------------------
 | 
						|
 | 
						|
truncateq( N,D, R,1) :-
 | 
						|
  R is N // D.
 | 
						|
 | 
						|
%
 | 
						|
% returns the greatest integral  value	less  than  or
 | 
						|
% equal to x.  This corresponds to IEEE rounding toward nega-
 | 
						|
% tive infinity
 | 
						|
%
 | 
						|
floorq( N,1, N,1) :- !.
 | 
						|
floorq( N,D, R,1) :-
 | 
						|
  ( N < 0 ->
 | 
						|
     R is N // D - 1
 | 
						|
  ;
 | 
						|
     R is N // D
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% returns the least  integral  value  greater  than  or
 | 
						|
% equal  to x.	This corresponds to IEEE rounding toward posi-
 | 
						|
% tive infinity
 | 
						|
%
 | 
						|
ceilingq( N,1, N,1) :- !.
 | 
						|
ceilingq( N,D, R,1) :-
 | 
						|
  ( N > 0 ->
 | 
						|
     R is N // D + 1
 | 
						|
  ;
 | 
						|
     R is N // D
 | 
						|
  ).
 | 
						|
 | 
						|
%
 | 
						|
% rounding towards zero
 | 
						|
%
 | 
						|
roundq( N,D, R,1) :-
 | 
						|
  % rat_float( N,D, F), 	% cheating, can do that in Q
 | 
						|
  % R is integer(round(F)).
 | 
						|
  I is N//D,
 | 
						|
  subq( N,D, I,1, Rn,Rd),
 | 
						|
  Rna is abs(Rn),
 | 
						|
  ( comq( Rna,Rd, 1,2, <) ->
 | 
						|
      R = I
 | 
						|
  ; I >= 0 ->
 | 
						|
      R is I+1
 | 
						|
  ;
 | 
						|
      R is I-1
 | 
						|
  ).
 | 
						|
 | 
						|
% ------------------------------- rational -> float -------------------------------
 | 
						|
%
 | 
						|
% The problem here is that SICStus converts BIG fractions N/D into +-nan
 | 
						|
% if it does not fit into a float
 | 
						|
%
 | 
						|
%   | ?- X is msb(integer(1.0e+308)).
 | 
						|
%   X = 1023
 | 
						|
%
 | 
						|
 | 
						|
rat_float( Nx,Dx, F) :-
 | 
						|
  limit_encoding_length( Nx,Dx, 1023, Nxl,Dxl),
 | 
						|
  F is Nxl / Dxl.
 | 
						|
 | 
						|
% ------------------------------- float -> rational -------------------------------
 | 
						|
 | 
						|
float_rat( F, N, D) :-
 | 
						|
  float_rat( 100, F, F, 1,0,0,1, N0,D0), 	% at most 100 iterations
 | 
						|
  ( D0 < 0 ->					% sign normalization
 | 
						|
     D is -D0,
 | 
						|
     N is -N0
 | 
						|
  ;
 | 
						|
     D = D0,
 | 
						|
     N = N0
 | 
						|
  ).
 | 
						|
 | 
						|
float_rat( 0, _, _, Na,_,Da,_, Na,Da) :- !.
 | 
						|
float_rat( _, _, X, Na,_,Da,_, Na,Da) :-
 | 
						|
  0.0 =:= abs(X-Na/Da),
 | 
						|
  !.
 | 
						|
float_rat( N, F, X, Na,Nb,Da,Db, Nar,Dar) :-
 | 
						|
  I is integer(F),
 | 
						|
  ( I =:= F ->					% guard against zero division
 | 
						|
     Nar is Na*I+Nb,				% 1.0 -> 1/1 and not 0/1 (first iter.) !!!
 | 
						|
     Dar is Da*I+Db
 | 
						|
  ;
 | 
						|
     Na1 is Na*I+Nb,
 | 
						|
     Da1 is Da*I+Db,
 | 
						|
     F1 is 1/(F-I),
 | 
						|
     N1 is N-1,
 | 
						|
     float_rat( N1, F1, X, Na1,Na,Da1,Da, Nar,Dar)
 | 
						|
  ).
 | 
						|
 |