This repository has been archived on 2023-08-20. You can view files and clone it, but cannot push or open issues or pull requests.
yap-6.3/packages/cplint/slipcase/slipcase.pl

851 lines
20 KiB
Prolog

/*
EMBLEM and SLIPCASE
Copyright (c) 2011, Fabrizio Riguzzi and Elena Bellodi
*/
:-use_module(library(lists)).
:-use_module(library(random)).
:-use_module(library(system)).
:-dynamic setting/2,last_id/1, rule/5.
:-[revise].
setting(epsilon_em,0.0001).
setting(epsilon_em_fraction,0.00001).
setting(eps,0.0001).
setting(eps_f,0.00001).
/* if the difference in log likelihood in two successive em iteration is smaller
than epsilon_em, then em stops */
setting(epsilon_sem,2).
/* number of random restarts of em */
setting(random_restarts_REFnumber,1).
setting(random_restarts_number,1).
setting(iterREF,-1).
setting(iter,-1).
setting(examples,atoms).
setting(group,1).
setting(d,1).
setting(verbosity,1).
setting(logzero,log(0.000001)).
setting(initial_clauses_modeh,1).
setting(max_iter,10).
setting(max_var,5).
setting(max_rules,10).
setting(beamsize,20).
sl(File):-
generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL),
reconsult(FileL),
load_models(FileKB,DB),
statistics(walltime,[_,_]),
(file_exists(FileBG)->
set(compiling,on),
load(FileBG,_ThBG,RBG),
set(compiling,off),
generate_clauses(RBG,_RBG1,0,[],ThBG),
assert_all(ThBG)
;
true
),
(file_exists(FileIn)->
set(compiling,on),
load(FileIn,_Th1,R1),
set(compiling,off)
;
deduct(DB,[],InitialTheory),
length(InitialTheory,_LI), %-LI=number of rules of the theory
remove_duplicates(InitialTheory,Th0),
length(Th0,_LI1),
set(compiling,on),
process_clauses(Th0,[],_Th1,[],R1), %+Th0: rules Head:-body with prob. in the head,-_Th1: rules in the same form as Th0 but with bdds one/and+getvarn+equality, R1: same theory of the form rule(NR,[head atoms with prob. (with null),[body atoms].
set(compiling,off)
),
write('Initial theory'),nl,
write_rules(R1,user_output),
learn_struct(DB,R1,R2,CLL2),
learn_params(DB,R2,R,CLL),
statistics(walltime,[_,WT]),
WTS is WT/1000,
format("~nRefinement CLL ~f - CLL after EMBLEM ~f~n",[CLL2,CLL]),
format("Total execution time ~f~n~n",[WTS]),
write_rules(R,user_output),
listing(setting/2),
open(FileOut,write,Stream),
format(Stream,'/* SLIPCASE Final CLL ~f~n',[CLL]),
format(Stream,'Execution time ~f~n',[WTS]),
tell(Stream),
listing(setting/2),
format(Stream,'*/~n~n',[]),
told,
open(FileOut,append,Stream1),
write_rules(R,Stream1),
close(Stream1).
learn_struct(DB,R1,R,CLL1):- %+R1:initial theory of the form [rule(NR,[h],[b]],...], -R:final theory of the same form, -CLL1
generate_clauses(R1,R2,0,[],Th1),
assert_all(Th1),
assert_all(R2),!,
findall(R-HN,(rule(R,HL,_BL),length(HL,HN)),L),
keysort(L,LS),
get_heads(LS,LSH),
length(LSH,NR),
init(NR,LSH),
retractall(v(_,_,_)),
length(DB,NEx),
(setting(examples,atoms)->
setting(group,G),
derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),! % 1 bdd for group of facts (for example if group=1)
;
derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),! % 1 bdd for model
),
setting(random_restarts_number,N),
format("~nInitial CLL ~f~n~n",[CLL0]),
random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE), %output:CLL,Par
format("CLL after EMBLEM = ~f~n",[CLL]),
retract_all(Th1),
retract_all(R2),!,
end, %frees all variables
update_theory(R2,Par,R3),
write('updated Theory'),nl,
write_rules(R3,user_output), %definite rules without probabilities in the head are not written
setting(max_iter,M),
cycle_struct([(R3,CLL)],DB,R3,R,M,CLL,-inf,CLL1).
em(File):-
generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL),
reconsult(FileL),
load_models(FileKB,DB),
(file_exists(FileBG)->
set(compiling,on),
load(FileBG,_ThBG,RBG),
set(compiling,off),
generate_clauses(RBG,_RBG1,0,[],ThBG),
assert_all(ThBG)
;
true
),
set(compiling,on),
load(FileIn,_TH,R0),
set(compiling,off),
set(verbosity,3),
statistics(cputime,[_,_]),
learn_params(DB,R0,R,CLL),
statistics(cputime,[_,CT]),
CTS is CT/1000,
format("EM: Final CLL ~f~n",[CLL]),
format("Execution time ~f~n~n",[CTS]),
write_rules(R,user_output),
listing(setting/2),
open(FileOut,write,Stream),
format(Stream,'/* EMBLEM Final CLL ~f~n',[CLL]),
format(Stream,'Execution time ~f~n',[CTS]),
tell(Stream),
listing(setting/2),
format(Stream,'*/~n~n',[]),
told,
open(FileOut,append,Stream1),
write_rules(R,Stream1),
close(Stream1).
learn_params(DB,R0,R,CLL):-
generate_clauses(R0,R1,0,[],Th0),
assert_all(Th0),
assert_all(R1),!,
findall(R-HN,(rule(R,HL,_BL),length(HL,HN)),L),
keysort(L,LS),
get_heads(LS,LSH),
length(LSH,NR),
init(NR,LSH),
retractall(v(_,_,_)),
length(DB,NEx),
(setting(examples,atoms)->
setting(group,G),
derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),!
;
derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),!
),
setting(random_restarts_number,N),
random_restarts(N,Nodes,CLL0,CLL,initial,Par,LE), %computes new parameters Par
end,
retract_all(Th0),
retract_all(R1),!,
update_theory(R1,Par,R). %replaces in R1 the probabilities Par and outputs R
update_theory(R,initial,R):-!.
update_theory([],_Par,[]).
update_theory([def_rule(H,B)|T0],Par,[def_rule(H,B)|T]):-!,
update_theory(T0,Par,T).
update_theory([(H:-B)|T0],Par,[(H:-B)|T]):-!,
update_theory(T0,Par,T).
update_theory([rule(N,_H,_B)|T0],Par,T):-
member([N,[1.0|_T]],Par),!,
update_theory(T0,Par,T).
update_theory([rule(N,H,B)|T0],Par,[rule(N,H1,B)|T]):-
member([N,P],Par),!,
reverse(P,P1),
update_head_par(H,P1,H1),
update_theory(T0,Par,T).
update_head_par([],[],[]).
update_head_par([H:_P|T0],[HP|TP],[H:HP|T]):-
update_head_par(T0,TP,T).
cycle_struct([],_DB,R,R,_M,S,_SP,S):-!.
cycle_struct(_B,_DB,R,R,_M,S,SP,S):-
setting(eps,Eps),
setting(eps_f,EpsF),
(
(S-SP)<Eps
;
(X is -S*EpsF,
Y is S-SP,
Y<X)
),
!.
cycle_struct(_Beam,_DB,R,R,0,S,_SP,S):-!.
cycle_struct([(RH,_ScoreH)|T],DB,R0,R,M,Score0,SP0,Score):-
format("Iteration ~d",[M]),nl,nl,
theory_revisions(RH,LR),!, %+R1=rule(NR,[head],[body]), -LR:list of lists, each correponding to a different revised theory
length(LR,NR),%NR:number of different revised theories
write('Number of revisions '),write(NR),nl,
score_refinements(LR,T,T1,1,NR,DB,R0,Score0,SP0,R3,S3,SP),
%-SP, -R3: the best score SP and refined theory R3 (in the form: rule(NR,[head],[body])), from the set of theories generated in revise.pl
write('Best refinement:'),nl,
write_rules(R3,user_output),
M1 is M-1,%decreases the number of max_iter M
format("~nBest score (CLL) ~f~n~n",[S3]),
cycle_struct(T1,DB,R3,R,M1,S3,SP,Score).
score_refinements([],B,B,_N,_NR,_DB,R,S,SP,R,S,SP).
score_refinements([R1|T],B0,B,Nrev,NRef,DB,R0,S0,SP0,R,S,SP):- %scans the list of revised theories; returns S,R, the best (highest) score and revised theory R,after the comparisons at the end
format('Score ref. ~d of ~d~n',[Nrev,NRef]),
write_rules(R1,user_output),
generate_clauses(R1,R2,0,[],Th1),
assert_all(Th1),
assert_all(R2),!,
findall(RN-HN,(rule(RN,HL,_BL),length(HL,HN)),L),
keysort(L,LS),
get_heads(LS,LSH),
length(LSH,NR),
init(NR,LSH),
retractall(v(_,_,_)),
length(DB,NEx),
(setting(examples,atoms)->
setting(group,G),
derive_bdd_nodes_groupatoms(DB,NEx,G,[],Nodes,0,CLL0,LE,[]),!
;
derive_bdd_nodes(DB,NEx,[],Nodes,0,CLL0),!
),
setting(random_restarts_REFnumber,N),
random_restarts_ref(N,Nodes,CLL0,CLL,initial,Par,LE),
end,
update_theory(R2,Par,R3),
write('Updated refinement'),nl,
write_rules(R3,user_output),
Score = CLL,
write('Score (CLL) '),write(Score),nl,nl,nl,
retract_all(Th1),
retract_all(R2),!,
/*compares the score and theory found so far with the latest refinement R1 and associated score*/
(Score>S0->
R4=R3,
S4=Score,
SP1=S0
;
R4=R0,
S4=S0,
SP1=SP0
),
setting(beamsize,BS),
insert_in_order(B0,(R3,Score),BS,B1),
Nrev1 is Nrev+1,
score_refinements(T,B1,B,Nrev1,NRef,DB,R4,S4,SP1,R,S,SP).
insert_in_order([],C,BeamSize,[C]):-
BeamSize>0,!.
insert_in_order(Beam,_New,0,Beam):-!.
insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize,BeamOut):-
Heuristic>Heuristic1,!,
% larger heuristic, insert here
NewBeam=[(Th,Heuristic),(Th1,Heuristic1)|RestBeamIn],
length(NewBeam,L),
(L>BeamSize->
nth(L,NewBeam,_Last,BeamOut)
;
BeamOut=NewBeam
).
insert_in_order([(Th1,Heuristic1)|RestBeamIn],(Th,Heuristic),BeamSize,
[(Th1,Heuristic1)|RestBeamOut]):-
BeamSize1 is BeamSize -1,
insert_in_order(RestBeamIn,(Th,Heuristic),BeamSize1,
RestBeamOut).
remove_int_atom_list([],[]).
remove_int_atom_list([A|T],[A1|T1]):-
A=..[F,_|Arg],
A1=..[F|Arg],
remove_int_atom_list(T,T1).
remove_int_atom(A,A1):-
A=..[F,_|T],
A1=..[F|T].
get_heads([],[]).
get_heads([_-H|T],[H|TN]):-
get_heads(T,TN).
derive_bdd_nodes([],_E,Nodes,Nodes,CLL,CLL).
derive_bdd_nodes([H|T],E,Nodes0,Nodes,CLL0,CLL):-
get_output_atoms(O),
generate_goal(O,H,[],GL),
(prob(H,P)->
CardEx is P*E
;
CardEx is 1.0
),
init_bdd,
one(One),
get_node_list(GL,One,BDD,CardEx),
ret_prob(BDD,HP),
(HP=:=0.0->
setting(logzero,LZ),
CLL1 is CLL0+LZ*CardEx
;
CLL1 is CLL0+log(HP)*CardEx
),
end_bdd,
append(Nodes0,[[BDD,CardEx]],Nodes1),
derive_bdd_nodes(T,E,Nodes1,Nodes,CLL1,CLL).
get_node_list([],BDD,BDD,_CE).
get_node_list([H|T],BDD0,BDD,CE):-
get_node(H,BDD1),
and(BDD0,BDD1,BDD2),
get_node_list(T,BDD2,BDD,CE).
derive_bdd_nodes_groupatoms([],_E,_G,Nodes,Nodes,CLL,CLL,LE,LE).
derive_bdd_nodes_groupatoms([H|T],E,G,Nodes0,Nodes,CLL0,CLL,LE0,LE):- %[H|T] models
get_output_atoms(O),
generate_goal(O,H,[],GL),
length(GL,NA),
(prob(H,P)->
CardEx is P*E/NA
;
CardEx is 1.0/NA
),
get_node_list_groupatoms(GL,BDDs,CardEx,G,CLL0,CLL1,LE0,LE1),
append(Nodes0,BDDs,Nodes1),
derive_bdd_nodes_groupatoms(T,E,G,Nodes1,Nodes,CLL1,CLL,LE1,LE).
get_node_list_groupatoms([],[],_CE,_Gmax,CLL,CLL,LE,LE).
get_node_list_groupatoms([H|T],[[BDD,CE1]|BDDT],CE,Gmax,CLL0,CLL,LE0,LE):-
init_bdd,
one(One),
get_bdd_group([H|T],T1,Gmax,G,One,BDD,CE,LE0,LE1), %output=BDD,CLL
CE1 is CE*(Gmax-G),
ret_prob(BDD,HP),
end_bdd,
(HP =:=0.0->
setting(logzero,LZ),
CLL2 is CLL0+LZ*CE1
;
CLL2 is CLL0+log(HP)*CE1
),
get_node_list_groupatoms(T1,BDDT,CE,Gmax,CLL2,CLL,LE1,LE).
get_bdd_group([],[],G,G,BDD,BDD,_CE,LE,LE):-!.
get_bdd_group(T,T,0,0,BDD,BDD,_CE,LE,LE):- !.
get_bdd_group([H|T],T1,Gmax,G1,BDD0,BDD,CE,[H|LE0],LE):-
get_node(H,BDD1), %creates bdd for atomo H
and(BDD0,BDD1,BDD2),
G is Gmax-1,
get_bdd_group(T,T1,G,G1,BDD2,BDD,CE,LE0,LE).
/* EM start */
random_restarts(0,_Nodes,CLL,CLL,Par,Par,_LE):-!.
random_restarts(N,Nodes,CLL0,CLL,Par0,Par,LE):-
setting(verbosity,Ver),
(Ver>2->
setting(random_restarts_number,NMax),
Num is NMax-N+1,
format("Restart number ~d~n~n",[Num]),
flush_output
;
true
),
randomize,
setting(epsilon_em,EA),
setting(epsilon_em_fraction,ER),
length(Nodes,L),
setting(iter,Iter),
em(Nodes,EA,ER,L,Iter,CLLR,Par1,_ExP),
setting(verbosity,Ver),
(Ver>2->
format("Random_restart: CLL ~f~n",[CLLR])
;
true
),
N1 is N-1,
(CLLR>CLL0->
random_restarts(N1,Nodes,CLLR,CLL,Par1,Par,LE)
;
random_restarts(N1,Nodes,CLL0,CLL,Par0,Par,LE)
).
random_restarts_ref(0,_Nodes,CLL,CLL,Par,Par,_LE):-!.
random_restarts_ref(N,Nodes,CLL0,CLL,Par0,Par,LE):-
setting(verbosity,Ver),
(Ver>2->
setting(random_restarts_REFnumber,NMax),
Num is NMax-N+1,
format("Restart number ~d~n~n",[Num]),
flush_output
;
true
),
setting(epsilon_em,EA),
setting(epsilon_em_fraction,ER),
length(Nodes,L),
setting(iterREF,Iter),
em(Nodes,EA,ER,L,Iter,CLLR,Par1,_ExP),
setting(verbosity,Ver),
(Ver>2->
format("Random_restart: CLL ~f~n",[CLLR])
;
true
),
N1 is N-1,
(CLLR>CLL0->
random_restarts_ref(N1,Nodes,CLLR,CLL,Par1,Par,LE)
;
random_restarts_ref(N1,Nodes,CLL0,CLL,Par0,Par,LE)
).
randomize([],[]):-!.
randomize([rule(N,V,NH,HL,BL,LogF)|T],[rule(N,V,NH,HL1,BL,LogF)|T1]):-
length(HL,L),
Int is 1.0/L,
randomize_head(Int,HL,0,HL1),
randomize(T,T1).
randomize_head(_Int,['':_],P,['':PNull1]):-!,
PNull is 1.0-P,
(PNull>=0.0->
PNull1 =PNull
;
PNull1=0.0
).
randomize_head(Int,[H:_|T],P,[H:PH1|NT]):-
PMax is 1.0-P,
random(0,PMax,PH1),
P1 is P+PH1,
randomize_head(Int,T,P1,NT).
update_head([],[],_N,[]):-!.
update_head([H:_P|T],[PU|TP],N,[H:P|T1]):-
P is PU/N,
update_head(T,TP,N,T1).
/* EM end */
/* utilities */
generate_file_names(File,FileKB,FileIn,FileBG,FileOut,FileL):-
generate_file_name(File,".kb",FileKB),
generate_file_name(File,".cpl",FileIn),
generate_file_name(File,".rules",FileOut),
generate_file_name(File,".bg",FileBG),
generate_file_name(File,".l",FileL).
generate_file_name(File,Ext,FileExt):-
name(File,FileString),
append(FileString,Ext,FileStringExt),
name(FileExt,FileStringExt).
load_models(File,ModulesList):- %carica le interpretazioni, 1 alla volta
open(File,read,Stream),
read_models(Stream,ModulesList),
close(Stream).
read_models(Stream,[Name1|Names]):-
read(Stream,begin(model(Name))),!,
(number(Name)->
name(Name,NameStr),
append("i",NameStr,Name1Str),
name(Name1,Name1Str)
;
Name1=Name
),
read_all_atoms(Stream,Name1),
read_models(Stream,Names).
read_models(_S,[]).
read_all_atoms(Stream,Name):-
read(Stream,At),
At \=end(model(_Name)),!,
(At=neg(Atom)->
Atom=..[Pred|Args],
Atom1=..[Pred,Name|Args],
assertz(neg(Atom1))
;
(At=prob(Pr)->
assertz(prob(Name,Pr))
;
At=..[Pred|Args],
Atom1=..[Pred,Name|Args],
assertz(Atom1)
)
),
read_all_atoms(Stream,Name).
read_all_atoms(_S,_N).
write_param(initial,S):-!,
format("~nInitial parameters~n",[]),
findall(rule(R,H,B),rule(R,H,B),LDis),
findall(rule(d,[H:1.0],B),def_rule(H,B),LDef),
append(LDis,LDef,L),
write_model(L,S).
write_param(L,S):-
reverse(L,L1),
write_par(L1,S).
write_par([],S):-
findall(rule(d,[H:1.0],B),def_rule(H,B),L),
write_model(L,S).
write_par([[N,P]|T],S):-
rule(N,HL0,BL),
reverse(P,PR),
new_par(PR,HL0,HL),
copy_term((HL,BL),(HL1,BL1)),
numbervars((HL1,BL1),0,_M),
write_disj_clause(S,(HL1:-BL1)),
write_par(T,S).
write_rules([],_S).
write_rules([rule(_N,HL,BL)|T],S):-
copy_term((HL,BL),(HL1,BL1)),
numbervars((HL1,BL1),0,_M),
write_disj_clause(S,(HL1:-BL1)),
write_rules(T,S).
new_par([],[],[]).
new_par([HP|TP],[Head:_|TO],[Head:HP|TN]):-
new_par(TP,TO,TN).
write_model([],_Stream):-!.
write_model([rule(_N,HL,BL)|Rest],Stream):-
copy_term((HL,BL),(HL1,BL1)),
numbervars((HL1,BL1),0,_M),
write_disj_clause(Stream,(HL1:-BL1)),
write_model(Rest,Stream).
write_disj_clause(S,(H:-[])):-!,
write_head(S,H),
format(S,".~n~n",[]).
write_disj_clause(S,(H:-B)):-
write_head(S,H),
write(S,' :-'),
nl(S),
write_body(S,B).
write_head(S,[A:1.0|_Rest]):-!,
format(S,"~p",[A]).
write_head(S,[A:P,'':_P]):-!,
format(S,"~p:~g",[A,P]).
write_head(S,[A:P]):-!,
format(S,"~p:~g",[A,P]).
write_head(S,[A:P|Rest]):-
format(S,"~p:~g ; ",[A,P]),
write_head(S,Rest).
write_body(S,[A]):-!,
format(S,"\t~p.~n~n",[A]).
write_body(S,[A|T]):-
format(S,"\t~p,~n",[A]),
write_body(S,T).
list2or([],true):-!.
list2or([X],X):-
X\=;(_,_),!.
list2or([H|T],(H ; Ta)):-!,
list2or(T,Ta).
list2and([],true):-!.
list2and([X],X):-
X\=(_,_),!.
list2and([H|T],(H,Ta)):-!,
list2and(T,Ta).
deduct([],Th,Th).
deduct([M|T],InTheory0,InTheory):-
get_head_atoms(O),
generate_head(O,M,[],HL),
generate_body(HL,InTheory1),
append(InTheory0,InTheory1,InTheory2),
deduct(T,InTheory2,InTheory).
get_head_atoms(O):-
findall(A,modeh(_,A),O).
generate_head([],_M,HL,HL):-!.
generate_head([A|T],M,H0,H1):-
functor(A,F,N),
functor(F1,F,N),
F1=..[F|Arg],
Pred1=..[F,M|Arg],
findall((A,Pred1),call(neg(Pred1)),L),
setting(initial_clauses_modeh,IC), %IC: represents how many samples are extracted from the list L of example
sample(IC,L,L1), %+IC,L, -L1
append(H0,L1,H2),
generate_head(T,M,H2,H1).
sample(0,_List,[]):-!.
sample(N,List,List):-
length(List,L),
L=<N,!.
sample(N,List,[El|List1]):-
length(List,L),
random(0,L,Pos),
nth0(Pos,List,El,Rest),
N1 is N-1,
sample(N1,Rest,List1).
generate_body([],[]):-!.
generate_body([(A,H)|T],[(Head:0.5:-Body)|CL0]):-
findall((R,B),modeb(R,B),BL),
A=..[F|ArgsTypes],
H=..[F,M|Args],
setting(d,D),
cycle_modeb(ArgsTypes,Args,[],[],BL,a,[],BLout0,D,M),
remove_duplicates(BLout0,BLout),
variabilize((H:-BLout),CLV), %+(Head):-Bodylist; -CLV:(Head):-Bodylist with variables _num in place of constants
copy_term((H:-BLout),CLa),
numbervars(CLa,0,_N1),
copy_term(CLV,CLav),
numbervars(CLav,0,_N1v),
CLV=(Head1:-BodyList1),
remove_int_atom(Head1,Head),
remove_int_atom_list(BodyList1,BodyList),
list2and(BodyList,Body),
generate_body(T,CL0).
variabilize((H:-B),(H1:-B1)):-
variabilize_list([H|B],[H1|B1],[],_AS,_M).
variabilize_list([],[],A,A,_M).
variabilize_list([H|T],[H1|T1],A0,A,M):-
H=..[F,_M|Args],
variabilize_args(Args,Args1,A0,A1),
H1=..[F,M|Args1],
variabilize_list(T,T1,A1,A,M).
variabilize_args([],[],A,A).
variabilize_args([C|T],[V|TV],A0,A):-
member(C/V,A0),!,
variabilize_args(T,TV,A0,A).
variabilize_args([C|T],[V|TV],A0,A):-
variabilize_args(T,TV,[C/V|A0],A).
cycle_modeb(ArgsTypes,Args,ArgsTypes,Args,_BL,L,L,L,_,_M):-!.
cycle_modeb(_ArgsTypes,_Args,_ArgsTypes1,_Args1,_BL,_L,L,L,0,_M):-!.
cycle_modeb(ArgsTypes,Args,_ArgsTypes0,_Args0,BL,_L0,L1,L,D,M):-
find_atoms(BL,ArgsTypes,Args,ArgsTypes1,Args1,L1,L2,M),
D1 is D-1,
cycle_modeb(ArgsTypes1,Args1,ArgsTypes,Args,BL,L1,L2,L,D1,M).
find_atoms([],ArgsTypes,Args,ArgsTypes,Args,L,L,_M).
find_atoms([(R,H)|T],ArgsTypes0,Args0,ArgsTypes,Args,L0,L1,M):-
H=..[F|ArgsT],
findall(A,instantiate_query(ArgsT,ArgsTypes0,Args0,F,M,A),L),
call_atoms(L,[],At),
remove_duplicates(At,At1),
(R = '*' ->
R1= +inf
;
R1=R
),
sample(R1,At1,At2),
extract_output_args(At2,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1),
append(L0,At2,L2),
find_atoms(T,ArgsTypes1,Args1,ArgsTypes,Args,L2,L1,M).
call_atoms([],A,A).
call_atoms([H|T],A0,A):-
findall(H,H,L),
append(A0,L,A1),
call_atoms(T,A1,A).
extract_output_args([],_ArgsT,ArgsTypes,Args,ArgsTypes,Args).
extract_output_args([H|T],ArgsT,ArgsTypes0,Args0,ArgsTypes,Args):-
H=..[_F,_M|ArgsH],
add_const(ArgsH,ArgsT,ArgsTypes0,Args0,ArgsTypes1,Args1),
extract_output_args(T,ArgsT,ArgsTypes1,Args1,ArgsTypes,Args).
add_const([],[],ArgsTypes,Args,ArgsTypes,Args).
add_const([_A|T],[+_T|TT],ArgsTypes0,Args0,ArgsTypes,Args):-!,
add_const(T,TT,ArgsTypes0,Args0,ArgsTypes,Args).
add_const([A|T],[-Type|TT],ArgsTypes0,Args0,ArgsTypes,Args):-
(already_present(ArgsTypes0,Args0,A,Type)->
ArgsTypes1=ArgsTypes0,
Args1=Args0
;
ArgsTypes1=[+Type|ArgsTypes0],
Args1=[A|Args0]
),
add_const(T,TT,ArgsTypes1,Args1,ArgsTypes,Args).
already_present([+T|_TT],[C|_TC],C,T):-!.
already_present([_|TT],[_|TC],C,T):-
already_present(TT,TC,C,T).
instantiate_query(ArgsT,ArgsTypes,Args,F,M,A):-
instantiate_input(ArgsT,ArgsTypes,Args,ArgsB),
A=..[F,M|ArgsB].
instantiate_input([],_AT,_A,[]).
instantiate_input([-_Type|T],AT,A,[_V|TA]):-!,
instantiate_input(T,AT,A,TA).
instantiate_input([+Type|T],AT,A,[H|TA]):-
find_val(AT,A,+Type,H),
instantiate_input(T,AT,A,TA).
find_val([T|_TT],[A|_TA],T,A).
find_val([_T|TT],[_A|TA],T,A):-
find_val(TT,TA,T,A).
get_output_atoms(O):-
findall((A/Ar),output((A/Ar)),O).
generate_goal([],_H,G,G):-!.
generate_goal([P/A|T],H,G0,G1):-
functor(Pred,P,A),
Pred=..[P|Rest],
Pred1=..[P,H|Rest],
findall(Pred1,call(Pred1),L),
findall(\+ Pred1,call(neg(Pred1)),LN),
append(G0,L,G2),
append(G2,LN,G3),
generate_goal(T,H,G3,G1).
:-[inference_sl].