1710 lines
34 KiB
C
Executable File
1710 lines
34 KiB
C
Executable File
/*************************************************************************
|
|
* *
|
|
* YAP Prolog *
|
|
* *
|
|
* Yap Prolog was developed at NCCUP - Universidade do Porto *
|
|
* *
|
|
* Copyright L.Damas, V.S.Costa and Universidade do Porto 1985-1997 *
|
|
* *
|
|
**************************************************************************
|
|
* *
|
|
* File: gmp_support.c *
|
|
* Last rev: *
|
|
* mods: *
|
|
* comments: bignum code *
|
|
* *
|
|
*************************************************************************/
|
|
|
|
#include "Yap.h"
|
|
#include "Yatom.h"
|
|
#include "YapHeap.h"
|
|
#include "eval.h"
|
|
#if HAVE_STRING_H
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#if USE_GMP
|
|
|
|
static inline Term
|
|
MkBigAndClose(MP_INT *new)
|
|
{
|
|
Term t = Yap_MkBigIntTerm(new);
|
|
mpz_clear(new);
|
|
if (t == TermNil) {
|
|
return Yap_ArithError(RESOURCE_ERROR_STACK, t, ">>/2");
|
|
}
|
|
return t;
|
|
}
|
|
|
|
static inline Term
|
|
MkRatAndClose(MP_RAT *new)
|
|
{
|
|
Term t = Yap_MkBigRatTerm(new);
|
|
mpq_clear(new);
|
|
if (t == TermNil) {
|
|
return Yap_ArithError(RESOURCE_ERROR_STACK, t, ">>/2");
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* add i + j using temporary bigint new */
|
|
Term
|
|
Yap_gmp_add_ints(Int i, Int j)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new,i);
|
|
if (j > 0) {
|
|
mpz_add_ui(&new, &new, j);
|
|
} else {
|
|
if (j-1 > 0) { /* negative overflow */
|
|
mpz_sub_ui(&new, &new, -(j+1));
|
|
mpz_sub_ui(&new, &new, 1);
|
|
} else {
|
|
mpz_sub_ui(&new, &new, -j);
|
|
}
|
|
}
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sub_ints(Int i, Int j)
|
|
{
|
|
MP_INT new;
|
|
Term t;
|
|
|
|
mpz_init_set_si(&new,i);
|
|
if (j > 0) {
|
|
mpz_sub_ui(&new, &new, j);
|
|
} else {
|
|
if (j-1 > 0) { /* negative overflow */
|
|
mpz_add_ui(&new, &new, -(j+1));
|
|
mpz_add_ui(&new, &new, 1);
|
|
} else {
|
|
mpz_add_ui(&new, &new, -j);
|
|
}
|
|
}
|
|
return MkBigAndClose(&new);
|
|
t = Yap_MkBigIntTerm(&new);
|
|
mpz_clear(&new);
|
|
return t;
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mul_ints(Int i, Int j)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new,i);
|
|
mpz_mul_si(&new, &new, j);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sll_ints(Int i, Int j)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new,i);
|
|
mpz_mul_2exp(&new, &new, j);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
/* add i + b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_add_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
mpz_init_set_si(&new, i);
|
|
mpz_add(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_add(&new, &new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* sub i - b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_sub_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new, i);
|
|
mpz_sub(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_sub(&new, &new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* add i + b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_mul_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new, i);
|
|
mpz_mul(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_mul(&new, &new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* sub i - b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_sub_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new, i);
|
|
mpz_neg(&new, &new);
|
|
mpz_add(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_sub(&new, b, &new);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* div i / b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_div_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
/* cool */
|
|
return MkIntTerm(0);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_div(&new, &new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* div b / i using temporary bigint new */
|
|
Term
|
|
Yap_gmp_div_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set(&new, b);
|
|
if (yap_flags[INTEGER_ROUNDING_FLAG] == 0) {
|
|
if (i > 0) {
|
|
mpz_tdiv_q_ui(&new, &new, i);
|
|
} else if (i == 0) {
|
|
return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, MkIntTerm(0), "// /2");
|
|
} else {
|
|
/* we do not handle MIN_INT */
|
|
mpz_tdiv_q_ui(&new, &new, -i);
|
|
mpz_neg(&new, &new);
|
|
}
|
|
} else {
|
|
if (i > 0) {
|
|
mpz_fdiv_q_ui(&new, &new, i);
|
|
} else if (i == 0) {
|
|
return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, MkIntTerm(0), "// /2");
|
|
} else {
|
|
/* we do not handle MIN_INT */
|
|
mpz_fdiv_q_ui(&new, &new, -i);
|
|
mpz_neg(&new, &new);
|
|
}
|
|
}
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_div(&new, b, &new);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* div b / i using temporary bigint new */
|
|
Term
|
|
Yap_gmp_div2_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set(&new, b);
|
|
if (i > 0) {
|
|
mpz_fdiv_q_ui(&new, &new, i);
|
|
} else if (i == 0) {
|
|
return Yap_ArithError(EVALUATION_ERROR_ZERO_DIVISOR, MkIntTerm(0), "// /2");
|
|
} else {
|
|
/* we do not handle MIN_INT */
|
|
mpz_fdiv_q_ui(&new, &new, -i);
|
|
mpz_neg(&new, &new);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i, 1L);
|
|
mpq_div(&new, b, &new);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* and i - b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_and_int_big(Int i, Term t)
|
|
{
|
|
MP_INT new;
|
|
CELL *pt = RepAppl(t);
|
|
MP_INT *b;
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "/\\/2");
|
|
}
|
|
b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new, i);
|
|
mpz_and(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
/* or i - b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_ior_int_big(Int i, Term t)
|
|
{
|
|
MP_INT new;
|
|
CELL *pt = RepAppl(t);
|
|
MP_INT *b;
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "\\/ /2");
|
|
}
|
|
b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new, i);
|
|
mpz_ior(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
#if USE_GMP
|
|
#if !defined(HAVE_MPZ_XOR)
|
|
static void
|
|
mpz_xor(MP_INT *new, MP_INT *r1, MP_INT *r2)
|
|
{
|
|
MP_INT *n2, *n3;
|
|
|
|
mpz_new(n2);
|
|
mpz_new(n3);
|
|
mpz_ior(new, r1, r2);
|
|
mpz_com(n2, r1);
|
|
mpz_and(n2, n2, new);
|
|
mpz_com(n3, r2);
|
|
mpz_and(n3, n3, new);
|
|
mpz_ior(new, n2, n3);
|
|
mpz_clear(n2);
|
|
mpz_clear(n3);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
/* or i - b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_xor_int_big(Int i, Term t)
|
|
{
|
|
MP_INT new;
|
|
CELL *pt = RepAppl(t);
|
|
MP_INT *b;
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "#/2");
|
|
}
|
|
b = Yap_BigIntOfTerm(t);
|
|
|
|
mpz_init_set_si(&new,i);
|
|
mpz_xor(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
/* <<< i + b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_sll_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
if (i > 0) {
|
|
mpz_init_set(&new, b);
|
|
mpz_mul_2exp(&new, &new, i);
|
|
} else if (i == 0) {
|
|
return t;
|
|
} else {
|
|
mpz_init_set(&new, b);
|
|
if (i == Int_MIN) {
|
|
return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, MkIntegerTerm(i), "<</2");
|
|
}
|
|
mpz_tdiv_q_2exp(&new, &new, -i);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
|
|
if (i > 0) {
|
|
mpq_init(&new);
|
|
mpq_mul_2exp (&new, b, i);
|
|
} else if (i == 0) {
|
|
return t;
|
|
} else {
|
|
mpq_init(&new);
|
|
mpq_div_2exp (&new, b, i);
|
|
}
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_add_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_add(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_add(&new, b1, b2);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sub_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_sub(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_sub(&new, b1, b2);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mul_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_mul(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
int f1 = FALSE, f2 = FALSE;
|
|
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
f1 = TRUE;
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
f2 = TRUE;
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_mul(&new, b1, b2);
|
|
if (f1) mpq_clear(b1);
|
|
if (f2) mpq_clear(b2);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* div i / b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_div_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
if (yap_flags[INTEGER_ROUNDING_FLAG] == 0) {
|
|
mpz_tdiv_q(&new, &new, b2);
|
|
} else {
|
|
mpz_fdiv_q(&new, &new, b2);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_div(&new, b1, b2);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
/* div i div b using temporary bigint new */
|
|
Term
|
|
Yap_gmp_div2_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_fdiv_q(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_div(&new, b1, b2);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_and_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_and(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "/\\/2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "/\\/2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_ior_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_ior(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "\\/ /2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "\\/ /2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_xor_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_xor(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "\\/ /2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "\\/ /2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mod_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init(&new);
|
|
mpz_fdiv_r(&new, b1, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "mod/2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "mod/2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mod_big_int(Term t, Int i2)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "mod/2");
|
|
} else {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new, i2);
|
|
mpz_fdiv_r(&new, b, &new);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mod_int_big(Int i1, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "mod/2");
|
|
} else {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
/* integer is much smaller */
|
|
|
|
if (mpz_sgn(b) > 0) {
|
|
/* easy case next */
|
|
if (i1 > 0) {
|
|
/* 2 mod 23 -> 2 */
|
|
return MkIntegerTerm(i1);
|
|
} else {
|
|
MP_INT new;
|
|
|
|
/* 2 mod -23 -> 21 */
|
|
mpz_init_set_si(&new, i1);
|
|
mpz_add(&new, &new, b);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
} else {
|
|
if (i1 > 0) {
|
|
MP_INT new;
|
|
|
|
/* -2 mod 23 -> 21 */
|
|
mpz_init_set_si(&new, i1);
|
|
mpz_add(&new, b, &new);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
/* -2 mod -23 -> -2 */
|
|
return MkIntegerTerm(i1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_rem_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init(&new);
|
|
mpz_tdiv_r(&new, b1, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "rem/2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "rem/2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_rem_big_int(Term t, Int i2)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "mod/2");
|
|
} else {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new, i2);
|
|
mpz_tdiv_r(&new, b, &new);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_rem_int_big(Int i1, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "mod/2");
|
|
} else {
|
|
/* integer is much smaller */
|
|
return MkIntegerTerm(i1);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_gcd_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT new;
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpz_init_set(&new, b1);
|
|
mpz_gcd(&new, &new, b2);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t1, "gcd/2");
|
|
}
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t2, "gcd/2");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_gcd_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] != BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "mod/2");
|
|
} else {
|
|
/* integer is much smaller */
|
|
if (i > 0) {
|
|
return MkIntegerTerm(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t),i));
|
|
} else if (i == 0) {
|
|
return MkIntTerm(0);
|
|
} else {
|
|
return MkIntegerTerm(mpz_gcd_ui(NULL,Yap_BigIntOfTerm(t),-i));
|
|
}
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_float_to_big(Float v)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_d(&new, v);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Float
|
|
Yap_gmp_to_float(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return mpz_get_d(b);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return mpq_get_d(b);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_add_float_big(Float d, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(d+mpz_get_d(b));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(d+mpq_get_d(b));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sub_float_big(Float d, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(d-mpz_get_d(b));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(d-mpq_get_d(b));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sub_big_float(Term t, Float d)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(mpz_get_d(b)-d);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(mpq_get_d(b)-d);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_mul_float_big(Float d, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(d*mpz_get_d(b));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(d*mpq_get_d(b));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_fdiv_float_big(Float d, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(d/mpz_get_d(b));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(d/mpq_get_d(b));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_fdiv_big_float(Term t, Float d)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return MkFloatTerm(mpz_get_d(b)/d);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return MkFloatTerm(mpq_get_d(b)/d);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_exp_int_int(Int i1, Int i2)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new, i1);
|
|
mpz_pow_ui (&new, &new, (unsigned long int)i2);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_exp_big_int(Term t, Int i)
|
|
{
|
|
MP_INT new;
|
|
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
if (i > 0) {
|
|
mpz_init(&new);
|
|
mpz_pow_ui (&new, b, (unsigned long int)i);
|
|
} else {
|
|
MP_INT new;
|
|
if (i==0) return MkIntTerm(1);
|
|
mpz_init_set_si(&new, i);
|
|
mpz_powm (&new, b, &new, b);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
Float dbl = mpq_get_d(b);
|
|
return MkFloatTerm(pow(dbl,i));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_exp_int_big(Int i, Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t, "^/2");
|
|
} else {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
Float dbl = mpz_get_d(b);
|
|
return MkFloatTerm(pow(i,dbl));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_exp_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
Float dbl1, dbl2;
|
|
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
return Yap_ArithError(RESOURCE_ERROR_HUGE_INT, t2, "^/2");
|
|
} else {
|
|
if (pt1[1] != BIG_INT) {
|
|
dbl1 = mpz_get_d(Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
dbl1 = mpq_get_d(Yap_BigRatOfTerm(t1));
|
|
}
|
|
if (pt2[2] != BIG_INT) {
|
|
dbl2 = mpz_get_d(Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
dbl2 = mpq_get_d(Yap_BigRatOfTerm(t2));
|
|
}
|
|
return MkFloatTerm(pow(dbl1,dbl2));
|
|
}
|
|
}
|
|
|
|
|
|
Term
|
|
Yap_gmp_big_from_64bits(YAP_LONG_LONG i)
|
|
{
|
|
char s[64];
|
|
MP_INT new;
|
|
|
|
#ifdef _WIN32
|
|
snprintf(s,64,"%I64d", (long long int)i);
|
|
#elif HAVE_SNPRINTF
|
|
snprintf(s, 64, "%lld", (long long int)i);
|
|
#else
|
|
sprintf(s, "%lld", (long long int)i);
|
|
#endif
|
|
mpz_init_set_str (&new, s, 10);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmq_rdiv_int_int(Int i1, Int i2)
|
|
{
|
|
MP_RAT new;
|
|
|
|
mpq_init(&new);
|
|
if (i2 < 0) {
|
|
i1 = -i1;
|
|
i2 = -i2;
|
|
}
|
|
mpq_set_si(&new, i1, i2);
|
|
mpq_canonicalize(&new);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmq_rdiv_int_big(Int i1, Term t2)
|
|
{
|
|
MP_RAT new;
|
|
CELL *pt2 = RepAppl(t2);
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i1, 1L);
|
|
if (pt2[1] == BIG_INT) {
|
|
MP_RAT new2;
|
|
MP_INT *b = Yap_BigIntOfTerm(t2);
|
|
|
|
mpq_init(&new2);
|
|
mpq_set_z(&new2, b);
|
|
mpq_div(&new,&new,&new2);
|
|
mpq_clear(&new2);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t2);
|
|
mpq_div(&new,&new,b);
|
|
}
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmq_rdiv_big_int(Term t1, Int i2)
|
|
{
|
|
MP_RAT new;
|
|
CELL *pt1 = RepAppl(t1);
|
|
|
|
mpq_init(&new);
|
|
mpq_set_si(&new, i2, 1L);
|
|
if (pt1[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t1);
|
|
MP_RAT new2;
|
|
|
|
mpq_init(&new2);
|
|
mpq_set_z(&new2, b);
|
|
mpq_div(&new,&new2,&new);
|
|
mpq_clear(&new2);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t1);
|
|
|
|
mpq_div(&new,b,&new);
|
|
}
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmq_rdiv_big_big(Term t1, Term t2)
|
|
{
|
|
MP_RAT new;
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
|
|
mpq_init(&new);
|
|
if (pt1[1] == BIG_INT) {
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
mpq_set_z(&new, b1);
|
|
} else {
|
|
MP_RAT *b1 = Yap_BigRatOfTerm(t1);
|
|
mpq_set(&new, b1);
|
|
}
|
|
|
|
if (pt2[1] == BIG_INT) {
|
|
MP_RAT new2;
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
mpq_init(&new2);
|
|
mpq_set_z(&new2, b2);
|
|
mpq_div(&new,&new,&new2);
|
|
mpq_clear(&new2);
|
|
} else {
|
|
MP_RAT *b2 = Yap_BigRatOfTerm(t2);
|
|
mpq_div(&new,&new,b2);
|
|
}
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_fdiv_int_big(Int i1, Term t2)
|
|
{
|
|
MP_RAT new;
|
|
MP_RAT *b1, *b2;
|
|
MP_RAT bb1, bb2;
|
|
Float d;
|
|
CELL *pt2 = RepAppl(t2);
|
|
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_si(b1, i1, 1L);
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_div(&new, b1, b2);
|
|
d = mpq_get_d(&new);
|
|
mpq_clear(&new);
|
|
return MkFloatTerm(d);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_fdiv_big_int(Term t2, Int i1)
|
|
{
|
|
MP_RAT new;
|
|
MP_RAT *b1, *b2;
|
|
MP_RAT bb1, bb2;
|
|
Float d;
|
|
CELL *pt2 = RepAppl(t2);
|
|
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_si(b1, i1, 1L);
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_div(&new, b2, b1);
|
|
d = mpq_get_d(&new);
|
|
mpq_clear(&new);
|
|
return MkFloatTerm(d);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_fdiv_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
MP_RAT new;
|
|
MP_RAT *b1, bb1;
|
|
MP_RAT *b2, bb2;
|
|
Float d;
|
|
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
mpq_init(&new);
|
|
mpq_div(&new, b1, b2);
|
|
d = mpq_get_d(&new);
|
|
mpq_clear(&new);
|
|
return MkFloatTerm(d);
|
|
}
|
|
|
|
int
|
|
Yap_gmp_cmp_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return mpz_cmp_si(b,i);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return mpq_cmp_si(b,i,1);
|
|
}
|
|
}
|
|
|
|
int
|
|
Yap_gmp_cmp_big_float(Term t, Float d)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return mpz_cmp_d(b,d);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
Float d1 = mpq_get_d(b);
|
|
if (d1 < d)
|
|
return -1;
|
|
if (d1 == d)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
Yap_gmp_cmp_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
return mpz_cmp(b1, b2);
|
|
} else {
|
|
MP_RAT *b1 = NULL, bb1;
|
|
int f1 = FALSE;
|
|
MP_RAT *b2 = NULL, bb2;
|
|
int f2 = FALSE;
|
|
if (pt1[1] == BIG_INT) {
|
|
b1 = &bb1;
|
|
f1 = TRUE;
|
|
mpq_init(b1);
|
|
mpq_set_z(b1, Yap_BigIntOfTerm(t1));
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
b2 = &bb2;
|
|
f2 = TRUE;
|
|
|
|
mpq_init(b2);
|
|
mpq_set_z(b2, Yap_BigIntOfTerm(t2));
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
if (f1)
|
|
mpq_clear(b1);
|
|
if (f2)
|
|
mpq_clear(b2);
|
|
return mpq_cmp(b1, b2);
|
|
}
|
|
}
|
|
|
|
int
|
|
Yap_gmp_tcmp_big_int(Term t, Int i)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return mpz_cmp_si(b,i);
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int
|
|
Yap_gmp_tcmp_big_float(Term t, Float d)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
Yap_gmp_tcmp_big_big(Term t1, Term t2)
|
|
{
|
|
CELL *pt1 = RepAppl(t1);
|
|
CELL *pt2 = RepAppl(t2);
|
|
if (pt1[1] == BIG_INT && pt2[1] == BIG_INT) {
|
|
MP_INT *b1 = Yap_BigIntOfTerm(t1);
|
|
MP_INT *b2 = Yap_BigIntOfTerm(t2);
|
|
|
|
return mpz_cmp(b1, b2);
|
|
} else {
|
|
MP_RAT *b1, *b2;
|
|
|
|
if (pt1[1] == BIG_INT) {
|
|
return 1;
|
|
} else {
|
|
b1 = Yap_BigRatOfTerm(t1);
|
|
}
|
|
if (pt2[1] == BIG_INT) {
|
|
return -1;
|
|
} else {
|
|
b2 = Yap_BigRatOfTerm(t2);
|
|
}
|
|
return mpq_cmp(b1, b2);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_neg_int(Int i)
|
|
{
|
|
MP_INT new;
|
|
|
|
mpz_init_set_si(&new, Int_MIN);
|
|
mpz_neg(&new, &new);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_neg_big(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
MP_INT new;
|
|
mpz_init_set(&new, b);
|
|
mpz_neg(&new, &new);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_RAT new;
|
|
mpq_init(&new);
|
|
mpq_neg(&new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_float_to_rational(Float dbl)
|
|
{
|
|
MP_RAT new;
|
|
mpq_init(&new);
|
|
mpq_set_d(&new, dbl);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
|
A is rationalize(Float)
|
|
|
|
Introduced on the suggestion of Richard O'Keefe after the Common Lisp
|
|
standard. The algorithm is taken from figure 3 in ``A Rational Rotation
|
|
Method for Robust Geometric Algorithms'' by John Canny, Bruce Donald and
|
|
Eugene K. Ressler. Found at
|
|
|
|
http://www.cs.dartmouth.edu/~brd/papers/rotations-scg92.pdf
|
|
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
|
|
|
|
#ifndef DBL_EPSILON /* normal for IEEE 64-bit double */
|
|
#define DBL_EPSILON 0.00000000000000022204
|
|
#endif
|
|
|
|
Term
|
|
Yap_gmp_float_rationalize(Float dbl)
|
|
{
|
|
Float e0 = dbl, p0 = 0.0, q0 = 1.0;
|
|
Float e1 = -1.0, p1 = 1.0, q1 = 0.0;
|
|
Float d;
|
|
MP_RAT new;
|
|
|
|
do { Float r = floor(e0/e1);
|
|
Float e00 = e0, p00 = p0, q00 = q0;
|
|
e0 = e1;
|
|
p0 = p1;
|
|
q0 = q1;
|
|
e1 = e00 - r*e1;
|
|
p1 = p00 - r*p1;
|
|
q1 = q00 - r*q1;
|
|
|
|
d = p1/q1 - dbl;
|
|
} while(fabs(d) > DBL_EPSILON);
|
|
|
|
mpz_init_set_d(mpq_numref(&new), p1);
|
|
mpz_init_set_d(mpq_denref(&new), q1);
|
|
mpq_canonicalize(&new); /* is this needed? */
|
|
return MkRatAndClose(&new);
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_abs_big(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
MP_INT new;
|
|
mpz_init_set(&new, b);
|
|
mpz_abs(&new, &new);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_RAT new;
|
|
mpq_init(&new);
|
|
mpq_abs(&new, b);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_unot_big(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
MP_INT new;
|
|
mpz_init_set(&new, b);
|
|
mpz_com(&new, &new);
|
|
return MkBigAndClose(&new);
|
|
} else {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "#/1");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_floor(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return t;
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_INT new;
|
|
mpz_init(&new);
|
|
mpz_set_q(&new, b);
|
|
if (mpq_sgn(b) < 0 && mpz_cmp_si(mpq_denref(b),1L) != 0) {
|
|
mpz_sub_ui(&new,&new,1L);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_ceiling(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return t;
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_INT new;
|
|
mpz_init(&new);
|
|
mpz_set_q(&new, b);
|
|
if (mpq_sgn(b) > 0 && mpz_cmp_si(mpq_denref(b),1L) != 0) {
|
|
mpz_add_ui(&new,&new,1L);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_round(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return t;
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_INT new;
|
|
MP_RAT half, q;
|
|
|
|
mpq_init(&half);
|
|
mpq_init(&q);
|
|
mpq_set_ui(&half, 1, 2); /* 1/2 */
|
|
if ( mpq_sgn(b) > 0 )
|
|
mpq_add(&q, b, &half);
|
|
else {
|
|
mpq_sub(&q, b, &half);
|
|
}
|
|
mpz_init(&new);
|
|
mpz_set_q(&new, &q);
|
|
mpq_clear(&half);
|
|
mpq_clear(&q);
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_trunc(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return t;
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_INT new;
|
|
int sgn = mpq_sgn(b);
|
|
|
|
if (sgn)
|
|
mpq_neg(b, b);
|
|
mpz_init(&new);
|
|
mpz_set_q(&new, b);
|
|
if (sgn) {
|
|
mpq_neg(b, b);
|
|
mpz_neg(&new, &new);
|
|
}
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_float_fractional_part(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_fractional_part(%f)", FloatOfTerm(t));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_RAT new;
|
|
|
|
mpq_init(&new);
|
|
mpz_tdiv_q(mpq_numref(&new),
|
|
mpq_numref(b),
|
|
mpq_denref(b));
|
|
mpz_set_ui(mpq_denref(&new), 1);
|
|
mpq_sub(&new, b, &new);
|
|
return MkRatAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_float_integer_part(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return Yap_ArithError(TYPE_ERROR_FLOAT, t, "X is float_integer_part(%f)", FloatOfTerm(t));
|
|
} else {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
MP_INT new;
|
|
|
|
mpz_init(&new);
|
|
mpz_tdiv_q(&new,
|
|
mpq_numref(b),
|
|
mpq_denref(b));
|
|
return MkBigAndClose(&new);
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_sign(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
return MkIntegerTerm(mpz_sgn(Yap_BigIntOfTerm(t)));
|
|
} else {
|
|
return MkIntegerTerm(mpq_sgn(Yap_BigRatOfTerm(t)));
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_lsb(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *big = Yap_BigIntOfTerm(t);
|
|
if ( mpz_sgn(big) <= 0 ) {
|
|
return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t,
|
|
"lsb/1 received negative bignum");
|
|
}
|
|
return MkIntegerTerm(mpz_scan1(big,0));
|
|
} else {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "lsb");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_msb(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *big = Yap_BigIntOfTerm(t);
|
|
if ( mpz_sgn(big) <= 0 ) {
|
|
return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t,
|
|
"msb/1 received negative bignum");
|
|
}
|
|
return MkIntegerTerm(mpz_sizeinbase(big,2));
|
|
} else {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "popcount");
|
|
}
|
|
}
|
|
|
|
Term
|
|
Yap_gmp_popcount(Term t)
|
|
{
|
|
CELL *pt = RepAppl(t);
|
|
if (pt[1] == BIG_INT) {
|
|
MP_INT *big = Yap_BigIntOfTerm(t);
|
|
if ( mpz_sgn(big) <= 0 ) {
|
|
return Yap_ArithError(DOMAIN_ERROR_NOT_LESS_THAN_ZERO, t,
|
|
"popcount/1 received negative bignum");
|
|
}
|
|
return MkIntegerTerm(mpz_popcount(big));
|
|
} else {
|
|
return Yap_ArithError(TYPE_ERROR_INTEGER, t, "popcount");
|
|
}
|
|
}
|
|
|
|
char *
|
|
Yap_gmp_to_string(Term t, char *s, size_t sz, int base)
|
|
{
|
|
if (RepAppl(t)[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
|
|
if (s) {
|
|
size_t size = mpz_sizeinbase(b, base);
|
|
if (size+2 > sz) {
|
|
return NULL;
|
|
}
|
|
}
|
|
return mpz_get_str (s, base, b);
|
|
} else if (RepAppl(t)[1] == BIG_RATIONAL) {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
size_t pos;
|
|
size_t siz =
|
|
mpz_sizeinbase(mpq_numref(b), base)+
|
|
mpz_sizeinbase(mpq_denref(b), base)+
|
|
8;
|
|
if (s) {
|
|
if (siz > sz) {
|
|
return NULL;
|
|
}
|
|
} else {
|
|
if (!(s = malloc(siz)))
|
|
return NULL;
|
|
}
|
|
strncpy(s,"rdiv(",sz);
|
|
pos = strlen(s);
|
|
mpz_get_str (s+pos, base, mpq_numref(b));
|
|
pos = strlen(s);
|
|
s[pos] = ',';
|
|
mpz_get_str (s+(pos+1), base, mpq_denref(b));
|
|
pos = strlen(s);
|
|
s[pos] = ')';
|
|
}
|
|
return s;
|
|
}
|
|
|
|
size_t
|
|
Yap_gmp_to_size(Term t, int base)
|
|
{
|
|
if (RepAppl(t)[1] == BIG_INT) {
|
|
MP_INT *b = Yap_BigIntOfTerm(t);
|
|
return mpz_sizeinbase(b, base);
|
|
} else if (RepAppl(t)[1] == BIG_RATIONAL) {
|
|
MP_RAT *b = Yap_BigRatOfTerm(t);
|
|
return
|
|
mpz_sizeinbase(mpq_numref(b), base)+
|
|
mpz_sizeinbase(mpq_denref(b), base)+
|
|
8;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
Yap_term_to_existing_big(Term t, MP_INT *b)
|
|
{
|
|
if (IsVarTerm(t))
|
|
return FALSE;
|
|
if (IsIntegerTerm(t)) {
|
|
mpz_set_si(b,IntegerOfTerm(t));
|
|
return TRUE;
|
|
}
|
|
if (IsBigIntTerm(t)) {
|
|
if (RepAppl(t)[1] != BIG_INT)
|
|
return FALSE;
|
|
mpz_set(b,Yap_BigIntOfTerm(t));
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
int
|
|
Yap_term_to_existing_rat(Term t, MP_RAT *b)
|
|
{
|
|
if (IsVarTerm(t))
|
|
return FALSE;
|
|
if (IsIntegerTerm(t)) {
|
|
mpq_set_si(b, IntegerOfTerm(t), 1);
|
|
return TRUE;
|
|
}
|
|
if (IsBigIntTerm(t)) {
|
|
CELL flag = RepAppl(t)[1];
|
|
if (flag == BIG_INT) {
|
|
mpq_set_z(b, Yap_BigIntOfTerm(t));
|
|
return TRUE;
|
|
}
|
|
if (flag == BIG_RATIONAL) {
|
|
mpq_set(b, Yap_BigRatOfTerm(t));
|
|
return TRUE;
|
|
}
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
#endif
|
|
|
|
|