1318 lines
34 KiB
Prolog
1318 lines
34 KiB
Prolog
/**
|
||
@defgroup Gecode_and_ClPbBFDbC Programming Finite Domain Constraints in YAP/Gecode
|
||
@ingroup Gecode
|
||
@{
|
||
|
||
The gecode/clp(fd) interface is designed to use the GECODE functionality
|
||
in a more CLP like style. It requires
|
||
|
||
~~~~~{.prolog}
|
||
:- use_module(library(gecode/clpfd)).
|
||
~~~~~
|
||
Several example programs are available with the distribution.
|
||
|
||
Integer variables are declared as:
|
||
|
||
+ _V_ in _A_.. _B_
|
||
declares an integer variable _V_ with range _A_ to _B_.
|
||
+ _Vs_ ins _A_.. _B_
|
||
declares a set of integer variabless _Vs_ with range _A_ to _B_.
|
||
+ boolvar( _V_)
|
||
declares a boolean variable.
|
||
+ boolvars( _Vs_)
|
||
declares a set of boolean variable.
|
||
|
||
|
||
Constraints supported are:
|
||
|
||
*/
|
||
|
||
|
||
:- module(gecode_clpfd, [
|
||
op(100, yf, []),
|
||
op(760, yfx, #<==>),
|
||
op(750, xfy, #==>),
|
||
op(750, yfx, #<==),
|
||
op(740, yfx, #\/),
|
||
op(730, yfx, #\),
|
||
op(720, yfx, #/\),
|
||
op(710, fy, #\),
|
||
op(705, xfx, where),
|
||
op(700, xfx, #>),
|
||
op(700, xfx, #<),
|
||
op(700, xfx, #>=),
|
||
op(700, xfx, #=<),
|
||
op(700, xfx, #=),
|
||
op(700, xfx, #\=),
|
||
op(700, xf, #>),
|
||
op(700, xf, #<),
|
||
op(700, xf, #>=),
|
||
op(700, xf, #=<),
|
||
op(700, xf, #=),
|
||
op(700, xf, #\=),
|
||
op(500, yfx, '<=>'),
|
||
op(500, yfx, '=>'),
|
||
op(450, xfx, ..), % should bind more tightly than \/
|
||
(#>)/2,
|
||
(#<)/2,
|
||
(#>=)/2,
|
||
(#=<)/2,
|
||
(#=)/2,
|
||
(#\=)/2,
|
||
(#>)/1,
|
||
(#<)/1,
|
||
(#>=)/1,
|
||
(#=<)/1,
|
||
(#=)/1,
|
||
(#\=)/1,
|
||
(#<==>)/2,
|
||
(#==>)/2,
|
||
(#<==)/2,
|
||
(#\)/1,
|
||
(#\/)/2,
|
||
(#/\)/2,
|
||
in/2 ,
|
||
ins/2,
|
||
boolvar/1,
|
||
boolvars/1,
|
||
all_different/1,
|
||
all_distinct/1,
|
||
all_distinct/2,
|
||
maximize/1,
|
||
minimize/1,
|
||
sum/3,
|
||
lex_chain/1,
|
||
minimum/2,
|
||
min/2,
|
||
maximum/2,
|
||
max/2,
|
||
scalar_product/4,
|
||
element/2,
|
||
extensional_constraint/2,
|
||
in_relation/2,
|
||
clause/4,
|
||
dfa/4,
|
||
in_dfa/2,
|
||
in_dfa/4, /*
|
||
tuples_in/2, */
|
||
labeling/2 /*,
|
||
label/1,
|
||
indomain/1,
|
||
serialized/2,
|
||
global_cardinality/2,
|
||
global_cardinality/3,
|
||
circuit/1,
|
||
element/3,
|
||
automaton/3,
|
||
automaton/8,
|
||
transpose/2,
|
||
zcompare/3,
|
||
chain/2,
|
||
fd_var/1,
|
||
fd_inf/2,
|
||
fd_sup/2,
|
||
fd_size/2,
|
||
fd_dom/2 */
|
||
]).
|
||
|
||
/** @pred _X_ #< _B_ is det
|
||
reified implication
|
||
|
||
As an example. consider finding out the people who wanted to sit
|
||
next to a friend and that are are actually sitting together:
|
||
|
||
~~~~~{.prolog}
|
||
preference_satisfied(X-Y, B) :-
|
||
abs(X - Y) #= 1 #<==> B.
|
||
~~~~~
|
||
Note that not all constraints may be reifiable.
|
||
|
||
|
||
*/
|
||
/** @pred _X_ #< _Y_ is semidet
|
||
smaller or equal
|
||
|
||
Arguments to this constraint may be an arithmetic expression with <tt>+</tt>,
|
||
<tt>-</tt>, <tt>\\*</tt>, integer division <tt>/</tt>, <tt>min</tt>, <tt>max</tt>, <tt>sum</tt>,
|
||
<tt>count</tt>, and
|
||
<tt>abs</tt>. Boolean variables support conjunction (/\), disjunction (\/),
|
||
implication (=>), equivalence (<=>), and xor. The <tt>sum</tt> constraint allows a two argument version using the
|
||
`where` conditional, in Zinc style.
|
||
|
||
The send more money equation may be written as:
|
||
|
||
~~~~~{.prolog}
|
||
1000*S + 100*E + 10*N + D +
|
||
1000*M + 100*O + 10*R + E #=
|
||
10000*M + 1000*O + 100*N + 10*E + Y,
|
||
~~~~~
|
||
|
||
This example uses `where` to select from
|
||
column _I_ the elements that have value under _M_:
|
||
|
||
~~~~~{.prolog}
|
||
OutFlow[I] #= sum(J in 1..N where D[J,I]<M, X[J,I])
|
||
~~~~~
|
||
|
||
The <tt>count</tt> constraint counts the number of elements that match a
|
||
certain constant or variable (integer sets are not available).
|
||
|
||
|
||
*/
|
||
/** @pred _X_ #<==> _B_ is det
|
||
reified equivalence
|
||
|
||
*/
|
||
/** @pred _X_ #= _Y_ is semidet
|
||
equality
|
||
|
||
*/
|
||
/** @pred _X_ #=< _Y_ is semidet
|
||
smaller
|
||
|
||
*/
|
||
/** @pred _X_ #==> _B_ is det
|
||
Reified implication
|
||
|
||
*/
|
||
/** @pred _X_ #> _Y_ is semidet
|
||
larger
|
||
|
||
*/
|
||
/** @pred _X_ #>= _Y_ is semidet
|
||
larger or equal
|
||
|
||
*/
|
||
/** @pred _X_ #\= _Y_ is semidet
|
||
disequality
|
||
|
||
*/
|
||
/** @pred all_different( _Vs_ )
|
||
|
||
Verifies whether all elements of a list are different.
|
||
*/
|
||
/** @pred labeling( _Opts_, _Xs_)
|
||
performs labeling, several variable and value selection options are
|
||
available. The defaults are `min` and `min_step`.
|
||
|
||
Variable selection options are as follows:
|
||
|
||
+ leftmost
|
||
choose the first variable
|
||
+ min
|
||
choose one of the variables with smallest minimum value
|
||
+ max
|
||
choose one of the variables with greatest maximum value
|
||
+ ff
|
||
choose one of the most constrained variables, that is, with the smallest
|
||
domain.
|
||
|
||
|
||
Given that we selected a variable, the values chosen for branching may
|
||
be:
|
||
|
||
+ min_step
|
||
smallest value
|
||
+ max_step
|
||
largest value
|
||
+ bisect
|
||
median
|
||
+ enum
|
||
all value starting from the minimum.
|
||
|
||
|
||
|
||
*/
|
||
/** @pred scalar_product(+ _Cs_, + _Vs_, + _Rel_, ? _V_ )
|
||
|
||
The product of constant _Cs_ by _Vs_ must be in relation
|
||
_Rel_ with _V_ .
|
||
|
||
|
||
*/
|
||
|
||
:- use_module(library(gecode)).
|
||
:- use_module(library(maplist)).
|
||
|
||
:- reexport(library(matrix), [(<==)/2, op(800, xfx, '<=='),
|
||
op(700, xfx, in),
|
||
op(700, xfx, ins),
|
||
op(450, xfx, ..), % should bind more tightly than \/
|
||
op(710, xfx, of),
|
||
foreach/2, foreach/4, of/2]).
|
||
|
||
% build array of constraints
|
||
%
|
||
matrix:array_extension(_.._ , gecode_clpfd:build).
|
||
|
||
build( I..J, _, Size, L) :-
|
||
length( L, Size ),
|
||
L ins I..J.
|
||
|
||
matrix:rhs_opaque(X) :- constraint(X).
|
||
|
||
constraint( (_ #> _) ).
|
||
constraint( (_ #< _) ).
|
||
constraint( (_ #>= _) ).
|
||
constraint( (_ #=< _) ).
|
||
constraint( (_ #= _) ).
|
||
constraint( (_ #\= _) ).
|
||
constraint( (_ #\ _) ).
|
||
constraint( (_ #<==> _) ).
|
||
constraint( (_ #==> _) ).
|
||
constraint( (_ #<== _) ).
|
||
constraint( (_ #\/ _) ).
|
||
constraint( (_ #/\ _) ).
|
||
constraint( in(_, _) ). %2,
|
||
constraint( ins(_, _) ). %2,
|
||
constraint( all_different(_) ). %1,
|
||
constraint( all_distinct(_) ). %1,
|
||
constraint( all_distinct(_,_) ). %1,
|
||
constraint( sum(_, _, _) ). %3,
|
||
constraint( scalar_product(_, _, _, _) ). %4,
|
||
constraint( min(_, _) ). %2,
|
||
constraint( minimum(_, _) ). %2,
|
||
constraint( max(_, _) ). %2,
|
||
constraint( maximum(_, _) ). %2,
|
||
constraint( in_relation(_, _) ). %2,
|
||
constraint( in_dfa(_, _) ). %2,
|
||
constraint( in_dfa(_, _, _, _) ). %2,
|
||
constraint( tuples_in(_, _) ). %2,
|
||
constraint( labeling(_, _) ). %2,
|
||
constraint( label(_) ). %1,
|
||
constraint( indomain(_) ). %1,
|
||
constraint( lex_chain(_) ). %1,
|
||
constraint( serialized(_, _) ). %2,
|
||
constraint( global_cardinality(_, _) ). %2,
|
||
constraint( global_cardinality(_, _, _) ). %3,
|
||
constraint( circuit(_) ). %1,
|
||
constraint( element(_, _, _) ). %3,
|
||
constraint( automaton(_, _, _) ). %3,
|
||
constraint( automaton(_, _, _, _, _, _, _, _) ). %8,
|
||
constraint( transpose(_, _) ). %2,
|
||
constraint( zcompare(_, _, _) ). %3,
|
||
constraint( chain(_, _) ). %2,
|
||
constraint( element(_, _) ). %2,
|
||
constraint( fd_var(_) ). %1,
|
||
constraint( fd_inf(_, _) ). %2,
|
||
constraint( fd_sup(_, _) ). %2,
|
||
constraint( fd_size(_, _) ). %2,
|
||
constraint( fd_dom(_, _) ). %2
|
||
constraint( clause(_, _, _, _) ). %2
|
||
|
||
|
||
process_constraints((B0,B1), (NB0, NB1), Env) :-
|
||
process_constraints(B0, NB0, Env),
|
||
process_constraints(B1, NB1, Env).
|
||
process_constraints(B, B, env(_Space)) :-
|
||
constraint(B), !.
|
||
process_constraints(B, B, _Env).
|
||
% process_constraint(B, NB, Space).
|
||
|
||
( A #= B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#=), NB), Env, _).
|
||
( A #\= B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#\=), NB), Env, _).
|
||
( A #< B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#<), NB), Env, _).
|
||
( A #> B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#>), NB), Env, _).
|
||
( A #=< B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#=<), NB), Env, _).
|
||
( A #>= B) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
post( rel(NA, (#>=), NB), Env, _).
|
||
( A #= ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#=)), Env, _).
|
||
/** @pred _X_ #= is det
|
||
all elements of _X_ must take the same value
|
||
|
||
*/
|
||
( A #\= ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#\=)), Env, _).
|
||
/** @pred _X_ #< is det
|
||
elements of _X_ must be decreasing or equal
|
||
|
||
|
||
*/
|
||
( A #< ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#<)), Env, _).
|
||
/** @pred _X_ #> is det
|
||
elements of _X_ must be increasing
|
||
|
||
*/
|
||
( A #> ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#>)), Env, _).
|
||
/** @pred _X_ #=< is det
|
||
elements of _X_ must be decreasing
|
||
|
||
*/
|
||
( A #=< ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#=<) ), Env, _).
|
||
/** @pred _X_ #>= is det
|
||
elements of _X_ must be increasinga or equal
|
||
|
||
*/
|
||
( A #>= ) :-
|
||
get_home(Env),
|
||
check(A, NA),
|
||
post( rel(NA, (#>=)), Env, _).
|
||
sum( L, Op, V) :-
|
||
get_home( Env ),
|
||
check(L, NL),
|
||
check(V, NV),
|
||
post( rel(sum(NL), Op, NV), Env, _).
|
||
( ( A #<==> VBool )) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
check(VBool, NVBool),
|
||
Bool := boolvar(Space),
|
||
m( NVBool, Bool, 0, 1, Map),
|
||
Space += reify(Bool, 'RM_EQV', R),
|
||
post(NA, Space-Map, R).
|
||
( A #==> VBool) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
check(VBool, NVBool),
|
||
Bool := boolvar(Space),
|
||
m( NVBool, Bool, 0, 1, Map),
|
||
Space += reify(Bool, 'RM_IMP', R),
|
||
post(NA, Space-Map, R).
|
||
( A #<== VBool) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
check(VBool, NVBool),
|
||
Bool := boolvar(Space),
|
||
m( NVBool, Bool, 0, 1, Map),
|
||
Space += reify(Bool, 'RM_PMI', R),
|
||
post(NA, Space-Map, R).
|
||
'#\\'(A) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
B := boolvar(Space),
|
||
Space += reify(B, 'RM_EQV', R),
|
||
Space += rel(B, 'BOT_EQV', 0),
|
||
post(NA, Space-Map, R).
|
||
( A1 #\/ A2 ) :-
|
||
get_home(Space-Map),
|
||
check(A1, NA1),
|
||
check(A2, NA2),
|
||
B1 := boolvar(Space),
|
||
B2 := boolvar(Space),
|
||
Space += reify(B1, 'RM_EQV', R1),
|
||
Space += reify(B2, 'RM_EQV', R2),
|
||
post(NA1, Space-Map, R1),
|
||
post(NA2, Space-Map, R2),
|
||
Space += rel(B1, B2, 'BOT_OR', 1).
|
||
( A1 #/\ A2 ) :-
|
||
get_home(Space-Map),
|
||
check(A1, NA1),
|
||
check(A2, NA2),
|
||
B1 := boolvar(Space),
|
||
B2 := boolvar(Space),
|
||
Space += reify(B1, 'RM_EQV', R1),
|
||
Space += reify(B2, 'RM_EQV', R2),
|
||
post(NA1, Space-Map, R1),
|
||
post(NA2, Space-Map, R2),
|
||
Space += rel(B1, B2, 'BOT_AND', 1).
|
||
( X in A..B) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
m(X, NX, NA, NB, Map),
|
||
NX := intvar(Space, NA, NB).
|
||
( Xs ins A..B) :-
|
||
get_home(Space-Map),
|
||
check(A, NA),
|
||
check(B, NB),
|
||
maplist(lm(NA, NB, Map), Xs, NXs),
|
||
length(Xs, N),
|
||
NXs := intvars(Space, N, NA, NB).
|
||
boolvar( X ) :-
|
||
get_home(Space-Map),
|
||
m(X, NX, 0, 1, Map),
|
||
NX := boolvar( Space ).
|
||
boolvars( Xs ) :-
|
||
get_home(Space-Map),
|
||
maplist(lm(0, 1, Map), Xs, NXs),
|
||
length(Xs, N),
|
||
NXs := boolvars( Space, N ).
|
||
all_different( Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post( all_different( NXs ), Env, _ ).
|
||
all_distinct( Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post( all_distinct( NXs ), Env, _ ).
|
||
all_distinct( Cs, Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post( all_distinct( Cs, NXs ), Env, _ ).
|
||
scalar_product( Cs, Vs, Rels, X ) :-
|
||
get_home(Env),
|
||
check(Vs, NVs),
|
||
post( scalar_product( Cs, NVs, Rels, X ), Env, _ ).
|
||
lex_chain( Cs ) :-
|
||
get_home(Env),
|
||
check(Cs, NCs),
|
||
post( rel( NCs, '#=<' ), Env, _ ).
|
||
minimum( V, Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
check(V, NV),
|
||
post( rel( min(NXs), (#=), NV ), Env, _ ).
|
||
min( Xs, V ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
check(V, NV),
|
||
post( rel( min(NXs), (#=), NV ), Env, _ ).
|
||
maximum( V, Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
check(V, NV),
|
||
post( rel( max(NXs), (#=), NV ), Env, _ ).
|
||
max( Xs, V ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
check(V, NV),
|
||
post( rel( max(NXs), (#=), NV ), Env, _ ).
|
||
element( V, Xs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
check(V, NV),
|
||
post( element( NV, NXs ), Env, _ ).
|
||
in_relation( Xs, Rel ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post(in_tupleset(NXs, Rel), Env, _ ).
|
||
in_dfa( Xs, Rel ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post(in_dfa(NXs, Rel), Env, _ ).
|
||
in_dfa( Xs, S0, Ts, Fs ) :-
|
||
get_home(Env),
|
||
check(Xs, NXs),
|
||
post(in_dfa(NXs, S0, Ts, Fs), Env, _ ).
|
||
clause( and, Ps, Ns, V ) :-
|
||
get_home(Env),
|
||
check(Ps, NPs),
|
||
check(Ns, NNs),
|
||
check(V, NV),
|
||
post(clause( 'BOT_AND', NPs, NNs, NV), Env, _ ).
|
||
clause( or, Ps, Ns, V ) :-
|
||
get_home(Env),
|
||
check(Ps, NPs),
|
||
check(Ns, NNs),
|
||
check(V, NV),
|
||
post(clause( 'BOT_OR', NPs, NNs, NV), Env, _ ).
|
||
|
||
labeling(Opts, Xs) :-
|
||
get_home(Space-Map),
|
||
foldl2( processs_lab_opt, Opts, 'INT_VAR_SIZE_MIN', BranchVar, 'INT_VAL_MIN', BranchVal),
|
||
term_variables(Xs, Vs),
|
||
check( Vs, X1s ),
|
||
( X1s == [] -> true ;
|
||
maplist(ll(Map), X1s, NXs),
|
||
Space += branch(NXs, BranchVar, BranchVal) ).
|
||
|
||
processs_lab_opt(leftmost, _, 'INT_VAR_NONE', BranchVal, BranchVal).
|
||
processs_lab_opt(min, _, 'INT_VAR_SIZE_MIN', BranchVal, BranchVal).
|
||
processs_lab_opt(max, _, 'INT_VAR_SIZE_MAX', BranchVal, BranchVal).
|
||
processs_lab_opt(ff, _, 'INT_VAR_DEGREE_MIN', BranchVal, BranchVal).
|
||
processs_lab_opt(min_step, BranchVar, BranchVar, _, 'INT_VAL_MIN').
|
||
processs_lab_opt(max_step, BranchVar, BranchVar, _, 'INT_VAL_MIN').
|
||
processs_lab_opt(bisect, BranchVar, BranchVar, _, 'INT_VAL_MED').
|
||
processs_lab_opt(enum, BranchVar, BranchVar, _, 'INT_VALUES_MIN').
|
||
|
||
|
||
maximize(V) :-
|
||
get_home(Space-Map),
|
||
l(V, I, Map),
|
||
Space += maximize(I).
|
||
|
||
minimize(V) :-
|
||
get_home(Space-Map),
|
||
l(V, I, Map),
|
||
Space += minimize(I).
|
||
|
||
extensional_constraint( Tuples, TupleSet) :-
|
||
TupleSet := tupleset( Tuples ).
|
||
|
||
dfa( S0, Transitions, Finals, DFA) :-
|
||
DFA := dfa( S0, Transitions, Finals ).
|
||
|
||
|
||
check(V, NV) :-
|
||
( var(V) -> V = NV ;
|
||
number(V) -> V = NV ;
|
||
is_list(V) -> maplist(check, V, NV) ;
|
||
V = sum(_,_) -> V = NV ;
|
||
V = '[]'(Indx, Mat) -> NV <== '[]'(Indx, Mat) ;
|
||
V = '$matrix'(_, _, _, _, C) -> C =.. [_|L], maplist(check, L, NV) ;
|
||
V = A+B -> check(A,NA), check(B, NB), NV = NB+NA ;
|
||
V = A-B -> check(A,NA), check(B, NB), NV = NB-NA ;
|
||
arith(V, _) -> V =.. [C|L], maplist(check, L, NL), NV =.. [C|NL] ;
|
||
constraint(V) -> V =.. [C|L], maplist(check, L, NL), NV =.. [C|NL] ).
|
||
|
||
post( ( A #= B), Env, Reify) :-
|
||
post( rel( A, (#=), B), Env, Reify).
|
||
post( ( A #\= B), Env, Reify) :-
|
||
post( rel( A, (#\=), B), Env, Reify).
|
||
post( ( A #> B), Env, Reify) :-
|
||
post( rel( A, (#>), B), Env, Reify).
|
||
post( ( A #< B), Env, Reify) :-
|
||
post( rel( A, (#<), B), Env, Reify).
|
||
post( ( A #>= B), Env, Reify) :-
|
||
post( rel( A, (#>=), B), Env, Reify).
|
||
post( ( A #=< B), Env, Reify) :-
|
||
post( rel( A, (#=<), B), Env, Reify).
|
||
% [X,Y,Z] #<
|
||
post( rel( A, Op), Space-Map, Reify):-
|
||
( var( A ) -> l(A, IA, Map) ; checklist( var, A ) -> maplist(ll(Map), A, IA ) ),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) -> Space += rel(IA, GOP) ;
|
||
Space += rel(IA, GOP, Reify) ).
|
||
|
||
% X #< Y
|
||
% X #< 2
|
||
post( rel( A, Op, B), Space-Map, Reify):-
|
||
var(A),
|
||
( var(B) -> l(B, IB, Map) ; integer(B) -> IB = B ), !,
|
||
l(A, IA, Map),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) -> Space += rel(IA, GOP, IB) ;
|
||
Space += rel(IA, GOP, IB, Reify) ).
|
||
|
||
% 2 #\= B -> reverse
|
||
post( rel( A, Op, B), Space-Map, Reify) :-
|
||
( var(A) ; integer(A) ), !,
|
||
reverse_arith_op( Op, ROp ),
|
||
post( rel( B, ROp, A), Space-Map, Reify).
|
||
|
||
% A is never unbound
|
||
|
||
% [A,B,C,D] #< 3
|
||
post( rel( A, Op, B ), Space-Map, Reify):-
|
||
checklist( var, A ), !,
|
||
maplist(ll(Map), A, IL ),
|
||
( var(B) -> l(B, IB, Map) ; integer(B) -> IB = B ; equality(B, NB, Space-Map), l(NB, IB, Map) ), !,
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) -> Space += rel(IL, GOP) ;
|
||
Space += rel(IL, GOP, IB) ).
|
||
|
||
% sum([A,B,C]) #= X
|
||
post( rel( sum(L), Op, Out), Space-Map, Reify):- !,
|
||
checklist( var, L ), !,
|
||
maplist(ll(Map), L, IL ),
|
||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
Space += linear(IL, GOP, IOut);
|
||
Space += linear(IL, GOP, IOut, Reify)
|
||
).
|
||
|
||
% count([A,B,C], 3) #= X
|
||
post( rel( count(X, Y), Op, Out), Space-Map, Reify):- !,
|
||
( checklist( var, X ) -> maplist(ll(Map), X, IX ) ),
|
||
( var(Y) -> l(Y, IY, Map) ; integer(Y) -> IY = Y ; equality(Y, NY, Space-Map), l(NY, IY, Map) ),
|
||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ), !,
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
Space += count(IX, IY, GOP, IOut);
|
||
Space += count(IX, IY, GOP, IOut, Reify)
|
||
).
|
||
|
||
|
||
% sum([I in 0..N-1, M[I]]) #= X
|
||
post( rel( sum(Foreach, Cond), Op, Out), Space-Map, Reify):- !,
|
||
( var(Out) -> l(Out, IOut, Map) ; integer(Out) -> IOut = Out ; equality(Out, NOut, Space-Map), l(NOut, IOut, Map) ),
|
||
cond2list( Foreach, Cond, Cs, L),
|
||
maplist(ll(Map), [Out|L], [IOut|IL] ),
|
||
gecode_arith_op( Op, GOP ),
|
||
(L = [] -> true ;
|
||
var(Reify) ->
|
||
Space += linear(Cs, IL, GOP, IOut);
|
||
Space += linear(Cs, IL, GOP, IOut, Reify)
|
||
).
|
||
|
||
post( rel(A1+A2, Op, B), Space-Map, Reify):-
|
||
( nonvar(B) ; B = _ + _ ; B = _-_), !,
|
||
linearize(A1+A2, 1, As, Bs, CAs, CBs, 0, A0, Space-Map),
|
||
linearize(B, -1, Bs, [], CBs, [], A0, B0, Space-Map),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
( checklist(is_one, CAs) ->
|
||
Space += linear(As, GOP, B0);
|
||
Space += linear(CAs, As, GOP, B0)
|
||
)
|
||
;
|
||
( checklist(is_one, CAs) ->
|
||
Space += linear(As, GOP, B0, Reify);
|
||
Space += linear(CAs, As, GOP, B0, Reify)
|
||
)
|
||
).
|
||
|
||
post( rel(A1-A2, Op, B), Space-Map, Reify):-
|
||
( nonvar(B) ; B = _ + _ ; B = _-_), !,
|
||
linearize(A1-A2, 1, As, Bs, CAs, CBs, 0, A0, Space-Map),
|
||
linearize(B, -1, Bs, [], CBs, [], A0, B0, Space-Map),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
( checklist(is_one, CAs) ->
|
||
Space += linear(As, GOP, B0);
|
||
Space += linear(CAs, As, GOP, B0)
|
||
)
|
||
;
|
||
( checklist(is_one, CAs) ->
|
||
Space += linear(As, GOP, B0, Reify);
|
||
Space += linear(CAs, As, GOP, B0, Reify)
|
||
)
|
||
).
|
||
|
||
post( rel(A, Op, B), Space-Map, Reify):-
|
||
arith(A, Name),
|
||
A =.. [_Op,A1],
|
||
is_list(A1), !,
|
||
( _Op = min -> true ; _Op = max ),
|
||
maplist(equality_l( Space-Map), A1, NA1),
|
||
maplist(in_c_l( Space-Map), NA1, VA1),
|
||
equality(B, B1, Space-Map),
|
||
out_c(Name, VA1, B1, Op, Space-Map, Reify).
|
||
|
||
post( rel(A, Op, B), Space-Map, Reify):-
|
||
arith(A, Name),
|
||
A =.. [_Op,A1], !,
|
||
equality(A1, NA1, Space-Map),
|
||
in_c(NA1, VA1, Space-Map), !,
|
||
equality(B, B1, Space-Map),
|
||
out_c(Name, VA1, B1, Op, Space-Map, Reify).
|
||
|
||
post( rel(A, Op, B), Space-Map, Reify):-
|
||
arith(A, Name),
|
||
A =.. [_Op,A1,A2], !,
|
||
equality(A1, NA1, Space-Map),
|
||
in_c(NA1, VA1, Space-Map),
|
||
equality(A2, NA2, Space-Map),
|
||
in_c(NA2, VA2, Space-Map),
|
||
equality(B, B1, Space-Map),
|
||
out_c(Name, VA1, VA2, B1, Op, Space-Map, Reify).
|
||
|
||
post( scalar_product(Cs, L, Op, Out), Space-Map, Reify):-
|
||
var(Out), !,
|
||
maplist(ll(Map), [Out|L], [IOut|IL] ),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
Space += linear(Cs, IL, GOP, IOut);
|
||
Space += linear(Cs, IL, GOP, IOut, Reify)
|
||
).
|
||
post( scalar_product(Cs, L, Op, Out), Space-Map, Reify):-
|
||
integer(Out), !,
|
||
maplist(ll(Map), L, IL ),
|
||
gecode_arith_op( Op, GOP ),
|
||
(var(Reify) ->
|
||
Space += linear(Cs, IL, GOP, Out);
|
||
Space += linear(Cs, IL, GOP, Out, Reify)
|
||
).
|
||
post( all_different( Xs ), Space-Map, Reify) :-
|
||
maplist(ll(Map), Xs, NXs),
|
||
(var(Reify) ->
|
||
Space += distinct(NXs)
|
||
;
|
||
throw(error(domain(not_reifiable),all_different( Xs )))
|
||
).
|
||
post( all_distinct( Xs ), Space-Map, Reify) :-
|
||
maplist(ll(Map), Xs, NXs),
|
||
(var(Reify) ->
|
||
Space += distinct(NXs)
|
||
;
|
||
throw(error(domain(not_reifiable),all_distinct( Xs )))
|
||
).
|
||
post( all_distinct( Cs , Xs ), Space-Map, Reify) :-
|
||
maplist(ll(Map), Xs, NXs),
|
||
(var(Reify) ->
|
||
Space += distinct(Cs,NXs)
|
||
;
|
||
throw(error(domain(not_reifiable),all_distinct( Cs , Xs )))
|
||
).
|
||
post(in_tupleset(Xs, Tuples), Space-Map, Reify) :-
|
||
is_list( Tuples ), !,
|
||
TS := tupleset( Tuples ),
|
||
maplist(ll(Map), Xs, IXs),
|
||
(var(Reify) ->
|
||
Space += extensional(IXs, TS)
|
||
;
|
||
throw(error(domain(not_reifiable),in_relation(Xs, Tuples)))
|
||
).
|
||
post(in_tupleset(Xs, TS), Space-Map, Reify) :-
|
||
maplist(ll(Map), Xs, IXs),
|
||
(var(Reify) ->
|
||
Space += extensional(IXs, TS)
|
||
;
|
||
throw(error(domain(not_reifiable),in_relation(Xs, TS)))
|
||
).
|
||
post(in_dfa(Xs, S0, Trs, Fs), Space-Map, Reify) :-
|
||
TS := dfa( S0, Trs, Fs ),
|
||
maplist(ll(Map), Xs, IXs),
|
||
(var(Reify) ->
|
||
Space += extensional(IXs, TS)
|
||
;
|
||
throw(error(domain(not_reifiable),in_dfa(Xs, S0, Trs, Fs)))
|
||
).
|
||
post(in_dfa(Xs, TS), Space-Map, Reify) :-
|
||
maplist(ll(Map), Xs, IXs),
|
||
(var(Reify) ->
|
||
Space += extensional(IXs, TS)
|
||
;
|
||
throw(error(domain(not_reifiable),in_dfa(Xs, TS)))
|
||
).
|
||
|
||
post(element(V, Xs), Space-Map, Reify) :-
|
||
l(V, IV, Map),
|
||
maplist(ll(Map), Xs, IXs),
|
||
(var(Reify) ->
|
||
Space += element(IV, IXs)
|
||
;
|
||
Space += element(IV, IXs, Reify)
|
||
).
|
||
|
||
post(clause( Type, Ps, Ns, V), Space-Map, Reify) :-
|
||
(integer(V) -> V = IV ; l(V, IV, Map) ),
|
||
maplist(ll(Map), Ps, IPs),
|
||
maplist(ll(Map), Ns, INs),
|
||
(var(Reify) ->
|
||
Space += clause(Type, IPs, INs, IV)
|
||
;
|
||
Space += clause(Type, IPs, INs, IV, Reify)
|
||
).
|
||
|
||
gecode_arith_op( (#=) , 'IRT_EQ' ).
|
||
gecode_arith_op( (#\=) , 'IRT_NQ' ).
|
||
gecode_arith_op( (#>) , 'IRT_GR' ).
|
||
gecode_arith_op( (#>=) , 'IRT_GQ' ).
|
||
gecode_arith_op( (#<) , 'IRT_LE' ).
|
||
gecode_arith_op( (#=<) , 'IRT_LQ' ).
|
||
|
||
reverse_arith_op( (#=) , (#=) ).
|
||
reverse_arith_op( (#\=) , (#\=) ).
|
||
reverse_arith_op( (#>) , (#<) ).
|
||
reverse_arith_op( (#>=) , (#=<) ).
|
||
reverse_arith_op( (#<) , (#>) ).
|
||
reverse_arith_op( (#=<) , (#>=) ).
|
||
|
||
linearize(V, C, [A|As], As, [C|CAs], CAs, I, I, _-Map) :-
|
||
var(V), !,
|
||
l(V, A, Map).
|
||
linearize(A+B, C, As, Bs, CAs, CBs, I, IF, Env) :-
|
||
linearize(A, C, As, A1s, CAs, CA1s, I, I1, Env),
|
||
linearize(B, C, A1s, Bs, CA1s, CBs, I1, IF, Env).
|
||
linearize(A-B, C, As, Bs, CAs, CBs, I, IF, Env) :-
|
||
NC is -C,
|
||
linearize(A, C, As, A1s, CAs, CA1s, I, I1, Env),
|
||
linearize(B, NC, A1s, Bs, CA1s, CBs, I1, IF, Env).
|
||
linearize(A, C, As, As, CAs, CAs, I, IF, _) :-
|
||
integer(A), !,
|
||
IF is I-C*A.
|
||
linearize(A, C, As, As, CAs, CAs, I, IF, _) :-
|
||
ground(A),
|
||
catch( (B is eval(A)), _, fail ), !,
|
||
IF is I-C*B.
|
||
linearize(C1*B, C, As, Bs, CAs, CBs, I, IF, Env) :-
|
||
integer(C1), !,
|
||
NC is C*C1,
|
||
linearize(B, NC, As, Bs, CAs, CBs, I, IF, Env).
|
||
linearize(B*C1, C, As, Bs, CAs, CBs, I, IF, Env) :-
|
||
integer(C1), !,
|
||
NC is C*C1,
|
||
linearize(B, NC, As, Bs, CAs, CBs, I, IF, Env).
|
||
linearize(AC, C, [A|Bs], Bs, [C|CBs], CBs, I, I, Env) :-
|
||
arith(AC, _),
|
||
equality(AC, V, Env),
|
||
Env = _-Map,
|
||
l(V, A, Map).
|
||
|
||
arith('/\\'(_,_), (/\)).
|
||
arith('\\/'(_,_), (\/)).
|
||
arith('=>'(_,_), (=>)).
|
||
arith('<=>'(_,_), (<=>)).
|
||
arith(xor(_,_), xor).
|
||
arith(abs(_), abs).
|
||
arith(min(_), min).
|
||
arith(max(_), max).
|
||
arith(min(_,_), min).
|
||
arith(max(_,_), max).
|
||
arith((_ * _), times).
|
||
arith((_ / _), div).
|
||
arith(sum(_), sum).
|
||
arith(sum(_,_), sum).
|
||
arith(count(_,_), count).
|
||
|
||
% replace abs(min(A,B)-max(A,B)) by
|
||
% min(A,B,A1), max(A,B,A2), linear([1,-1],[A1,B1],=,A3), abs(A3,AN)
|
||
equality(V, V, _Env) :-
|
||
var( V ), !.
|
||
equality(V, V, _Env) :-
|
||
integer( V ), !.
|
||
equality(abs(V), NV, Env) :-
|
||
equality(V, VA, Env),
|
||
new_arith(abs, VA, NV, Env).
|
||
equality(min(V), NV, Env) :-
|
||
maplist( equality_l(Env), V, VA ),
|
||
new_arith(min, VA, NV, Env).
|
||
equality(max(V), NV, Env) :-
|
||
maplist( equality_l(Env), V, VA ),
|
||
new_arith(max, VA, NV, Env).
|
||
equality(V1+V2, NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( plus, V1A, V2A, NV, Env).
|
||
equality(V1-V2, NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( minus, V1A, V2A, NV, Env).
|
||
equality(V1*V2, NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( times, V1A, V2A, NV, Env).
|
||
equality(V1/V2, NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( div, V1A, V2A, NV, Env).
|
||
equality(V1 mod V2, NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (mod), V1A, V2A, NV, Env).
|
||
equality(max( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (max), V1A, V2A, NV, Env).
|
||
equality(min( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (min), V1A, V2A, NV, Env).
|
||
equality(sum( V ), NV, Env) :-
|
||
maplist( equality_l(Env), V, VA ),
|
||
new_arith(sum, VA, NV, Env).
|
||
equality(sum( C, G ), NV, Env) :-
|
||
new_arith(sum, C, G, NV, Env).
|
||
equality('/\\'( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (/\), V1A, V2A, NV, Env).
|
||
equality('\\/'( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (\/), V1A, V2A, NV, Env).
|
||
equality('<=>'( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (<=>), V1A, V2A, NV, Env).
|
||
equality('=>'( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (=>), V1A, V2A, NV, Env).
|
||
equality('xor'( V1 , V2), NV, Env) :-
|
||
equality(V1, V1A, Env),
|
||
equality(V2, V2A, Env),
|
||
new_arith( (xor), V1A, V2A, NV, Env).
|
||
|
||
equality_l(Env, V0, V) :-
|
||
equality(V0, V, Env).
|
||
|
||
% abs(X) #= 3
|
||
out_c(Name, A1, B, Op, Space-Map, Reify) :-
|
||
integer(B), !,
|
||
new_arith( Name, A1, NB, Space-Map),
|
||
gecode_arith_op( Op, BOP ),
|
||
l(NB, IB, Map),
|
||
( var(Reify) ->
|
||
Space += rel(IB, BOP, B)
|
||
;
|
||
Space += rel(IB, BOP, B, Reify)
|
||
).
|
||
% abs(X) #= Cin[..]
|
||
out_c(Name, A1, B, (#=), Space-Map, Reify) :-
|
||
var(Reify),
|
||
l(B, IB, Map), !,
|
||
l(A1, IA1, Map),
|
||
G =.. [Name, IA1, IB],
|
||
Space += G.
|
||
% abs(X) #= NEW
|
||
out_c(Name, A1, B, (#=), Space-Map, Reify) :-
|
||
var(Reify), !,
|
||
new_arith( Name, A1, B, Space-Map).
|
||
% abs(X) #> NEW
|
||
out_c(Name, A1, B, Op, Space-Map, Reify) :-
|
||
l(B, IB0, Map), !,
|
||
new_arith( Name, A1, NB, Space-Map),
|
||
l(NB, IB, Map),
|
||
gecode_arith_op( Op, BOP ),
|
||
(
|
||
nonvar(Reify) ->
|
||
Space += rel(IB, BOP, IB0)
|
||
;
|
||
Space += rel(IB, BOP, IB0, Reify)
|
||
).
|
||
|
||
% X*Y #= 3
|
||
out_c(Name, A1, A2, B, Op, Space-Map, Reify) :-
|
||
integer(B), !,
|
||
new_arith( Name, A1, A2, NB, Space-Map),
|
||
l(NB, IB, Map),
|
||
gecode_arith_op( Op, BOP ),
|
||
( var(Reify) ->
|
||
Space += rel(IB, BOP, B)
|
||
;
|
||
Space += rel(IB, BOP, B, Reify)
|
||
).
|
||
% X*Y #= Cin[..]
|
||
out_c(Name, A1, A2, B, (#=), Space-Map, Reify) :-
|
||
var(Reify),
|
||
l(B, IB, Map), !,
|
||
l(A1, IA1, Map),
|
||
l(A2, IA2, Map),
|
||
G =.. [Name, IA1, IA2, IB],
|
||
Space += G.
|
||
% abs(X) #= NEW, cannot be reified
|
||
out_c(Name, A1, A2, B, (#=), Space-Map, Reify) :-
|
||
var(Reify), !,
|
||
new_arith( Name, A1, A2, B, Space-Map).
|
||
% min(X,Y) #= Cin[..] <=>
|
||
out_c(Name, A1, A2, B, Op, Space-Map, Reify) :-
|
||
l(B, IB0, Map), !,
|
||
new_arith( Name, A1, A2, NB, Space-Map),
|
||
l(NB, IB, Map),
|
||
gecode_arith_op( Op, BOP ),
|
||
( var(Reify) ->
|
||
Space += rel(IB, BOP, IB0)
|
||
;
|
||
Space += rel(IB, BOP, IB0, Reify)
|
||
).
|
||
|
||
new_arith( abs, V, NV, Space-Map) :-
|
||
l(V, X, Min0, Max0, Map),
|
||
( Min0 < 0 ->
|
||
( Max0 < 0 -> Min is -Max0, Max is -Min0 ;
|
||
Min = 0 , Max is max( -Min0, Max0 ) )
|
||
;
|
||
Min = Min0, Max = Max0
|
||
),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += abs(X, NX).
|
||
|
||
new_arith( min, V, NV, Space-Map) :-
|
||
V = [V1|RV],
|
||
l(V1, _X1, Min0, Max0, Map),
|
||
foldl2( min_l(Map), RV, Max0, Max, Min0, Min),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
maplist(ll(Map), V, X),
|
||
Space += min(X, NX).
|
||
|
||
new_arith( max, V, NV, Space-Map) :-
|
||
V = [V1|RV],
|
||
l(V1, _X1, Min0, Max0, Map),
|
||
foldl2( max_l(Map), RV, Max0, Max, Min0, Min),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
maplist(ll(Map), V, X),
|
||
Space += min(X, NX).
|
||
|
||
new_arith( sum, V, NV, Space-Map) :-
|
||
foldl2( sum_l(Map), V, 0, Max, 0, Min),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
maplist(ll(Map), V, X),
|
||
Space += linear(X, 'IRT_EQ', NX).
|
||
|
||
new_arith( minus, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
Min is Min1-Max2,
|
||
Max is Max1-Min2,
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += linear([1,-1], [X1,X2], 'IRT_EQ', NX).
|
||
|
||
new_arith( plus, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
Min is Min1+Min2,
|
||
Max is Max1+Max2,
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += linear([1,1], [X1,X2], 'IRT_EQ', NX).
|
||
|
||
new_arith( min, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
Min is min(Min1,Min2),
|
||
Max is min(Max1,Max2),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += min(X1, X2, NX).
|
||
|
||
new_arith( max, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
Min is max(Min1,Min2),
|
||
Max is max(Max1,Max2),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += max(X1, X2, NX).
|
||
|
||
new_arith( times, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
min_times(Min1,Min2,Max1,Max2,Min),
|
||
max_times(Min1,Min2,Max1,Max2,Max),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += times(X1, X2, NX).
|
||
|
||
new_arith( (div), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Min1, Max1, Map),
|
||
l(V2, X2, Min2, Max2, Map),
|
||
min_div(Min1,Min2,Max1,Max2,Min),
|
||
max_div(Min1,Min2,Max1,Max2,Max),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += div(X1, X2, NX).
|
||
|
||
new_arith( (mod), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, _Min1, Max1, Map),
|
||
l(V2, X2, _Min2, Max2, Map),
|
||
Min is 0,
|
||
Max is min(abs(Max1), Max2-1),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
Space += mod(X1, X2, NX).
|
||
|
||
new_arith( sum, Foreach, Cond, NV, Space-Map) :-
|
||
cond2list( Foreach, Cond, Cs, V),
|
||
foldl2( sum_l(Map), V, 0, Max, 0, Min),
|
||
NX := intvar(Space, Min, Max),
|
||
m(NV, NX, Min, Max, Map),
|
||
maplist(ll(Map), V, X),
|
||
Space += linear(Cs, X, 'IRT_EQ', NX).
|
||
|
||
new_arith( (/\), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Map),
|
||
l(V2, X2, Map),
|
||
NX := boolvar(Space),
|
||
m(NV, NX, 0, 1, Map),
|
||
Space += rel(X1, 'BOT_AND', X2, NX).
|
||
|
||
new_arith( (\/), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Map),
|
||
l(V2, X2, Map),
|
||
NX := boolvar(Space),
|
||
m(NV, NX, 0, 1, Map),
|
||
Space += rel(X1, 'BOT_OR', X2, NX).
|
||
|
||
new_arith( (=>), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Map),
|
||
l(V2, X2, Map),
|
||
NX := boolvar(Space),
|
||
m(NV, NX, 0, 1, Map),
|
||
Space += rel(X1, 'BOT_IMP', X2, NX).
|
||
|
||
|
||
new_arith( (<=>), V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Map),
|
||
l(V2, X2, Map),
|
||
NX := boolvar(Space),
|
||
m(NV, NX, 0, 1, Map),
|
||
Space += rel(X1, 'BOT_EQV', X2, NX).
|
||
|
||
new_arith( xor, V1, V2, NV, Space-Map) :-
|
||
l(V1, X1, Map),
|
||
l(V2, X2, Map),
|
||
NX := boolvar(Space),
|
||
m(NV, NX, 0, 1, Map),
|
||
Space += rel(X1, 'BOT_XOR', X2, NX).
|
||
|
||
|
||
|
||
min_times(Min1,Min2,Max1,Max2,Min) :-
|
||
Min is min(Min1*Min2, min(Min1*Max2, min(Max1*Min2, Max1*Max2))).
|
||
|
||
max_times(Min1,Min2,Max1,Max2,Max) :-
|
||
Max is max(Min1*Min2, max(Min1*Max2, max(Max1*Min2, Max1*Max2))).
|
||
|
||
min_div(Min1,Min20,Max1,Max20,Min) :-
|
||
( Min20 == 0 -> Min2 = 1 ; Min2 = Min20),
|
||
( Max20 == 0 -> Max2 = -1; Max2 = Max20),
|
||
Min is min(Min1 div Min2, min(Min1 div Max2, min(Max1 div Min2, Max1 div Max2))).
|
||
|
||
max_div(Min1,Min20,Max1,Max20,Max) :-
|
||
( Min20 == 0 -> Min2 = 1 ; Min2 = Min20),
|
||
( Max20 == 0 -> Max2 = -1; Max2 = Max20),
|
||
Max is max(Min1 div Min2, max(Min1 div Max2, max(Max1 div Min2, Max1 div Max2))).
|
||
|
||
min_l(Map, V, Min0, Min, Max0, Max) :-
|
||
l(V, _, Min1, Max1, Map),
|
||
Min is min(Min0, Min1),
|
||
Max is min(Max0, Max1).
|
||
|
||
max_l(Map, V, Min0, Min, Max0, Max) :-
|
||
l(V, _, Min1, Max1, Map),
|
||
Min is max(Min0, Min1),
|
||
Max is max(Max0, Max1).
|
||
|
||
sum_l(Map, V, Min0, Min, Max0, Max) :-
|
||
l(V, _, Min1, Max1, Map),
|
||
Min is Min0 + Min1,
|
||
Max is Max0 + Max1.
|
||
|
||
|
||
in_c(A, A, _y) :-
|
||
var(A), !.
|
||
in_c(C, A, Space-Map) :-
|
||
integer(C),
|
||
Min is C-1,
|
||
NX := intvar(Space, Min, C),
|
||
m(A, NX, Min, C, Map),
|
||
Space += rel(NX, 'IRT_EQ', C).
|
||
|
||
in_c_l(Env, V, IV) :-
|
||
in_c(V, IV, Env).
|
||
|
||
user:term_expansion( ( H :- B), (H :- (gecode_clpfd:init_gecode(Space, Me), NB, gecode_clpfd:close_gecode(Space, Vs, Me)) ) ) :-
|
||
process_constraints(B, NB, Env),
|
||
term_variables(H, Vs),
|
||
nonvar( Env ), !,
|
||
Env = env( Space ).
|
||
|
||
init_gecode(Space, old) :-
|
||
nb_current(gecode_space, Space), nonvar(Space), !.
|
||
init_gecode(Space-Map, new) :-
|
||
Space := space,
|
||
b_setval(gecode_done, false),
|
||
b_setval(gecode_space, Space-Map).
|
||
|
||
close_gecode(_Space, _Vs, old) :- !.
|
||
close_gecode(Space-Map, Vs0, new) :-
|
||
term_variables(Vs0, Vs),
|
||
selectlist(intvar(Map), Vs, CVs),
|
||
maplist(ll(Map), CVs, IVs),
|
||
SolSpace := search(Space),
|
||
b_setval(gecode_done, true),
|
||
CVs := val(SolSpace,IVs).
|
||
|
||
intvar(Map, V) :-
|
||
l(V, _IV, Map).
|
||
|
||
get_home(Home) :-
|
||
b_getval(gecode_space, Home).
|
||
|
||
cond2list((List where Goal), El, Cs, Vs) :- !,
|
||
foreach( List, add_el(Goal, El), ([])-([]), Cs-Vs ).
|
||
cond2list(List, El, Cs, Vs) :- !,
|
||
foreach( List, add_el(true, El), ([])-([]), Cs-Vs ).
|
||
|
||
add_el(G0, El, Cs-Vs, [C|Cs]-[V|Vs]) :-
|
||
call(G0), !,
|
||
E <== El,
|
||
( var(E) -> C = 1, E = V ; E = C*V, integer(C), var(V) -> true ; E = V*C, integer(C), var(V) ).
|
||
add_el(_G0, _El, Cs-Vs, Cs-Vs).
|
||
|
||
% An attributed variable with attribute value Domain has been
|
||
% assigned the value Y
|
||
|
||
attr_unify_hook(_, _) :-
|
||
b_getval(gecode_done, true), !.
|
||
attr_unify_hook(v(IV1,_,_), Y) :-
|
||
( get_attr(Y, gecode_clpfd, v(IV2,_,_))
|
||
->
|
||
nb_getval(gecode_space, Space-_),
|
||
( IV1 == IV2 -> true ;
|
||
Space += rel(IV1, 'IRT_EQ', IV2) )
|
||
; var(Y)
|
||
-> true
|
||
; integer(Y) ->
|
||
nb_getval(gecode_space, Space-_),
|
||
Space += rel(IV1, 'IRT_EQ', Y)
|
||
).
|
||
|
||
% Translate attributes from this module to residual goals
|
||
|
||
attribute_goals(X) -->
|
||
{ get_attr(X, gecode_clpfd, v(_,A,B)) },
|
||
[X in A..B].
|
||
|
||
m(X, Y, A, B, _Map) :-
|
||
put_attr(X, gecode_clpfd, v(Y, A, B)).
|
||
/*
|
||
m(NV, OV, NA, NB, Vs) :-
|
||
var(Vs), !,
|
||
Vs = [v(NV,OV,NA,NB)|_].
|
||
m(NV, OV, NA, NB, [_|Vs]) :-
|
||
m(NV, OV, NA, NB, Vs).
|
||
*/
|
||
|
||
lm(A, B, Map, X, Y) :-
|
||
m(X, Y, A, B, Map).
|
||
|
||
l(V, IV, _) :-
|
||
get_attr(V, gecode_clpfd, v(IV, _, _)).
|
||
/*
|
||
l(_NV, _OV, Vs) :-
|
||
var(Vs), !,
|
||
fail.
|
||
l(NV, OV, [v(V, OV, _A, _B)|_Vs]) :-
|
||
V == NV, !.
|
||
l(NV, OV, [_|Vs]) :-
|
||
l(NV, OV, Vs).
|
||
*/
|
||
|
||
ll(Map, X, Y) :-
|
||
l(X, Y, Map).
|
||
|
||
l(V, IV, A, B, _) :-
|
||
get_attr(V, gecode_clpfd, v(IV, A, B)).
|
||
|
||
/*
|
||
l(_NV, _OV, _, _, Vs) :-
|
||
var(Vs), !,
|
||
fail.
|
||
l(NV, OV, A, B, [v(V, OV, A, B)|_Vs]) :-
|
||
V == NV, !.
|
||
l(NV, OV, A, B, [_|Vs]) :-
|
||
l(NV, OV, A, B, Vs).
|
||
*/
|
||
|
||
is_one(1).
|
||
|
||
/**
|
||
@}
|
||
*/
|