312 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /****************************************************************************************[Solver.h]
 | |
| MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
 | |
| 
 | |
| Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
 | |
| associated documentation files (the "Software"), to deal in the Software without restriction,
 | |
| including without limitation the rights to use, copy, modify, merge, publish, distribute,
 | |
| sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
 | |
| furnished to do so, subject to the following conditions:
 | |
| 
 | |
| The above copyright notice and this permission notice shall be included in all copies or
 | |
| substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
 | |
| NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 | |
| DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
 | |
| OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| **************************************************************************************************/
 | |
| 
 | |
| #ifndef Solver_h
 | |
| #define Solver_h
 | |
| 
 | |
| #include <cstdio>
 | |
| 
 | |
| #include "Vec.h"
 | |
| #include "Heap.h"
 | |
| #include "Alg.h"
 | |
| 
 | |
| #include "SolverTypes.h"
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| // Solver -- the main class:
 | |
| 
 | |
| 
 | |
| class Solver {
 | |
| public:
 | |
| 
 | |
|     // Constructor/Destructor:
 | |
|     //
 | |
|     Solver();
 | |
|     ~Solver();
 | |
| 
 | |
|     // Problem specification:
 | |
|     //
 | |
|     Var     newVar    (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
 | |
|     bool    addClause (vec<Lit>& ps);                           // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
 | |
|     bool    setminVars(vec<Lit>& ps);
 | |
| 
 | |
|     // Solving:
 | |
|     //
 | |
|     bool    simplify     ();                        // Removes already satisfied clauses.
 | |
|     bool    solve        (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
 | |
|     bool    solve        ();                        // Search without assumptions.
 | |
|     bool    okay         () const;                  // FALSE means solver is in a conflicting state
 | |
| 
 | |
|     // Variable mode:
 | |
|     // 
 | |
|     void    setPolarity    (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
 | |
|     void    setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
 | |
| 
 | |
|     // Read state:
 | |
|     //
 | |
|     lbool   value      (Var x) const;       // The current value of a variable.
 | |
|     lbool   value      (Lit p) const;       // The current value of a literal.
 | |
|     lbool   modelValue (Lit p) const;       // The value of a literal in the last model. The last call to solve must have been satisfiable.
 | |
|     int     nAssigns   ()      const;       // The current number of assigned literals.
 | |
|     int     nClauses   ()      const;       // The current number of original clauses.
 | |
|     int     nLearnts   ()      const;       // The current number of learnt clauses.
 | |
|     int     nVars      ()      const;       // The current number of variables.
 | |
| 
 | |
|     // Extra results: (read-only member variable)
 | |
|     //
 | |
|     vec<lbool> model;             // If problem is satisfiable, this vector contains the model (if any).
 | |
|     vec<Lit>   conflict;          // If problem is unsatisfiable (possibly under assumptions),
 | |
|                                   // this vector represent the final conflict clause expressed in the assumptions.
 | |
| 
 | |
|     // Mode of operation:
 | |
|     //
 | |
|     double    var_decay;          // Inverse of the variable activity decay factor.                                            (default 1 / 0.95)
 | |
|     double    clause_decay;       // Inverse of the clause activity decay factor.                                              (1 / 0.999)
 | |
|     double    random_var_freq;    // The frequency with which the decision heuristic tries to choose a random variable.        (default 0.02)
 | |
|     int       restart_first;      // The initial restart limit.                                                                (default 100)
 | |
|     double    restart_inc;        // The factor with which the restart limit is multiplied in each restart.                    (default 1.5)
 | |
|     double    learntsize_factor;  // The intitial limit for learnt clauses is a factor of the original clauses.                (default 1 / 3)
 | |
|     double    learntsize_inc;     // The limit for learnt clauses is multiplied with this factor each restart.                 (default 1.1)
 | |
|     bool      expensive_ccmin;    // Controls conflict clause minimization.                                                    (default TRUE)
 | |
|     int       polarity_mode;      // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
 | |
|     int       verbosity;          // Verbosity level. 0=silent, 1=some progress report                                         (default 0)
 | |
| 
 | |
|     enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
 | |
| 
 | |
|     // Statistics: (read-only member variable)
 | |
|     //
 | |
|     uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
 | |
|     uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
 | |
| 
 | |
| protected:
 | |
| 
 | |
|     // Helper structures:
 | |
|     //
 | |
|     struct VarOrderLt {
 | |
|         const vec<double>&  activity;
 | |
|         bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
 | |
|         VarOrderLt(const vec<double>&  act) : activity(act) { }
 | |
|     };
 | |
| 
 | |
|     friend class VarFilter;
 | |
|     struct VarFilter {
 | |
|         const Solver& s;
 | |
|         VarFilter(const Solver& _s) : s(_s) {}
 | |
|         bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; }
 | |
|     };
 | |
| 
 | |
|     // Solver state:
 | |
|     //
 | |
| 
 | |
|     //****************
 | |
|     bool                allMinVarsAssigned;
 | |
|     int                 lastMinVarDL;
 | |
|     vec<Lit>            minVars;
 | |
|     //****************
 | |
| 
 | |
| 
 | |
|     bool                ok;               // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
 | |
|     vec<Clause*>        clauses;          // List of problem clauses.
 | |
|     vec<Clause*>        learnts;          // List of learnt clauses.
 | |
|     double              cla_inc;          // Amount to bump next clause with.
 | |
|     vec<double>         activity;         // A heuristic measurement of the activity of a variable.
 | |
|     double              var_inc;          // Amount to bump next variable with.
 | |
|     vec<vec<Clause*> >  watches;          // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
 | |
|     vec<char>           assigns;          // The current assignments (lbool:s stored as char:s).
 | |
|     vec<char>           polarity;         // The preferred polarity of each variable.
 | |
|     vec<char>           decision_var;     // Declares if a variable is eligible for selection in the decision heuristic.
 | |
|     vec<Lit>            trail;            // Assignment stack; stores all assigments made in the order they were made.
 | |
|     vec<int>            trail_lim;        // Separator indices for different decision levels in 'trail'.
 | |
|     vec<Clause*>        reason;           // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
 | |
|     vec<int>            level;            // 'level[var]' contains the level at which the assignment was made.
 | |
|     int                 qhead;            // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
 | |
|     int                 simpDB_assigns;   // Number of top-level assignments since last execution of 'simplify()'.
 | |
|     int64_t             simpDB_props;     // Remaining number of propagations that must be made before next execution of 'simplify()'.
 | |
|     vec<Lit>            assumptions;      // Current set of assumptions provided to solve by the user.
 | |
|     Heap<VarOrderLt>    order_heap;       // A priority queue of variables ordered with respect to the variable activity.
 | |
|     double              random_seed;      // Used by the random variable selection.
 | |
|     double              progress_estimate;// Set by 'search()'.
 | |
|     bool                remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
 | |
| 
 | |
|     // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
 | |
|     // used, exept 'seen' wich is used in several places.
 | |
|     //
 | |
|     vec<char>           seen;
 | |
|     vec<Lit>            analyze_stack;
 | |
|     vec<Lit>            analyze_toclear;
 | |
|     vec<Lit>            add_tmp;
 | |
| 
 | |
|     // Main internal methods:
 | |
|     //
 | |
|     void     insertVarOrder   (Var x);                                                 // Insert a variable in the decision order priority queue.
 | |
|     Lit      pickBranchLit    (int polarity_mode, double random_var_freq);             // Return the next decision variable.
 | |
|     void     newDecisionLevel ();                                                      // Begins a new decision level.
 | |
|     void     uncheckedEnqueue (Lit p, Clause* from = NULL);                            // Enqueue a literal. Assumes value of literal is undefined.
 | |
|     bool     enqueue          (Lit p, Clause* from = NULL);                            // Test if fact 'p' contradicts current state, enqueue otherwise.
 | |
|     Clause*  propagate        ();                                                      // Perform unit propagation. Returns possibly conflicting clause.
 | |
|     void     cancelUntil      (int level);                                             // Backtrack until a certain level.
 | |
|     void     analyze          (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
 | |
|     void     analyzeFinal     (Lit p, vec<Lit>& out_conflict);                         // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
 | |
|     bool     litRedundant     (Lit p, uint32_t abstract_levels);                       // (helper method for 'analyze()')
 | |
|     lbool    search           (int nof_conflicts, int nof_learnts);                    // Search for a given number of conflicts.
 | |
|     void     reduceDB         ();                                                      // Reduce the set of learnt clauses.
 | |
|     void     removeSatisfied  (vec<Clause*>& cs);                                      // Shrink 'cs' to contain only non-satisfied clauses.
 | |
| 
 | |
|     // Maintaining Variable/Clause activity:
 | |
|     //
 | |
|     void     varDecayActivity ();                      // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
 | |
|     void     varBumpActivity  (Var v);                 // Increase a variable with the current 'bump' value.
 | |
|     void     claDecayActivity ();                      // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
 | |
|     void     claBumpActivity  (Clause& c);             // Increase a clause with the current 'bump' value.
 | |
| 
 | |
|     // Operations on clauses:
 | |
|     //
 | |
|     void     attachClause     (Clause& c);             // Attach a clause to watcher lists.
 | |
|     void     detachClause     (Clause& c);             // Detach a clause to watcher lists.
 | |
|     void     removeClause     (Clause& c);             // Detach and free a clause.
 | |
|     bool     locked           (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
 | |
|     bool     satisfied        (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
 | |
| 
 | |
|     // Misc:
 | |
|     //
 | |
|     int      decisionLevel    ()      const; // Gives the current decisionlevel.
 | |
|     uint32_t abstractLevel    (Var x) const; // Used to represent an abstraction of sets of decision levels.
 | |
|     double   progressEstimate ()      const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
 | |
| 
 | |
|     // Debug:
 | |
|     void     printLit         (Lit l);
 | |
|     template<class C>
 | |
|     void     printClause      (const C& c);
 | |
|     void     verifyModel      ();
 | |
|     void     checkLiteralCount();
 | |
| 
 | |
|     // Static helpers:
 | |
|     //
 | |
| 
 | |
|     // Returns a random float 0 <= x < 1. Seed must never be 0.
 | |
|     static inline double drand(double& seed) {
 | |
|         seed *= 1389796;
 | |
|         int q = (int)(seed / 2147483647);
 | |
|         seed -= (double)q * 2147483647;
 | |
|         return seed / 2147483647; }
 | |
| 
 | |
|     // Returns a random integer 0 <= x < size. Seed must never be 0.
 | |
|     static inline int irand(double& seed, int size) {
 | |
|         return (int)(drand(seed) * size); }
 | |
| };
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| // Implementation of inline methods:
 | |
| 
 | |
| 
 | |
| inline void Solver::insertVarOrder(Var x) {
 | |
|     if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); }
 | |
| 
 | |
| inline void Solver::varDecayActivity() { var_inc *= var_decay; }
 | |
| inline void Solver::varBumpActivity(Var v) {
 | |
|     if ( (activity[v] += var_inc) > 1e100 ) {
 | |
|         // Rescale:
 | |
|         for (int i = 0; i < nVars(); i++)
 | |
|             activity[i] *= 1e-100;
 | |
|         var_inc *= 1e-100; }
 | |
| 
 | |
|     // Update order_heap with respect to new activity:
 | |
|     if (order_heap.inHeap(v))
 | |
|         order_heap.decrease(v); }
 | |
| 
 | |
| inline void Solver::claDecayActivity() { cla_inc *= clause_decay; }
 | |
| inline void Solver::claBumpActivity (Clause& c) {
 | |
|         if ( (c.activity() += cla_inc) > 1e20 ) {
 | |
|             // Rescale:
 | |
|             for (int i = 0; i < learnts.size(); i++)
 | |
|                 learnts[i]->activity() *= 1e-20;
 | |
|             cla_inc *= 1e-20; } }
 | |
| 
 | |
| inline bool     Solver::enqueue         (Lit p, Clause* from)   { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
 | |
| inline bool     Solver::locked          (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; }
 | |
| inline void     Solver::newDecisionLevel()                      { trail_lim.push(trail.size()); }
 | |
| 
 | |
| inline int      Solver::decisionLevel ()      const   { return trail_lim.size(); }
 | |
| inline uint32_t Solver::abstractLevel (Var x) const   { return 1 << (level[x] & 31); }
 | |
| inline lbool    Solver::value         (Var x) const   { return toLbool(assigns[x]); }
 | |
| inline lbool    Solver::value         (Lit p) const   { return toLbool(assigns[var(p)]) ^ sign(p); }
 | |
| inline lbool    Solver::modelValue    (Lit p) const   { return model[var(p)] ^ sign(p); }
 | |
| inline int      Solver::nAssigns      ()      const   { return trail.size(); }
 | |
| inline int      Solver::nClauses      ()      const   { return clauses.size(); }
 | |
| inline int      Solver::nLearnts      ()      const   { return learnts.size(); }
 | |
| inline int      Solver::nVars         ()      const   { return assigns.size(); }
 | |
| inline void     Solver::setPolarity   (Var v, bool b) { polarity    [v] = (char)b; }
 | |
| inline void     Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } }
 | |
| inline bool     Solver::solve         ()              { vec<Lit> tmp; return solve(tmp); }
 | |
| inline bool     Solver::okay          ()      const   { return ok; }
 | |
| 
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| // Debug + etc:
 | |
| 
 | |
| 
 | |
| #define reportf(format, args...) ( fflush(stdout), fprintf(stderr, format, ## args), fflush(stderr) )
 | |
| 
 | |
| static inline void logLit(FILE* f, Lit l)
 | |
| {
 | |
|     fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1);
 | |
| }
 | |
| 
 | |
| static inline void logLits(FILE* f, const vec<Lit>& ls)
 | |
| {
 | |
|     fprintf(f, "[ ");
 | |
|     if (ls.size() > 0){
 | |
|         logLit(f, ls[0]);
 | |
|         for (int i = 1; i < ls.size(); i++){
 | |
|             fprintf(f, ", ");
 | |
|             logLit(f, ls[i]);
 | |
|         }
 | |
|     }
 | |
|     fprintf(f, "] ");
 | |
| }
 | |
| 
 | |
| static inline const char* showBool(bool b) { return b ? "true" : "false"; }
 | |
| 
 | |
| 
 | |
| // Just like 'assert()' but expression will be evaluated in the release version as well.
 | |
| static inline void check(bool expr) { assert(expr); }
 | |
| 
 | |
| 
 | |
| inline void Solver::printLit(Lit l)
 | |
| {
 | |
|     reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
 | |
| }
 | |
| 
 | |
| 
 | |
| template<class C>
 | |
| inline void Solver::printClause(const C& c)
 | |
| {
 | |
|     for (int i = 0; i < c.size(); i++){
 | |
|         printLit(c[i]);
 | |
|         fprintf(stderr, " ");
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //=================================================================================================
 | |
| #endif
 |