1231 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			1231 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| /* 
 | |
| 
 | |
| 	This code implements Red-Black trees as described in:
 | |
| 
 | |
| 	"Introduction to Algorithms", Second Edition
 | |
| 	Cormen, Leiserson, Rivest, and Stein,
 | |
| 	MIT Press
 | |
| 
 | |
|         Author: Vitor Santos Costa
 | |
| 
 | |
| */
 | |
| 
 | |
| 
 | |
| :- module(rbtrees,
 | |
| 	  [rb_new/1,
 | |
| 	   rb_empty/1,		% ?T
 | |
| 	   rb_lookup/3,		% +Key, -Value, +T
 | |
| 	   rb_update/4,		% +T, +Key, +NewVal, -TN
 | |
| 	   rb_update/5,		% +T, +Key, ?OldVal, +NewVal, -TN
 | |
| 	   rb_rewrite/3,		% +T, +Key, +NewVal
 | |
| 	   rb_rewrite/4,		% +T, +Key, ?OldVal, +NewVal
 | |
| 	   rb_apply/4,			% +T, +Key, :G, -TN
 | |
| 	   rb_lookupall/3,		% +Key, -Value, +T
 | |
| 	   rb_insert/4,		% +T0, +Key, ?Value, -TN
 | |
| 	   rb_insert_new/4,	% +T0, +Key, ?Value, -TN
 | |
| 	   rb_delete/3,		% +T, +Key, -TN
 | |
| 	   rb_delete/4,		% +T, +Key, -Val, -TN
 | |
| 	   rb_visit/2,			% +T, -Pairs
 | |
| 	   rb_visit/3,
 | |
| 	   rb_keys/2,			% +T, +Keys
 | |
| 	   rb_keys/3,
 | |
| 	   rb_map/2,
 | |
| 	   rb_map/3,
 | |
| 	   rb_partial_map/4,
 | |
| 	   rb_accumulate/4,
 | |
| 	   rb_clone/3,
 | |
| 	   rb_clone/4,
 | |
| 	   rb_min/3,
 | |
| 	   rb_max/3,
 | |
| 	   rb_del_min/4,
 | |
| 	   rb_del_max/4,
 | |
| 	   rb_next/4,
 | |
| 	   rb_previous/4,
 | |
| 	   rb_fold/4,
 | |
| 	   rb_key_fold/4,
 | |
| 	   list_to_rbtree/2,
 | |
| 	   ord_list_to_rbtree/2,
 | |
| 	   is_rbtree/1,
 | |
| 	   rb_size/2,
 | |
| 	   rb_in/3
 | |
|        ]).
 | |
| 
 | |
| /** <module> Red black trees
 | |
| 
 | |
| Red-Black trees are balanced search binary trees. They are named because
 | |
| nodes can be classified as either red or   black. The code we include is
 | |
| based on "Introduction  to  Algorithms",   second  edition,  by  Cormen,
 | |
| Leiserson, Rivest and Stein. The library   includes  routines to insert,
 | |
| lookup and delete elements in the tree.
 | |
| 
 | |
| A Red black tree is represented as a term t(Nil, Tree), where Nil is the
 | |
| Nil-node, a node shared for each nil-node in  the tree. Any node has the
 | |
| form colour(Left, Key, Value, Right), where _colour_  is one of =red= or
 | |
| =black=.
 | |
| 
 | |
| @author Vitor Santos Costa, Jan Wielemaker
 | |
| */
 | |
| 
 | |
| :- meta_predicate rb_map(+,2,-),
 | |
| 	rb_partial_map(+,+,2,-),
 | |
| 	rb_apply(+,+,2,-).
 | |
| 
 | |
| /*
 | |
| :- use_module(library(type_check)).
 | |
| 
 | |
| :- type rbtree(K,V) ---> t(tree(K,V),tree(K,V)).
 | |
| :- type tree(K,V)   ---> black(tree(K,V),K,V,tree(K,V))
 | |
| 	               ; red(tree(K,V),K,V,tree(K,V))
 | |
| 		       ; ''.
 | |
| :- type cmp ---> (=) ; (<) ; (>).
 | |
| 
 | |
| 
 | |
| :- pred rb_new(rbtree(_K,_V)).
 | |
| :- pred rb_empty(rbtree(_K,_V)).
 | |
| :- pred rb_lookup(K,V,rbtree(K,V)).
 | |
| :- pred lookup(K,V, tree(K,V)).
 | |
| :- pred lookup(cmp, K, V, tree(K,V)).
 | |
| :- pred rb_min(rbtree(K,V),K,V).
 | |
| :- pred min(tree(K,V),K,V).
 | |
| :- pred rb_max(rbtree(K,V),K,V).
 | |
| :- pred max(tree(K,V),K,V).
 | |
| :- pred rb_next(rbtree(K,V),K,pair(K,V),V).
 | |
| :- pred next(tree(K,V),K,pair(K,V),V,tree(K,V)).
 | |
| */
 | |
| 
 | |
| % create an empty tree.
 | |
| %%	rb_new(-T) is det.
 | |
| %
 | |
| %	Create a new Red-Black tree.
 | |
| %	
 | |
| %	@deprecated	Use rb_empty/1.
 | |
| 
 | |
| rb_new(t(Nil,Nil)) :- Nil = black('',_,_,'').
 | |
| 
 | |
| rb_new(K,V,t(Nil,black(Nil,K,V,Nil))) :- Nil = black('',_,_,'').
 | |
| 
 | |
| %%	rb_empty(?T) is semidet.
 | |
| %
 | |
| %	Succeeds if T is an empty Red-Black tree.
 | |
| 
 | |
| rb_empty(t(Nil,Nil)) :- Nil = black('',_,_,'').
 | |
| 
 | |
| %%	rb_lookup(+Key, -Value, +T) is semidet.
 | |
| %
 | |
| %	Backtrack through all elements with  key   Key  in the Red-Black
 | |
| %	tree T, returning for each the value Value.
 | |
| 
 | |
| rb_lookup(Key, Val, t(_,Tree)) :-
 | |
| 	lookup(Key, Val, Tree).
 | |
| 
 | |
| lookup(_, _, black('',_,_,'')) :- !, fail.
 | |
| lookup(Key, Val, Tree) :-
 | |
| 	arg(2,Tree,KA),
 | |
| 	compare(Cmp,KA,Key),
 | |
| 	lookup(Cmp,Key,Val,Tree).
 | |
| 
 | |
| lookup(>, K, V, Tree) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	lookup(K, V, NTree).
 | |
| lookup(<, K, V, Tree) :-
 | |
| 	arg(4,Tree,NTree),
 | |
| 	lookup(K, V, NTree).
 | |
| lookup(=, _, V, Tree) :-
 | |
| 	arg(3,Tree,V).
 | |
| 
 | |
| %%	rb_min(+T, -Key, -Value) is semidet.
 | |
| %
 | |
| %	Key is the minimum key in T, and is associated with Val.
 | |
| 
 | |
| rb_min(t(_,Tree), Key, Val) :-
 | |
| 	min(Tree, Key, Val).
 | |
| 
 | |
| min(red(black('',_,_,_),Key,Val,_), Key, Val) :- !.
 | |
| min(black(black('',_,_,_),Key,Val,_), Key, Val) :- !.
 | |
| min(red(Right,_,_,_), Key, Val) :-
 | |
| 	min(Right,Key,Val).
 | |
| min(black(Right,_,_,_), Key, Val) :-
 | |
| 	min(Right,Key,Val).
 | |
| 
 | |
| %%	rb_max(+T, -Key, -Value) is semidet.
 | |
| %
 | |
| %	Key is the maximal key in T, and is associated with Val.
 | |
| 
 | |
| rb_max(t(_,Tree), Key, Val) :-
 | |
| 	max(Tree, Key, Val).
 | |
| 
 | |
| max(red(_,Key,Val,black('',_,_,_)), Key, Val) :- !.
 | |
| max(black(_,Key,Val,black('',_,_,_)), Key, Val) :- !.
 | |
| max(red(_,_,_,Left), Key, Val) :-
 | |
| 	max(Left,Key,Val).
 | |
| max(black(_,_,_,Left), Key, Val) :-
 | |
| 	max(Left,Key,Val).
 | |
| 
 | |
| %%	rb_next(+T, +Key, -Next,-Value) is semidet.
 | |
| %
 | |
| %	Next is the next element after Key  in T, and is associated with
 | |
| %	Val.
 | |
| 
 | |
| rb_next(t(_,Tree), Key, Next, Val) :-
 | |
| 	next(Tree, Key, Next, Val, []).
 | |
| 
 | |
| next(black('',_,_,''), _, _, _, _) :- !, fail.
 | |
| next(Tree, Key, Next, Val, Candidate) :-
 | |
| 	arg(2,Tree,KA),
 | |
| 	arg(3,Tree,VA),
 | |
| 	compare(Cmp,KA,Key),
 | |
| 	next(Cmp, Key, KA, VA, Next, Val, Tree, Candidate).
 | |
| 
 | |
| next(>, K, KA, VA, NK, V, Tree, _) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	next(NTree,K,NK,V,KA-VA).
 | |
| next(<, K, _, _, NK, V, Tree, Candidate) :-
 | |
| 	arg(4,Tree,NTree),
 | |
| 	next(NTree,K,NK,V,Candidate).
 | |
| next(=, _, _, _, NK, Val, Tree, Candidate) :-
 | |
| 	arg(4,Tree,NTree),
 | |
| 	( 
 | |
| 	    min(NTree, NK, Val)
 | |
| 	-> true
 | |
| 	;
 | |
| 	    Candidate = (NK-Val)
 | |
| 	).
 | |
| 
 | |
| %%	rb_previous(+T, +Key, -Previous, -Value) is semidet.
 | |
| %
 | |
| %	Previous is the  previous  element  after   Key  in  T,  and  is
 | |
| %	associated with Val.
 | |
| 
 | |
| rb_previous(t(_,Tree), Key, Previous, Val) :-
 | |
| 	previous(Tree, Key, Previous, Val, []).
 | |
| 
 | |
| previous(black('',_,_,''), _, _, _, _) :- !, fail.
 | |
| previous(Tree, Key, Previous, Val, Candidate) :-
 | |
| 	arg(2,Tree,KA),
 | |
| 	arg(3,Tree,VA),
 | |
| 	compare(Cmp,KA,Key),
 | |
| 	previous(Cmp, Key, KA, VA, Previous, Val, Tree, Candidate).
 | |
| 
 | |
| previous(>, K, _, _, NK, V, Tree, Candidate) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	previous(NTree,K,NK,V,Candidate).
 | |
| previous(<, K, KA, VA, NK, V, Tree, _) :-
 | |
| 	arg(4,Tree,NTree),
 | |
| 	previous(NTree,K,NK,V,KA-VA).
 | |
| previous(=, _, _, _, K, Val, Tree, Candidate) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	( 
 | |
| 	    max(NTree, K, Val)
 | |
| 	-> true
 | |
| 	;
 | |
| 	    Candidate = (K-Val)
 | |
| 	).
 | |
| 
 | |
| %%	rb_update(+T, +Key, +NewVal, -TN) is semidet.
 | |
| %%	rb_update(+T, +Key, ?OldVal, +NewVal, -TN) is semidet.
 | |
| %
 | |
| %	Tree TN is tree T,  but  with   value  for  Key  associated with
 | |
| %	NewVal.  Fails if it cannot find Key in T.
 | |
| 
 | |
| rb_update(t(Nil,OldTree), Key, OldVal, Val, t(Nil,NewTree)) :-
 | |
| 	update(OldTree, Key, OldVal, Val, NewTree).
 | |
| 
 | |
| rb_update(t(Nil,OldTree), Key, Val, t(Nil,NewTree)) :-
 | |
| 	update(OldTree, Key, _, Val, NewTree).
 | |
| 
 | |
| update(black(Left,Key0,Val0,Right), Key, OldVal, Val, NewTree) :-
 | |
| 	Left \= [],
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	(Cmp == (=)
 | |
| 	-> OldVal = Val0,
 | |
| 	    NewTree = black(Left,Key0,Val,Right)
 | |
| 	;
 | |
| 	Cmp == (>) ->
 | |
| 	   NewTree = black(NewLeft,Key0,Val0,Right),
 | |
| 	  update(Left, Key, OldVal, Val, NewLeft)
 | |
| 	;
 | |
| 	  NewTree = black(Left,Key0,Val0,NewRight),
 | |
| 	  update(Right, Key, OldVal, Val, NewRight)
 | |
| 	).
 | |
| update(red(Left,Key0,Val0,Right), Key, OldVal, Val, NewTree) :-
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	(Cmp == (=)
 | |
| 	-> OldVal = Val0,
 | |
| 	    NewTree = red(Left,Key0,Val,Right)
 | |
| 	;
 | |
| 	Cmp == (>)
 | |
| 	-> NewTree = red(NewLeft,Key0,Val0,Right),
 | |
| 	  update(Left, Key, OldVal, Val, NewLeft)
 | |
| 	;
 | |
| 	  NewTree = red(Left,Key0,Val0,NewRight),
 | |
| 	  update(Right, Key, OldVal, Val, NewRight)
 | |
| 	).
 | |
| 
 | |
| %%	rb_rewrite(+T, +Key, +NewVal) is semidet.
 | |
| %%	rb_rewrite(+T, +Key, ?OldVal, +NewVal) is semidet.
 | |
| %
 | |
| %	Tree T has   value  for  Key  associated with
 | |
| %	NewVal.  Fails if it cannot find Key in T.
 | |
| 
 | |
| rb_rewrite(t(_Nil,OldTree), Key, OldVal, Val) :-
 | |
| 	rewrite(OldTree, Key, OldVal, Val).
 | |
| 
 | |
| rb_rewrite(t(_Nil,OldTree), Key, Val) :-
 | |
| 	rewrite(OldTree, Key, _, Val).
 | |
| 
 | |
| rewrite(Node, Key, OldVal, Val) :-
 | |
| 	Node = black(Left,Key0,Val0,Right),
 | |
| 	Left \= [],
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	(Cmp == (=)
 | |
| 	-> OldVal = Val0,
 | |
| 	    setarg(3, Node, Val)
 | |
| 	;
 | |
| 	Cmp == (>) ->
 | |
| 	  rewrite(Left, Key, OldVal, Val)
 | |
| 	;
 | |
| 	  rewrite(Right, Key, OldVal, Val)
 | |
| 	).
 | |
| rewrite(Node, Key, OldVal, Val) :-
 | |
| 	Node = red(Left,Key0,Val0,Right),
 | |
| 	Left \= [],
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	(
 | |
|            Cmp == (=)
 | |
| 	-> 
 | |
|             OldVal = Val0,
 | |
| 	    setarg(3, Node, Val)
 | |
| 	;
 | |
| 	  Cmp == (>)
 | |
|          ->
 | |
| 	  rewrite(Left, Key, OldVal, Val)
 | |
| 	;
 | |
| 	  rewrite(Right, Key, OldVal, Val)
 | |
| 	).
 | |
| 
 | |
| %%	rb_apply(+T, +Key, :G, -TN) is semidet.
 | |
| %
 | |
| %	If the value associated with  key  Key   is  Val0  in  T, and if
 | |
| %	call(G,Val0,ValF) holds, then TN differs from T only in that Key
 | |
| %	is associated with value ValF in  tree   TN.  Fails if it cannot
 | |
| %	find Key in T, or if call(G,Val0,ValF) is not satisfiable.
 | |
| 
 | |
| rb_apply(t(Nil,OldTree), Key, Goal, t(Nil,NewTree)) :-
 | |
| 	apply(OldTree, Key, Goal, NewTree).
 | |
| 
 | |
| %apply(black('',_,_,''), _, _, _) :- !, fail.
 | |
| apply(black(Left,Key0,Val0,Right), Key, Goal,
 | |
|       black(NewLeft,Key0,Val,NewRight)) :-
 | |
| 	Left \= [],
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	(Cmp == (=)
 | |
| 	-> NewLeft = Left,
 | |
| 	    NewRight = Right,
 | |
| 	    call(Goal,Val0,Val)
 | |
| 	; Cmp == (>)
 | |
| 	->  NewRight = Right,
 | |
| 	    Val = Val0,
 | |
| 	    apply(Left, Key, Goal, NewLeft)
 | |
| 	;
 | |
| 	    NewLeft = Left,
 | |
| 	    Val = Val0,
 | |
| 	    apply(Right, Key, Goal, NewRight)
 | |
| 	).
 | |
| apply(red(Left,Key0,Val0,Right), Key, Goal,
 | |
|       red(NewLeft,Key0,Val,NewRight)) :-
 | |
| 	compare(Cmp,Key0,Key),
 | |
| 	( Cmp == (=)
 | |
| 	-> NewLeft = Left,
 | |
| 	 NewRight = Right,
 | |
| 	 call(Goal,Val0,Val)
 | |
| 	; Cmp == (>)
 | |
| 	-> NewRight = Right,
 | |
| 	 Val = Val0,
 | |
| 	 apply(Left, Key, Goal, NewLeft)
 | |
| 	;
 | |
| 	 NewLeft = Left,
 | |
| 	 Val = Val0,
 | |
| 	 apply(Right, Key, Goal, NewRight)
 | |
| 	).
 | |
| 
 | |
| %%	rb_in(?Key, ?Val, +Tree) is nondet.
 | |
| %
 | |
| %	True if Key-Val appear in Tree. Uses indexing if Key is bound.
 | |
| 
 | |
| rb_in(Key, Val, t(_,T)) :-
 | |
| 	var(Key), !,
 | |
| 	enum(Key, Val, T).
 | |
| rb_in(Key, Val, t(_,T)) :-
 | |
| 	lookup(Key, Val, T).
 | |
| 
 | |
| 
 | |
| enum(Key, Val, black(L,K,V,R)) :-
 | |
| 	L \= '',
 | |
| 	enum_cases(Key, Val, L, K, V, R).
 | |
| enum(Key, Val, red(L,K,V,R)) :-
 | |
| 	enum_cases(Key, Val, L, K, V, R).
 | |
| 
 | |
| enum_cases(Key, Val, L, _, _, _) :-
 | |
| 	enum(Key, Val, L).
 | |
| enum_cases(Key, Val, _, Key, Val, _).
 | |
| enum_cases(Key, Val, _, _, _, R) :-
 | |
| 	enum(Key, Val, R).
 | |
| 
 | |
| 
 | |
| %%	rb_lookupall(+Key, -Value, +T)
 | |
| %
 | |
| %	Lookup all elements with  key  Key   in  the  red-black  tree T,
 | |
| %	returning the value Value.
 | |
| 
 | |
| rb_lookupall(Key, Val, t(_,Tree)) :-
 | |
| 	lookupall(Key, Val, Tree).
 | |
| 
 | |
| 
 | |
| lookupall(_, _, black('',_,_,'')) :- !, fail.
 | |
| lookupall(Key, Val, Tree) :-
 | |
| 	arg(2,Tree,KA),
 | |
| 	compare(Cmp,KA,Key),
 | |
| 	lookupall(Cmp,Key,Val,Tree).
 | |
| 
 | |
| lookupall(>, K, V, Tree) :-
 | |
| 	arg(4,Tree,NTree),
 | |
| 	rb_lookupall(K, V, NTree).
 | |
| lookupall(=, _, V, Tree) :-
 | |
| 	arg(3,Tree,V).
 | |
| lookupall(=, K, V, Tree) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	lookupall(K, V, NTree).
 | |
| lookupall(<, K, V, Tree) :-
 | |
| 	arg(1,Tree,NTree),
 | |
| 	lookupall(K, V, NTree).
 | |
| 
 | |
| 		 /*******************************
 | |
| 		 *	 TREE INSERTION		*
 | |
| 		 *******************************/
 | |
| 
 | |
| % We don't use parent nodes, so we may have to fix the root.
 | |
| 
 | |
| %%	rb_insert(+T0, +Key, ?Value, -TN) is det.
 | |
| %
 | |
| %	Add an element with key Key and Value  to the tree T0 creating a
 | |
| %	new red-black tree TN. If Key  is   a  key in T0, the associated
 | |
| %	value is replaced by Value.  See also rb_insert_new/4.
 | |
| 
 | |
| rb_insert(t(Nil,Tree0),Key,Val,t(Nil,Tree)) :-
 | |
| 	insert(Tree0,Key,Val,Nil,Tree).
 | |
| 
 | |
| 
 | |
| insert(Tree0,Key,Val,Nil,Tree) :-
 | |
| 	insert2(Tree0,Key,Val,Nil,TreeI,_),
 | |
| 	fix_root(TreeI,Tree).
 | |
| 
 | |
| %
 | |
| % Cormen et al present the algorithm as 
 | |
| % (1) standard tree insertion;
 | |
| % (2) from the viewpoint of the newly inserted node:
 | |
| %     partially fix the tree;
 | |
| %     move upwards
 | |
| % until reaching the root.
 | |
| %
 | |
| % We do it a little bit different:
 | |
| %
 | |
| % (1) standard tree insertion;
 | |
| % (2) move upwards:
 | |
| %      when reaching a black node;
 | |
| %        if the tree below may be broken, fix it.
 | |
| % We take advantage of Prolog unification
 | |
| % to do several operations in a single go.
 | |
| %
 | |
| 
 | |
| 
 | |
| 
 | |
| %
 | |
| % actual insertion
 | |
| %
 | |
| insert2(black('',_,_,''), K, V, Nil, T, Status) :- !,
 | |
| 	T = red(Nil,K,V,Nil),
 | |
| 	Status = not_done.
 | |
| insert2(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	( K @< K0
 | |
| 	-> NR = R,
 | |
| 	  NT = red(NL,K0,V0,R),
 | |
| 	  insert2(L, K, V, Nil, NL, Flag)
 | |
| 	; K == K0 ->
 | |
| 	  NT = red(L,K0,V,R),
 | |
| 	  Flag = done
 | |
| 	;
 | |
| 	  NT = red(L,K0,V0,NR),
 | |
| 	  insert2(R, K, V, Nil, NR, Flag)
 | |
| 	).
 | |
| insert2(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	( K @< K0
 | |
| 	-> insert2(L, K, V, Nil, IL, Flag0),
 | |
| 	  fix_left(Flag0, black(IL,K0,V0,R), NT, Flag)
 | |
| 	; K == K0 ->
 | |
| 	  NT = 	black(L,K0,V,R),
 | |
| 	  Flag = done
 | |
| 	;
 | |
| 	  insert2(R, K, V, Nil, IR, Flag0),
 | |
| 	  fix_right(Flag0, black(L,K0,V0,IR), NT, Flag)
 | |
| 	).
 | |
| 
 | |
| % We don't use parent nodes, so we may have to fix the root.
 | |
| 
 | |
| %%	rb_insert_new(+T0, +Key, ?Value, -TN) is semidet.
 | |
| %
 | |
| %	Add a new element with key Key and Value  to the tree T0 creating a
 | |
| %	new red-black tree TN.   Fails if Key is a key in T0.
 | |
| 
 | |
| rb_insert_new(t(Nil,Tree0),Key,Val,t(Nil,Tree)) :-
 | |
| 	insert_new(Tree0,Key,Val,Nil,Tree).
 | |
| 
 | |
| 
 | |
| insert_new(Tree0,Key,Val,Nil,Tree) :-
 | |
| 	insert_new_2(Tree0,Key,Val,Nil,TreeI,_),
 | |
| 	fix_root(TreeI,Tree).
 | |
| 
 | |
| %
 | |
| % actual insertion, copied from insert2 
 | |
| %
 | |
| insert_new_2(black('',_,_,''), K, V, Nil, T, Status) :- !,
 | |
| 	T = red(Nil,K,V,Nil),
 | |
| 	Status = not_done.
 | |
| insert_new_2(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	( K @< K0
 | |
| 	-> NR = R,
 | |
| 	  NT = red(NL,K0,V0,R),
 | |
| 	  insert_new_2(L, K, V, Nil, NL, Flag)
 | |
| 	; K == K0 ->
 | |
| 	  fail
 | |
| 	;
 | |
| 	  NT = red(L,K0,V0,NR),
 | |
| 	  insert_new_2(R, K, V, Nil, NR, Flag)
 | |
| 	).
 | |
| insert_new_2(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	( K @< K0
 | |
| 	-> insert_new_2(L, K, V, Nil, IL, Flag0),
 | |
| 	  fix_left(Flag0, black(IL,K0,V0,R), NT, Flag)
 | |
| 	; K == K0 ->
 | |
| 	  fail
 | |
| 	;
 | |
| 	  insert_new_2(R, K, V, Nil, IR, Flag0),
 | |
| 	  fix_right(Flag0, black(L,K0,V0,IR), NT, Flag)
 | |
| 	).
 | |
| 
 | |
| %
 | |
| % make sure the root is always black.
 | |
| %
 | |
| fix_root(black(L,K,V,R),black(L,K,V,R)).
 | |
| fix_root(red(L,K,V,R),black(L,K,V,R)).
 | |
| 
 | |
| 
 | |
| 
 | |
| %
 | |
| % How to fix if we have inserted on the left
 | |
| %
 | |
| fix_left(done,T,T,done) :- !.
 | |
| fix_left(not_done,Tmp,Final,Done) :-
 | |
| 	fix_left(Tmp,Final,Done).
 | |
| 
 | |
| %
 | |
| % case 1 of RB: just need to change colors.
 | |
| %
 | |
| fix_left(black(red(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,red(De,KD,VD,Ep)),
 | |
| 	red(black(Al,AK,AV,red(Be,BK,BV,Ga)),KC,VC,black(De,KD,VD,Ep)),
 | |
| 	not_done) :- !.
 | |
| fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,red(De,KD,VD,Ep)),
 | |
| 	red(black(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,Ep)),
 | |
| 	not_done) :- !.
 | |
| %
 | |
| % case 2 of RB: got a knee so need to do rotations
 | |
| %
 | |
| fix_left(black(red(Al,KA,VA,red(Be,KB,VB,Ga)),KC,VC,De),
 | |
| 	black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 3 of RB: got a line
 | |
| %
 | |
| fix_left(black(red(red(Al,KA,VA,Be),KB,VB,Ga),KC,VC,De),
 | |
| 	black(red(Al,KA,VA,Be),KB,VB,red(Ga,KC,VC,De)),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 4 of RB: nothing to do
 | |
| %
 | |
| fix_left(T,T,done).
 | |
| 
 | |
| %
 | |
| % How to fix if we have inserted on the right
 | |
| %
 | |
| fix_right(done,T,T,done) :- !.
 | |
| fix_right(not_done,Tmp,Final,Done) :-
 | |
| 	fix_right(Tmp,Final,Done).
 | |
| 
 | |
| %
 | |
| % case 1 of RB: just need to change colors.
 | |
| %
 | |
| fix_right(black(red(Ep,KD,VD,De),KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
 | |
| 	red(black(Ep,KD,VD,De),KC,VC,black(red(Ga,KB,VB,Be),KA,VA,Al)),
 | |
| 	not_done) :- !.
 | |
| fix_right(black(red(Ep,KD,VD,De),KC,VC,red(Ga,Ka,Va,red(Be,KB,VB,Al))),
 | |
| 	red(black(Ep,KD,VD,De),KC,VC,black(Ga,Ka,Va,red(Be,KB,VB,Al))),
 | |
| 	not_done) :- !.
 | |
| %
 | |
| % case 2 of RB: got a knee so need to do rotations
 | |
| %
 | |
| fix_right(black(De,KC,VC,red(red(Ga,KB,VB,Be),KA,VA,Al)),
 | |
| 	black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 3 of RB: got a line
 | |
| %
 | |
| fix_right(black(De,KC,VC,red(Ga,KB,VB,red(Be,KA,VA,Al))),
 | |
| 	black(red(De,KC,VC,Ga),KB,VB,red(Be,KA,VA,Al)),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 4 of RB: nothing to do.
 | |
| %
 | |
| fix_right(T,T,done).
 | |
| 
 | |
| %
 | |
| % simplified processor
 | |
| %
 | |
| %
 | |
| pretty_print(t(_,T)) :-
 | |
| 	pretty_print(T,6).
 | |
| 
 | |
| pretty_print(black('',_,_,''),_) :- !.
 | |
| pretty_print(red(L,K,_,R),D) :-
 | |
| 	DN is D+6,
 | |
| 	pretty_print(L,DN),
 | |
| 	format("~t~a:~d~*|~n",[r,K,D]),
 | |
| 	pretty_print(R,DN).
 | |
| pretty_print(black(L,K,_,R),D) :-
 | |
| 	DN is D+6,
 | |
| 	pretty_print(L,DN),
 | |
| 	format("~t~a:~d~*|~n",[b,K,D]),
 | |
| 	pretty_print(R,DN).
 | |
| 
 | |
| 
 | |
| rb_delete(t(Nil,T), K, t(Nil,NT)) :-
 | |
| 	delete(T, K, _, NT, _).
 | |
| 
 | |
| %%	rb_delete(+T, +Key, -TN).
 | |
| %%	rb_delete(+T, +Key, -Val, -TN).
 | |
| %
 | |
| %	Delete element with key Key from the tree T, returning the value
 | |
| %	Val associated with the key and a new tree TN.
 | |
| 
 | |
| rb_delete(t(Nil,T), K, V, t(Nil,NT)) :-
 | |
| 	delete(T, K, V0, NT, _),
 | |
| 	V = V0.
 | |
| 
 | |
| %
 | |
| % I am afraid our representation is not as nice for delete
 | |
| %
 | |
| delete(red(L,K0,V0,R), K, V, NT, Flag) :-
 | |
| 	K @< K0, !,
 | |
| 	delete(L, K, V, NL, Flag0),
 | |
| 	fixup_left(Flag0,red(NL,K0,V0,R),NT, Flag).
 | |
| delete(red(L,K0,V0,R), K, V, NT, Flag) :-
 | |
| 	K @> K0, !,
 | |
| 	delete(R, K, V, NR, Flag0),
 | |
| 	fixup_right(Flag0,red(L,K0,V0,NR),NT, Flag).
 | |
| delete(red(L,_,V,R), _, V, OUT, Flag) :-
 | |
| %	K == K0,
 | |
| 	delete_red_node(L,R,OUT,Flag).
 | |
| delete(black(L,K0,V0,R), K, V, NT, Flag) :-
 | |
| 	K @< K0, !,
 | |
| 	delete(L, K, V, NL, Flag0),
 | |
| 	fixup_left(Flag0,black(NL,K0,V0,R),NT, Flag).
 | |
| delete(black(L,K0,V0,R), K, V, NT, Flag) :-
 | |
| 	K @> K0, !,
 | |
| 	delete(R, K, V, NR, Flag0),
 | |
| 	fixup_right(Flag0,black(L,K0,V0,NR),NT, Flag).
 | |
| delete(black(L,_,V,R), _, V, OUT, Flag) :-
 | |
| %	K == K0,
 | |
| 	delete_black_node(L,R,OUT,Flag).
 | |
| 
 | |
| %%	rb_del_min(+T, -Key, -Val, -TN)
 | |
| %
 | |
| %	Delete the least element from the tree T, returning the key Key,
 | |
| %	the value Val associated with the key and a new tree TN.
 | |
| 
 | |
| rb_del_min(t(Nil,T), K, Val, t(Nil,NT)) :-
 | |
| 	del_min(T, K, Val, Nil, NT, _).
 | |
| 
 | |
| del_min(red(black('',_,_,_),K,V,R), K, V, Nil, OUT, Flag) :- !,
 | |
| 	delete_red_node(Nil,R,OUT,Flag).
 | |
| del_min(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	del_min(L, K, V, Nil, NL, Flag0),
 | |
| 	fixup_left(Flag0,red(NL,K0,V0,R), NT, Flag).
 | |
| del_min(black(black('',_,_,_),K,V,R), K, V, Nil, OUT, Flag) :- !,
 | |
| 	delete_black_node(Nil,R,OUT,Flag).
 | |
| del_min(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	del_min(L, K, V, Nil, NL, Flag0),
 | |
| 	fixup_left(Flag0,black(NL,K0,V0,R),NT, Flag).
 | |
| 
 | |
| 
 | |
| %%	rb_del_max(+T, -Key, -Val, -TN)
 | |
| %
 | |
| %	Delete the largest element from the   tree  T, returning the key
 | |
| %	Key, the value Val associated with the key and a new tree TN.
 | |
| 
 | |
| rb_del_max(t(Nil,T), K, Val, t(Nil,NT)) :-
 | |
| 	del_max(T, K, Val, Nil, NT, _).
 | |
| 
 | |
| del_max(red(L,K,V,black('',_,_,_)), K, V, Nil, OUT, Flag) :- !,
 | |
| 	delete_red_node(L,Nil,OUT,Flag).
 | |
| del_max(red(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	del_max(R, K, V, Nil, NR, Flag0),
 | |
| 	fixup_right(Flag0,red(L,K0,V0,NR),NT, Flag).
 | |
| del_max(black(L,K,V,black('',_,_,_)), K, V, Nil, OUT, Flag) :- !,
 | |
| 	delete_black_node(L,Nil,OUT,Flag).
 | |
| del_max(black(L,K0,V0,R), K, V, Nil, NT, Flag) :-
 | |
| 	del_max(R, K, V, Nil, NR, Flag0),
 | |
| 	fixup_right(Flag0,black(L,K0,V0,NR), NT, Flag).
 | |
| 
 | |
| 
 | |
| 
 | |
| delete_red_node(L1,L2,L1,done) :- L1 == L2, !.
 | |
| delete_red_node(black('',_,_,''),R,R,done) :-  !.
 | |
| delete_red_node(L,black('',_,_,''),L,done) :-  !.
 | |
| delete_red_node(L,R,OUT,Done) :- 	
 | |
| 	delete_next(R,NK,NV,NR,Done0),	
 | |
| 	fixup_right(Done0,red(L,NK,NV,NR),OUT,Done).
 | |
| 
 | |
| 
 | |
| delete_black_node(L1,L2,L1,not_done) :- 	L1 == L2, !.
 | |
| delete_black_node(black('',_,_,''),red(L,K,V,R),black(L,K,V,R),done) :- !.
 | |
| delete_black_node(black('',_,_,''),R,R,not_done) :- !.
 | |
| delete_black_node(red(L,K,V,R),black('',_,_,''),black(L,K,V,R),done) :- !.
 | |
| delete_black_node(L,black('',_,_,''),L,not_done) :- !.
 | |
| delete_black_node(L,R,OUT,Done) :-
 | |
| 	delete_next(R,NK,NV,NR,Done0),
 | |
| 	fixup_right(Done0,black(L,NK,NV,NR),OUT,Done).
 | |
| 
 | |
| 
 | |
| delete_next(red(black('',_,_,''),K,V,R),K,V,R,done) :- 	!.
 | |
| delete_next(black(black('',_,_,''),K,V,red(L1,K1,V1,R1)),
 | |
| 	K,V,black(L1,K1,V1,R1),done) :- !.
 | |
| delete_next(black(black('',_,_,''),K,V,R),K,V,R,not_done) :- !.
 | |
| delete_next(red(L,K,V,R),K0,V0,OUT,Done) :-
 | |
| 	delete_next(L,K0,V0,NL,Done0),
 | |
| 	fixup_left(Done0,red(NL,K,V,R),OUT,Done).
 | |
| delete_next(black(L,K,V,R),K0,V0,OUT,Done) :-
 | |
| 	delete_next(L,K0,V0,NL,Done0),
 | |
| 	fixup_left(Done0,black(NL,K,V,R),OUT,Done).
 | |
| 
 | |
| 
 | |
| fixup_left(done,T,T,done).
 | |
| fixup_left(not_done,T,NT,Done) :-
 | |
| 	fixup2(T,NT,Done).
 | |
| 
 | |
| 
 | |
| %
 | |
| % case 1: x moves down, so we have to try to fix it again.
 | |
| % case 1 -> 2,3,4 -> done
 | |
| %
 | |
| fixup2(black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	black(T1,KD,VD,black(Ep,KE,VE,Fi)),done) :- !,
 | |
| 	fixup2(red(black(Al,KA,VA,Be),KB,VB,black(Ga,KC,VC,De)),
 | |
| 		T1,
 | |
|                 _).
 | |
| %
 | |
| % case 2: x moves up, change one to red
 | |
| %
 | |
| fixup2(red(black(Al,KA,VA,Be),KB,VB,black(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),done) :- !.
 | |
| fixup2(black(black(Al,KA,VA,Be),KB,VB,black(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	black(black(Al,KA,VA,Be),KB,VB,red(black(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),not_done) :- !.
 | |
| %
 | |
| % case 3: x stays put, shift left and do a 4
 | |
| %
 | |
| fixup2(red(black(Al,KA,VA,Be),KB,VB,black(red(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	red(black(black(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	done) :- !.
 | |
| fixup2(black(black(Al,KA,VA,Be),KB,VB,black(red(Ga,KC,VC,De),KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	black(black(black(Al,KA,VA,Be),KB,VB,Ga),KC,VC,black(De,KD,VD,black(Ep,KE,VE,Fi))),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 4: rotate left, get rid of red
 | |
| %
 | |
| fixup2(red(black(Al,KA,VA,Be),KB,VB,black(C,KD,VD,red(Ep,KE,VE,Fi))),
 | |
| 	red(black(black(Al,KA,VA,Be),KB,VB,C),KD,VD,black(Ep,KE,VE,Fi)),
 | |
| 	done).
 | |
| fixup2(black(black(Al,KA,VA,Be),KB,VB,black(C,KD,VD,red(Ep,KE,VE,Fi))),
 | |
| 	black(black(black(Al,KA,VA,Be),KB,VB,C),KD,VD,black(Ep,KE,VE,Fi)),
 | |
| 	done).
 | |
| 
 | |
| 
 | |
| fixup_right(done,T,T,done).
 | |
| fixup_right(not_done,T,NT,Done) :-
 | |
| 	fixup3(T,NT,Done).
 | |
| 
 | |
| 
 | |
| 
 | |
| %
 | |
| % case 1: x moves down, so we have to try to fix it again.
 | |
| % case 1 -> 2,3,4 -> done
 | |
| %
 | |
| fixup3(black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	black(black(Fi,KE,VE,Ep),KD,VD,T1),done) :- !,
 | |
|         fixup3(red(black(De,KC,VC,Ga),KB,VB,black(Be,KA,VA,Al)),T1,_).
 | |
| 
 | |
| %
 | |
| % case 2: x moves up, change one to red
 | |
| %
 | |
| fixup3(red(black(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	done) :- !.
 | |
| fixup3(black(black(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	black(red(black(Fi,KE,VE,Ep),KD,VD,black(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	not_done):- !.
 | |
| %
 | |
| % case 3: x stays put, shift left and do a 4
 | |
| %
 | |
| fixup3(red(black(black(Fi,KE,VE,Ep),KD,VD,red(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	red(black(black(Fi,KE,VE,Ep),KD,VD,De),KC,VC,black(Ga,KB,VB,black(Be,KA,VA,Al))),
 | |
| 	done) :- !.
 | |
| fixup3(black(black(black(Fi,KE,VE,Ep),KD,VD,red(De,KC,VC,Ga)),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	black(black(black(Fi,KE,VE,Ep),KD,VD,De),KC,VC,black(Ga,KB,VB,black(Be,KA,VA,Al))),
 | |
| 	done) :- !.
 | |
| %
 | |
| % case 4: rotate right, get rid of red
 | |
| %
 | |
| fixup3(red(black(red(Fi,KE,VE,Ep),KD,VD,C),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	red(black(Fi,KE,VE,Ep),KD,VD,black(C,KB,VB,black(Be,KA,VA,Al))),
 | |
| 	done).
 | |
| fixup3(black(black(red(Fi,KE,VE,Ep),KD,VD,C),KB,VB,black(Be,KA,VA,Al)),
 | |
| 	black(black(Fi,KE,VE,Ep),KD,VD,black(C,KB,VB,black(Be,KA,VA,Al))),
 | |
| 	done).
 | |
| 
 | |
| 
 | |
| %
 | |
| % whole list
 | |
| %
 | |
| 
 | |
| %%	rb_visit(+T, -Pairs)
 | |
| %
 | |
| %	Pairs is an infix visit of tree   T, where each element of Pairs
 | |
| %	is of the form K-Val.
 | |
| 
 | |
| rb_visit(t(_,T),Lf) :-
 | |
| 	visit(T,[],Lf).
 | |
| 
 | |
| rb_visit(t(_,T),L0,Lf) :-
 | |
| 	visit(T,L0,Lf).
 | |
| 
 | |
| visit(black('',_,_,_),L,L) :- !.
 | |
| visit(red(L,K,V,R),L0,Lf) :-
 | |
| 	visit(L,[K-V|L1],Lf),
 | |
| 	visit(R,L0,L1).
 | |
| visit(black(L,K,V,R),L0,Lf) :-
 | |
| 	visit(L,[K-V|L1],Lf),
 | |
| 	visit(R,L0,L1).
 | |
| 
 | |
| :- meta_predicate map(?,2,?,?).  % this is required.
 | |
| 
 | |
| %%	rb_map(+T, :Goal) is semidet.
 | |
| %
 | |
| %	True if call(Goal, Value) is true for all nodes in T.
 | |
| 
 | |
| rb_map(t(Nil,Tree),Goal,t(Nil,NewTree)) :-
 | |
| 	map(Tree,Goal,NewTree,Nil).
 | |
| 
 | |
| 
 | |
| map(black('',_,_,''),_,Nil,Nil) :- !.
 | |
| map(red(L,K,V,R),Goal,red(NL,K,NV,NR),Nil) :-
 | |
| 	call(Goal,V,NV), !,
 | |
| 	map(L,Goal,NL,Nil),
 | |
| 	map(R,Goal,NR,Nil).
 | |
| map(black(L,K,V,R),Goal,black(NL,K,NV,NR),Nil) :-
 | |
| 	call(Goal,V,NV), !,
 | |
| 	map(L,Goal,NL,Nil),
 | |
| 	map(R,Goal,NR,Nil).
 | |
| 
 | |
| :- meta_predicate rb_map(?,1). % this is not strictly required
 | |
| :- meta_predicate map(?,1).  % this is required.
 | |
| 
 | |
| %%	rb_map(+T, :G, -TN) is semidet.
 | |
| %
 | |
| %	For all nodes Key in the tree   T,  if the value associated with
 | |
| %	key Key is Val0 in tree T,  and if call(G,Val0,ValF) holds, then
 | |
| %	the  value  associated  with  Key  in   TN  is  ValF.  Fails  if
 | |
| %	call(G,Val0,ValF) is not satisfiable for all Var0.
 | |
| 
 | |
| rb_map(t(_,Tree),Goal) :-
 | |
| 	map(Tree,Goal).
 | |
| 
 | |
| 
 | |
| map(black('',_,_,''),_) :- !.
 | |
| map(red(L,_,V,R),Goal) :-
 | |
| 	call(Goal,V), !,
 | |
| 	map(L,Goal),
 | |
| 	map(R,Goal).
 | |
| map(black(L,_,V,R),Goal) :-
 | |
| 	call(Goal,V), !,
 | |
| 	map(L,Goal),
 | |
| 	map(R,Goal).
 | |
| 
 | |
| :- meta_predicate rb_fold(3,?,?,?).  % this is required.
 | |
| :- meta_predicate map_acc(?,3,?,?).  % this is required.
 | |
| 
 | |
| %%	rb_fold(+T, :G, +Acc0, -AccF) is semidet.
 | |
| %
 | |
| %	For all nodes Key in the tree   T,  if the value associated with
 | |
| %	key Key is V in tree T, if call(G,V,Acc1,Acc2) holds, then
 | |
| %	if VL is value of the previous node in inorder,
 | |
| %       call(G,VL,_,Acc0) must hold, and
 | |
| %       if VR is the value of the next node in inorder,
 | |
| %       call(G,VR,Acc1,_) must hold.
 | |
| 
 | |
| rb_fold(Goal, t(_,Tree), In, Out) :-
 | |
| 	map_acc(Tree, Goal, In, Out).
 | |
| 
 | |
| map_acc(black('',_,_,''), _, Acc, Acc) :- !.
 | |
| map_acc(red(L,_,V,R), Goal, Left, Right) :-
 | |
| 	map_acc(L,Goal, Left, Left1),
 | |
| 	once(call(Goal,V, Left1, Right1)),
 | |
| 	map_acc(R,Goal, Right1, Right).
 | |
| map_acc(black(L,_,V,R), Goal, Left, Right) :-
 | |
| 	map_acc(L,Goal, Left, Left1),
 | |
| 	once(call(Goal,V, Left1, Right1)),
 | |
| 	map_acc(R,Goal, Right1, Right).
 | |
| 
 | |
| :- meta_predicate rb_key_fold(4,?,?,?).  % this is required.
 | |
| :- meta_predicate map_key_acc(?,3,?,?).  % this is required.
 | |
| 
 | |
| %%	rb_key_fold(+T, :G, +Acc0, -AccF) is semidet.
 | |
| %
 | |
| %	For all nodes Key in the tree   T,  if the value associated with
 | |
| %	key Key is V in tree T, if call(G,Key,V,Acc1,Acc2) holds, then
 | |
| %	if VL is value of the previous node in inorder,
 | |
| %       call(G,VL,_,Acc0) must hold, and
 | |
| %       if VR is the value of the next node in inorder,
 | |
| %       call(G,VR,Acc1,_) must hold.
 | |
| 
 | |
| rb_key_fold(Goal, t(_,Tree), In, Out) :-
 | |
| 	map_key_acc(Tree, Goal, In, Out).
 | |
| 
 | |
| map_key_acc(black('',_,_,''), _, Acc, Acc) :- !.
 | |
| map_key_acc(red(L,Key,V,R), Goal, Left, Right) :-
 | |
| 	map_key_acc(L,Goal, Left, Left1),
 | |
| 	once(call(Goal, Key, V, Left1, Right1)),
 | |
| 	map_key_acc(R,Goal, Right1, Right).
 | |
| map_key_acc(black(L,Key,V,R), Goal, Left, Right) :-
 | |
| 	map_key_acc(L,Goal, Left, Left1),
 | |
| 	once(call(Goal, Key, V, Left1, Right1)),
 | |
| 	map_key_acc(R,Goal, Right1, Right).
 | |
| 
 | |
| %%	rb_clone(+T, -NT, -Pairs)
 | |
| %
 | |
| %	"Clone" the red-back tree into a new  tree with the same keys as
 | |
| %	the original but with all values set to unbound values. Nodes is
 | |
| %	a list containing all new nodes as pairs K-V.
 | |
| 
 | |
| rb_clone(t(Nil,T),t(Nil,NT),Ns) :-
 | |
| 	clone(T,Nil,NT,Ns,[]).
 | |
| 
 | |
| clone(black('',_,_,''),Nil,Nil,Ns,Ns) :- !.
 | |
| clone(red(L,K,_,R),Nil,red(NL,K,NV,NR),NsF,Ns0) :-
 | |
| 	clone(L,Nil,NL,NsF,[K-NV|Ns1]),
 | |
| 	clone(R,Nil,NR,Ns1,Ns0).
 | |
| clone(black(L,K,_,R),Nil,black(NL,K,NV,NR),NsF,Ns0) :-
 | |
| 	clone(L,Nil,NL,NsF,[K-NV|Ns1]),
 | |
| 	clone(R,Nil,NR,Ns1,Ns0).
 | |
| 
 | |
| rb_clone(t(Nil,T),ONs,t(Nil,NT),Ns) :-
 | |
| 	clone(T,Nil,ONs,[],NT,Ns,[]).
 | |
| 
 | |
| clone(black('',_,_,''),Nil,ONs,ONs,Nil,Ns,Ns) :- !.
 | |
| clone(red(L,K,V,R),Nil,ONsF,ONs0,red(NL,K,NV,NR),NsF,Ns0) :-
 | |
| 	clone(L,Nil,ONsF,[K-V|ONs1],NL,NsF,[K-NV|Ns1]),
 | |
| 	clone(R,Nil,ONs1,ONs0,NR,Ns1,Ns0).
 | |
| clone(black(L,K,V,R),Nil,ONsF,ONs0,black(NL,K,NV,NR),NsF,Ns0) :-
 | |
| 	clone(L,Nil,ONsF,[K-V|ONs1],NL,NsF,[K-NV|Ns1]),
 | |
| 	clone(R,Nil,ONs1,ONs0,NR,Ns1,Ns0).
 | |
| 
 | |
| %%	rb_partial_map(+T, +Keys, :G, -TN)
 | |
| %
 | |
| %	For all nodes Key in Keys, if  the value associated with key Key
 | |
| %	is Val0 in tree T,  and   if  call(G,Val0,ValF)  holds, then the
 | |
| %	value associated with Key  in  TN  is   ValF.  Fails  if  or  if
 | |
| %	call(G,Val0,ValF) is not satisfiable for  all Var0. Assumes keys
 | |
| %	are not repeated.
 | |
| 
 | |
| rb_partial_map(t(Nil,T0), Map, Goal, t(Nil,TF)) :-
 | |
| 	partial_map(T0, Map, [], Nil, Goal, TF).
 | |
| 
 | |
| rb_partial_map(t(Nil,T0), Map, Map0, Goal, t(Nil,TF)) :-
 | |
| 	partial_map(T0, Map, Map0, Nil, Goal, TF).
 | |
| 
 | |
| partial_map(T,[],[],_,_,T) :- !.
 | |
| partial_map(black('',_,_,_),Map,Map,Nil,_,Nil) :- !.
 | |
| partial_map(red(L,K,V,R),Map,MapF,Nil,Goal,red(NL,K,NV,NR)) :-
 | |
| 	partial_map(L,Map,MapI,Nil,Goal,NL),
 | |
| 	( 
 | |
| 	  MapI == [] -> 
 | |
| 	  NR = R, NV = V, MapF = []
 | |
| 	;
 | |
| 	  MapI = [K1|MapR],
 | |
| 	  (
 | |
| 	   K == K1
 | |
| 	   ->
 | |
| 	    ( call(Goal,V,NV) -> true ; NV = V ),
 | |
| 	    MapN = MapR
 | |
| 	   ;
 | |
| 	    NV = V,
 | |
| 	    MapN = MapI
 | |
| 	   ),
 | |
| 	  partial_map(R,MapN,MapF,Nil,Goal,NR)
 | |
| 	).
 | |
| partial_map(black(L,K,V,R),Map,MapF,Nil,Goal,black(NL,K,NV,NR)) :-
 | |
| 	partial_map(L,Map,MapI,Nil,Goal,NL),
 | |
| 	( 
 | |
| 	  MapI == [] -> 
 | |
| 	  NR = R, NV = V, MapF = []
 | |
| 	;
 | |
| 	  MapI = [K1|MapR],
 | |
| 	  (
 | |
| 	   K == K1
 | |
| 	   ->
 | |
| 	    ( call(Goal,V,NV) -> true ; NV = V ),
 | |
| 	    MapN = MapR
 | |
| 	   ;
 | |
| 	    NV = V,
 | |
| 	    MapN = MapI
 | |
| 	   ),
 | |
| 	  partial_map(R,MapN,MapF,Nil,Goal,NR)
 | |
| 	).
 | |
| 
 | |
| 
 | |
| %
 | |
| % whole keys
 | |
| %
 | |
| %%	rb_keys(+T, -Keys)
 | |
| %
 | |
| %	Keys is unified with  an  ordered  list   of  all  keys  in  the
 | |
| %	Red-Black tree T.
 | |
| 
 | |
| rb_keys(t(_,T),Lf) :-
 | |
| 	keys(T,[],Lf).
 | |
| 
 | |
| rb_keys(t(_,T),L0,Lf) :-
 | |
| 	keys(T,L0,Lf).
 | |
| 
 | |
| keys(black('',_,_,''),L,L) :- !.
 | |
| keys(red(L,K,_,R),L0,Lf) :-
 | |
| 	keys(L,[K|L1],Lf),
 | |
| 	keys(R,L0,L1).
 | |
| keys(black(L,K,_,R),L0,Lf) :-
 | |
| 	keys(L,[K|L1],Lf),
 | |
| 	keys(R,L0,L1).
 | |
| 
 | |
| 
 | |
| %%	list_to_rbtree(+L, -T) is det.
 | |
| %
 | |
| %	T is the red-black tree corresponding to the mapping in list L.
 | |
| 
 | |
| list_to_rbtree(List, T) :-
 | |
| 	sort(List,Sorted),
 | |
| 	ord_list_to_rbtree(Sorted, T).
 | |
| 
 | |
| %%	ord_list_to_rbtree(+L, -T) is det.
 | |
| %
 | |
| %	T is the red-black tree corresponding  to the mapping in ordered
 | |
| %	list L.
 | |
| 
 | |
| ord_list_to_rbtree([], t(Nil,Nil)) :- !,
 | |
| 	Nil = black('', _, _, '').
 | |
| ord_list_to_rbtree([K-V], t(Nil,black(Nil,K,V,Nil))) :- !,
 | |
| 	Nil = black('', _, _, '').
 | |
| ord_list_to_rbtree(List, t(Nil,Tree)) :-
 | |
| 	Nil = black('', _, _, ''),
 | |
| 	Ar =.. [seq|List],
 | |
| 	functor(Ar,_,L),
 | |
| 	Height is truncate(log(L)/log(2)),
 | |
| 	construct_rbtree(1, L, Ar, Height, Nil, Tree).
 | |
| 
 | |
| construct_rbtree(L, M, _, _, Nil, Nil) :- M < L, !.
 | |
| construct_rbtree(L, L, Ar, Depth, Nil, Node) :- !,
 | |
| 	arg(L, Ar, K-Val),
 | |
| 	build_node(Depth, Nil, K, Val, Nil, Node).
 | |
| construct_rbtree(I0, Max, Ar, Depth, Nil, Node) :-
 | |
| 	I is (I0+Max)//2,
 | |
| 	arg(I, Ar, K-Val),
 | |
| 	build_node(Depth, Left, K, Val, Right, Node),
 | |
| 	I1 is I-1,
 | |
| 	NewDepth is Depth-1,
 | |
| 	construct_rbtree(I0, I1, Ar, NewDepth, Nil, Left),
 | |
| 	I2 is I+1,
 | |
| 	construct_rbtree(I2, Max, Ar, NewDepth, Nil, Right).
 | |
| 
 | |
| build_node( 0, Left, K, Val, Right, red(Left, K, Val, Right)) :- !.
 | |
| build_node( _, Left, K, Val, Right, black(Left, K, Val, Right)).
 | |
| 
 | |
| 
 | |
| %%	rb_size(+T, -Size) is det.
 | |
| %
 | |
| %	Size is the number of elements in T.
 | |
| 
 | |
| rb_size(t(_,T),Size) :-
 | |
| 	size(T,0,Size).
 | |
| 
 | |
| size(black('',_,_,_),Sz,Sz) :- !.
 | |
| size(red(L,_,_,R),Sz0,Szf) :-
 | |
| 	Sz1 is Sz0+1,
 | |
| 	size(L,Sz1,Sz2),
 | |
| 	size(R,Sz2,Szf).
 | |
| size(black(L,_,_,R),Sz0,Szf) :-
 | |
| 	Sz1 is Sz0+1,
 | |
| 	size(L,Sz1,Sz2),
 | |
| 	size(R,Sz2,Szf).
 | |
| 
 | |
| %%	is_rbtree(?Term) is semidet.
 | |
| %
 | |
| %	True if Term is a valide Red-Black tree.
 | |
| %	
 | |
| %	@tbd	Catch variables.
 | |
| 
 | |
| is_rbtree(X) :-
 | |
| 	var(X), !, fail.
 | |
| is_rbtree(t(Nil,Nil)) :- !.
 | |
| is_rbtree(t(_,T)) :-
 | |
| 	catch(rbtree1(T), msg(_,_), fail).
 | |
| 
 | |
| is_rbtree(X,_) :-
 | |
| 	var(X), !, fail.
 | |
| is_rbtree(T,Goal) :-
 | |
| 	catch(rbtree1(T), msg(S,Args), (once(Goal),format(S,Args))).
 | |
| 
 | |
| %
 | |
| % This code checks if a tree is ordered and a rbtree
 | |
| %
 | |
| %
 | |
| rbtree(t(_,black('',_,_,''))) :- !.
 | |
| rbtree(t(_,T)) :-
 | |
| 	catch(rbtree1(T),msg(S,Args),format(S,Args)).
 | |
| 
 | |
| rbtree1(black(L,K,_,R)) :-
 | |
| 	find_path_blacks(L, 0, Bls),
 | |
| 	check_rbtree(L,-inf,K,Bls),
 | |
| 	check_rbtree(R,K,+inf,Bls).
 | |
| rbtree1(red(_,_,_,_)) :-
 | |
| 	throw(msg("root should be black",[])).
 | |
| 	
 | |
| 
 | |
| find_path_blacks(black('',_,_,''), Bls, Bls) :- !.
 | |
| find_path_blacks(black(L,_,_,_), Bls0, Bls) :-
 | |
| 	Bls1 is Bls0+1,
 | |
| 	find_path_blacks(L, Bls1, Bls).
 | |
| find_path_blacks(red(L,_,_,_), Bls0, Bls) :-
 | |
| 	find_path_blacks(L, Bls0, Bls).
 | |
| 
 | |
| check_rbtree(black('',_,_,''),Min,Max,Bls0) :- !,
 | |
| 	check_height(Bls0,Min,Max).
 | |
| check_rbtree(red(L,K,_,R),Min,Max,Bls) :-
 | |
| 	check_val(K,Min,Max),
 | |
| 	check_red_child(L),
 | |
| 	check_red_child(R),
 | |
| 	check_rbtree(L,Min,K,Bls),
 | |
| 	check_rbtree(R,K,Max,Bls).
 | |
| check_rbtree(black(L,K,_,R),Min,Max,Bls0) :-
 | |
| 	check_val(K,Min,Max),
 | |
| 	Bls is Bls0-1,
 | |
| 	check_rbtree(L,Min,K,Bls),
 | |
| 	check_rbtree(R,K,Max,Bls).
 | |
| 
 | |
| check_height(0,_,_) :- !.
 | |
| check_height(Bls0,Min,Max) :-
 | |
| 	throw(msg("Unbalance ~d between ~w and ~w~n",[Bls0,Min,Max])).
 | |
| 
 | |
| check_val(K, Min, Max) :- ( K @> Min ; Min == -inf), (K @< Max ; Max == +inf), !.
 | |
| check_val(K, Min, Max) :- 
 | |
| 	throw(msg("not ordered: ~w not between ~w and ~w~n",[K,Min,Max])).
 | |
| 
 | |
| check_red_child(black(_,_,_,_)).
 | |
| check_red_child(red(_,K,_,_)) :-
 | |
| 	throw(msg("must be red: ~w~n",[K])).
 | |
| 
 | |
| 
 | |
| %count(1,16,X), format("deleting ~d~n",[X]), new(1,a,T0), insert(T0,2,b,T1), insert(T1,3,c,T2), insert(T2,4,c,T3), insert(T3,5,c,T4), insert(T4,6,c,T5), insert(T5,7,c,T6), insert(T6,8,c,T7), insert(T7,9,c,T8), insert(T8,10,c,T9),insert(T9,11,c,T10), insert(T10,12,c,T11),insert(T11,13,c,T12),insert(T12,14,c,T13),insert(T13,15,c,T14), insert(T14,16,c,T15),delete(T15,X,T16),pretty_print(T16),rbtree(T16),fail.
 | |
| 
 | |
| % count(1,16,X0), X is -X0, format("deleting ~d~n",[X]), new(-1,a,T0), insert(T0,-2,b,T1), insert(T1,-3,c,T2), insert(T2,-4,c,T3), insert(T3,-5,c,T4), insert(T4,-6,c,T5), insert(T5,-7,c,T6), insert(T6,-8,c,T7), insert(T7,-9,c,T8), insert(T8,-10,c,T9),insert(T9,-11,c,T10), insert(T10,-12,c,T11),insert(T11,-13,c,T12),insert(T12,-14,c,T13),insert(T13,-15,c,T14), insert(T14,-16,c,T15),delete(T15,X,T16),pretty_print(T16),rbtree(T16),fail.
 | |
| 
 | |
| count(I,_,I).
 | |
| count(I,M,L) :-
 | |
| 	I < M, I1 is I+1, count(I1,M,L).
 | |
| 
 | |
| test_pos :-
 | |
| 	rb_new(1,a,T0),
 | |
| 	N = 10000,
 | |
| 	build_ptree(2,N,T0,T),
 | |
| %	pretty_print(T),
 | |
| 	rbtree(T),
 | |
| 	clean_tree(1,N,T,_),
 | |
| 	bclean_tree(N,1,T,_),
 | |
| 	count(1,N,X), ( rb_delete(T,X,TF) -> true ; abort ),
 | |
| %	pretty_print(TF), 
 | |
| 	rbtree(TF),
 | |
| %	format("done ~d~n",[X]),
 | |
| 	fail.
 | |
| test_pos.
 | |
| 
 | |
| build_ptree(X,X,T0,TF) :- !,
 | |
| 	rb_insert(T0,X,X,TF).
 | |
| build_ptree(X1,X,T0,TF) :-
 | |
| 	rb_insert(T0,X1,X1,TI),
 | |
| 	X2 is X1+1,
 | |
| 	build_ptree(X2,X,TI,TF).
 | |
| 
 | |
| 
 | |
| clean_tree(X,X,T0,TF) :- !,
 | |
| 	rb_delete(T0,X,TF),
 | |
| 	( rbtree(TF) -> true ; abort).
 | |
| clean_tree(X1,X,T0,TF) :-
 | |
| 	rb_delete(T0,X1,TI),
 | |
| 	X2 is X1+1,
 | |
| 	( rbtree(TI) -> true ; abort),
 | |
| 	clean_tree(X2,X,TI,TF).
 | |
| 
 | |
| bclean_tree(X,X,T0,TF) :- !,
 | |
| 	format("cleaning ~d~n", [X]),
 | |
| 	rb_delete(T0,X,TF),
 | |
| 	( rbtree(TF) -> true ; abort).
 | |
| bclean_tree(X1,X,T0,TF) :-
 | |
| 	format("cleaning ~d~n", [X1]),
 | |
| 	rb_delete(T0,X1,TI),
 | |
| 	X2 is X1-1,
 | |
| 	( rbtree(TI) -> true ; abort),
 | |
| 	bclean_tree(X2,X,TI,TF).
 | |
| 
 | |
| 
 | |
| 
 | |
| test_neg :-
 | |
| 	Size = 10000,
 | |
| 	rb_new(-1,a,T0),
 | |
| 	build_ntree(2,Size,T0,T),
 | |
| %	pretty_print(T),
 | |
| 	rbtree(T),
 | |
| 	MSize is -Size,
 | |
| 	clean_tree(MSize,-1,T,_),
 | |
| 	bclean_tree(-1,MSize,T,_),
 | |
| 	count(1,Size,X), NX is -X, ( rb_delete(T,NX,TF) -> true ; abort ),
 | |
| %	pretty_print(TF), 
 | |
| 	rbtree(TF),
 | |
| %	format("done ~d~n",[X]),
 | |
| 	fail.
 | |
| test_neg.
 | |
| 
 | |
| build_ntree(X,X,T0,TF) :- !,
 | |
| 	X1 is -X,
 | |
| 	rb_insert(T0,X1,X1,TF).
 | |
| build_ntree(X1,X,T0,TF) :-
 | |
| 	NX1 is -X1,
 | |
| 	rb_insert(T0,NX1,NX1,TI),
 | |
| 	X2 is X1+1,
 | |
| 	build_ntree(X2,X,TI,TF).
 | |
| 
 | |
| 
 | |
| 
 |