561 lines
16 KiB
Prolog
561 lines
16 KiB
Prolog
|
|
/************************************************
|
|
|
|
BDDs in CLP(BN)
|
|
|
|
A variable is represented by the N possible cases it can take
|
|
|
|
V = v(Va, Vb, Vc)
|
|
|
|
The generic formula is
|
|
|
|
V <- X, Y
|
|
|
|
Va <- P*X1*Y1 + Q*X2*Y2 + ...
|
|
|
|
|
|
|
|
**************************************************/
|
|
|
|
:- module(clpbn_bdd,
|
|
[bdd/3,
|
|
set_solver_parameter/2,
|
|
init_bdd_solver/4,
|
|
run_bdd_solver/3,
|
|
finalize_bdd_solver/1,
|
|
check_if_bdd_done/1
|
|
]).
|
|
|
|
|
|
:- use_module(library('clpbn/dists'),
|
|
[dist/4,
|
|
get_dist_domain/2,
|
|
get_dist_domain_size/2,
|
|
get_dist_params/2
|
|
]).
|
|
|
|
|
|
:- use_module(library('clpbn/display'),
|
|
[clpbn_bind_vals/3]).
|
|
|
|
:- use_module(library('clpbn/aggregates'),
|
|
[check_for_agg_vars/2]).
|
|
|
|
:- use_module(library(atts)).
|
|
|
|
:- use_module(library(hacks)).
|
|
|
|
:- use_module(library(lists)).
|
|
|
|
:- use_module(library(dgraphs)).
|
|
|
|
:- use_module(library(bdd)).
|
|
|
|
:- use_module(library(rbtrees)).
|
|
|
|
:- dynamic network_counting/1.
|
|
|
|
:- attribute order/1.
|
|
|
|
check_if_bdd_done(_Var).
|
|
|
|
bdd([[]],_,_) :- !.
|
|
bdd([QueryVars], AllVars, AllDiffs) :-
|
|
init_bdd_solver(_, AllVars, _, BayesNet),
|
|
run_bdd_solver([QueryVars], LPs, BayesNet),
|
|
finalize_bdd_solver(BayesNet),
|
|
clpbn_bind_vals([QueryVars], [LPs], AllDiffs).
|
|
|
|
init_bdd_solver(_, AllVars0, _, bdd(Term, Leaves, Tops)) :-
|
|
sort_vars(AllVars0, AllVars, Leaves),
|
|
%store_order(AllVars, 0),
|
|
rb_new(Vars0),
|
|
rb_new(Pars0),
|
|
init_tops(Leaves,Tops),
|
|
get_vars_info(AllVars, Vars0, _Vars, Pars0, _Pars, Leaves, Tops, Term, []).
|
|
|
|
init_tops([],[]).
|
|
init_tops(_.Leaves,_.Tops) :-
|
|
init_tops(Leaves,Tops).
|
|
|
|
%
|
|
% keep an attribute for sorting variables
|
|
%
|
|
store_order([], _).
|
|
store_order(V.AllVars, I0) :-
|
|
put_atts(V,[order(I0)]),
|
|
I is I0+1,
|
|
store_order(AllVars, I).
|
|
|
|
|
|
sort_vars(AllVars0, AllVars, Leaves) :-
|
|
dgraph_new(Graph0),
|
|
build_graph(AllVars0, Graph0, Graph),
|
|
dgraph_leaves(Graph, Leaves),
|
|
dgraph_top_sort(Graph, AllVars).
|
|
|
|
build_graph([], Graph, Graph).
|
|
build_graph(V.AllVars0, Graph0, Graph) :-
|
|
clpbn:get_atts(V, [dist(_DistId, Parents)]), !,
|
|
dgraph_add_vertex(Graph0, V, Graph1),
|
|
add_parents(Parents, V, Graph1, GraphI),
|
|
build_graph(AllVars0, GraphI, Graph).
|
|
build_graph(_V.AllVars0, Graph0, Graph) :-
|
|
build_graph(AllVars0, Graph0, Graph).
|
|
|
|
add_parents([], _V, Graph, Graph).
|
|
add_parents(V0.Parents, V, Graph0, GraphF) :-
|
|
dgraph_add_edge(Graph0, V0, V, GraphI),
|
|
add_parents(Parents, V, GraphI, GraphF).
|
|
|
|
get_vars_info([], Vs, Vs, Ps, Ps, _, _) --> [].
|
|
get_vars_info([V|MoreVs], Vs, VsF, Ps, PsF, Lvs, Outs) -->
|
|
{ clpbn:get_atts(V, [dist(DistId, Parents)]) }, !,
|
|
%{writeln(v:DistId:Parents)},
|
|
[DIST],
|
|
{ get_var_info(V, DistId, Parents, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) },
|
|
get_vars_info(MoreVs, Vs2, VsF, Ps1, PsF, Lvs, Outs).
|
|
get_vars_info([_|MoreVs], Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs) :-
|
|
get_vars_info(MoreVs, Vs0, VsF, Ps0, PsF, VarsInfo, Lvs, Outs).
|
|
|
|
%
|
|
% let's have some fun with avg
|
|
%
|
|
get_var_info(V, avg(Domain), Parents0, Vs, Vs2, Ps, Ps, Lvs, Outs, DIST) :- !,
|
|
length(Domain, DSize),
|
|
% reorder(Parents0, Parents),
|
|
Parents = Parents0,
|
|
run_though_avg(V, DSize, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST).
|
|
% standard random variable
|
|
get_var_info(V, DistId, Parents, Vs, Vs2, Ps, Ps1, Lvs, Outs, DIST) :-
|
|
% clpbn:get_atts(V, [key(K)]), writeln(V:K:DistId:Parents),
|
|
check_p(DistId, Parms, _ParmVars, Ps, Ps1),
|
|
unbound_parms(Parms, ParmVars),
|
|
check_v(V, DistId, DIST, Vs, Vs1),
|
|
DIST = info(V, Tree, Ev, Values, Formula, ParmVars, Parms),
|
|
% get a list of form [[P00,P01], [P10,P11], [P20,P21]]
|
|
get_parents(Parents, PVars, Vs1, Vs2),
|
|
cross_product(Values, Ev, PVars, ParmVars, Formula0),
|
|
% (numbervars(Formula0,0,_),writeln(formula0:Ev:Formula0), fail ; true),
|
|
get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs).
|
|
%, (numbervars(Formula,0,_),writeln(formula:Formula), fail ; true)
|
|
|
|
run_though_avg(V, 3, Domain, Parents, Vs, Vs2, Lvs, Outs, DIST) :-
|
|
check_v(V, avg(Domain,Parents), DIST, Vs, Vs1),
|
|
DIST = info(V, Tree, Ev, [V0,V1,V2], Formula, [], []),
|
|
get_parents(Parents, PVars, Vs1, Vs2),
|
|
length(Parents, N),
|
|
generate_3tree(F00, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*N2 =< N/2), (N1+2*(N2+R) > N/2)),
|
|
simplify_exp(F00, F0),
|
|
writeln(1:PVars=F0),
|
|
% generate_3tree(F1, PVars, 0, 0, 0, N, N0, N1, N2, R, ((N1+2*(N2+R) > N/2, N1+2*N2 < (3*N)/2))),
|
|
generate_3tree(F20, PVars, 0, 0, 0, N, N0, N1, N2, R, (N1+2*(N2+R) >= (3*N)/2), N1+2*N2 < (3*N)/2),
|
|
simplify_exp(F20, F2),
|
|
writeln(3:PVars=F2),
|
|
Formula0 = [V0=F0*Ev0,V2=F2*Ev2,V1=not(F0+F2)*Ev1],
|
|
Ev = [Ev0,Ev1,Ev2],
|
|
get_evidence(V, Tree, Ev, Formula0, Formula, Lvs, Outs).
|
|
|
|
generate_3tree(OUT, _, I00, I10, I20, IR0, N0, N1, N2, R, _Exp, ExpF) :-
|
|
not_satisf(I00, I10, I20, IR0, N0, N1, N2, R, ExpF),
|
|
!,
|
|
OUT = 1.
|
|
generate_3tree(OUT, [[P0,P1,P2]], I00, I10, I20, IR0, N0, N1, N2, R, Exp, ExpF) :-
|
|
IR is IR0-1,
|
|
( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) ->
|
|
L0 = [P0|L1]
|
|
;
|
|
L0 = L1
|
|
),
|
|
( satisf(I00, I10+1, I20, IR, N0, N1, N2, R, Exp) ->
|
|
L1 = [P1|L2]
|
|
;
|
|
L1 = L2
|
|
),
|
|
( satisf(I00, I10, I20+1, IR, N0, N1, N2, R, Exp) ->
|
|
L2 = [P2]
|
|
;
|
|
L2 = []
|
|
),
|
|
to_disj(L0, OUT).
|
|
generate_3tree(OUT, [[P0,P1,P2]|Ps], I00, I10, I20, IR0, N0, N1, N2, R, Exp, ExpF) :-
|
|
IR is IR0-1,
|
|
( satisf(I00+1, I10, I20, IR, N0, N1, N2, R, Exp) ->
|
|
I0 is I00+1, generate_3tree(O0, Ps, I0, I10, I20, IR, N0, N1, N2, R, Exp, ExpF)
|
|
->
|
|
L0 = [P0*O0|L1]
|
|
;
|
|
L0 = L1
|
|
),
|
|
( satisf(I00, I10+1, I20, IR0, N0, N1, N2, R, Exp) ->
|
|
I1 is I10+1, generate_3tree(O1, Ps, I00, I1, I20, IR, N0, N1, N2, R, Exp, ExpF)
|
|
->
|
|
L1 = [P1*O1|L2]
|
|
;
|
|
L1 = L2
|
|
),
|
|
( satisf(I00, I10, I20+1, IR0, N0, N1, N2, R, Exp) ->
|
|
I2 is I20+1, generate_3tree(O2, Ps, I00, I10, I2, IR, N0, N1, N2, R, Exp, ExpF)
|
|
->
|
|
L2 = [P2*O2]
|
|
;
|
|
L2 = []
|
|
),
|
|
to_disj(L0, OUT).
|
|
|
|
|
|
satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :-
|
|
\+ \+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ).
|
|
|
|
not_satisf(I0, I1, I2, IR, N0, N1, N2, R, Exp) :-
|
|
\+ ( I0 = N0, I1=N1, I2=N2, IR=R, call(Exp) ).
|
|
|
|
to_disj([], 0).
|
|
to_disj([V], V).
|
|
to_disj([V,V1|Vs], V+Out) :-
|
|
to_disj([V1|Vs], Out).
|
|
|
|
%
|
|
% look for parameters in the rb-tree, or add a new.
|
|
% distid is the key
|
|
%
|
|
check_p(DistId, Parms, ParmVars, Ps, Ps) :-
|
|
rb_lookup(DistId, theta(Parms, ParmVars), Ps), !.
|
|
check_p(DistId, Parms, ParmVars, Ps, PsF) :-
|
|
get_dist_params(DistId, Parms0),
|
|
length(Parms0, L0),
|
|
get_dist_domain_size(DistId, Size),
|
|
L1 is L0 div Size,
|
|
L is L0-L1,
|
|
initial_maxes(L1, Multipliers),
|
|
copy(L, Multipliers, NextMults, NextMults, Parms0, Parms, ParmVars),
|
|
%writeln(t:Size:Parms0:Parms:ParmVars),
|
|
rb_insert(Ps, DistId, theta(Parms, ParmVars), PsF).
|
|
|
|
%
|
|
% we are using switches by two
|
|
%
|
|
initial_maxes(0, []) :- !.
|
|
initial_maxes(Size, [1.0|Multipliers]) :- !,
|
|
Size1 is Size-1,
|
|
initial_maxes(Size1, Multipliers).
|
|
|
|
copy(0, [], [], _, _Parms0, [], []) :- !.
|
|
copy(N, [], [], Ms, Parms0, Parms, ParmVars) :-!,
|
|
copy(N, Ms, NewMs, NewMs, Parms0, Parms, ParmVars).
|
|
copy(N, D.Ds, ND.NDs, New, El.Parms0, NEl.Parms, V.ParmVars) :-
|
|
N1 is N-1,
|
|
(El == 0.0 ->
|
|
NEl = 0,
|
|
ND = D,
|
|
V = NEl
|
|
;El == 1.0 ->
|
|
NEl = 1,
|
|
ND = 0.0,
|
|
V = NEl
|
|
;El == 0 ->
|
|
NEl = 0,
|
|
ND = D,
|
|
V = NEl
|
|
;El =:= 1 ->
|
|
NEl = 1,
|
|
ND = 0.0,
|
|
V = NEl
|
|
;
|
|
NEl is El/D,
|
|
ND is D-El,
|
|
V = NEl
|
|
),
|
|
copy(N1, Ds, NDs, New, Parms0, Parms, ParmVars).
|
|
|
|
unbound_parms([], []).
|
|
unbound_parms(_.Parms, _.ParmVars) :-
|
|
unbound_parms(Parms, ParmVars).
|
|
|
|
check_v(V, _, INFO, Vs, Vs) :-
|
|
rb_lookup(V, INFO, Vs), !.
|
|
check_v(V, DistId, INFO, Vs0, Vs) :-
|
|
get_dist_domain_size(DistId, Size),
|
|
length(Values, Size),
|
|
length(Ev, Size),
|
|
INFO = info(V, _Tree, Ev, Values, _Formula, _, _),
|
|
rb_insert(Vs0, V, INFO, Vs).
|
|
|
|
get_parents([], [], Vs, Vs).
|
|
get_parents(V.Parents, Values.PVars, Vs0, Vs) :-
|
|
clpbn:get_atts(V, [dist(DistId, _)]),
|
|
check_v(V, DistId, INFO, Vs0, Vs1),
|
|
INFO = info(V, _Parent, _Ev, Values, _, _, _),
|
|
get_parents(Parents, PVars, Vs1, Vs).
|
|
|
|
%
|
|
% construct the formula, this is the key...
|
|
%
|
|
cross_product(Values, Ev, PVars, ParmVars, Formulas) :-
|
|
arrangements(PVars, Arranges),
|
|
apply_parents_first(Values, Ev, ParmCombos, ParmCombos, Arranges, Formulas, ParmVars).
|
|
|
|
%
|
|
% if we have the parent variables with two values, we get
|
|
% [[XP,YP],[XP,YN],[XN,YP],[XN,YN]]
|
|
%
|
|
arrangements([], [[]]).
|
|
arrangements([L1|Ls],O) :-
|
|
arrangements(Ls, LN),
|
|
expand(L1, LN, O, []).
|
|
|
|
expand([], _LN) --> [].
|
|
expand([H|L1], LN) -->
|
|
concatenate_all(H, LN),
|
|
expand(L1, LN).
|
|
|
|
concatenate_all(_H, []) --> [].
|
|
concatenate_all(H, L.LN) -->
|
|
[[H|L]],
|
|
concatenate_all(H, LN).
|
|
|
|
%
|
|
% core of algorithm
|
|
%
|
|
% Values -> Output Vars for BDD
|
|
% Es -> Evidence variables
|
|
% Previous -> top of difference list with parameters used so far
|
|
% P0 -> end of difference list with parameters used so far
|
|
% Pvars -> Parents
|
|
% Eqs -> Output Equations
|
|
% Pars -> Output Theta Parameters
|
|
%
|
|
apply_parents_first([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !,
|
|
apply_last_parent(PVars, Previous, Disj),
|
|
flatten(Previous, Parameters).
|
|
apply_parents_first([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :-
|
|
P0 = [TheseParents|End],
|
|
apply_first_parent(PVars, Disj, TheseParents),
|
|
apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters).
|
|
|
|
apply_parents_second([Value], [E], Previous, [], PVars, [Value=Disj*E], Parameters) :- !,
|
|
apply_last_parent(PVars, Previous, Disj),
|
|
flatten(Previous, Parameters).
|
|
apply_parents_second([Value|Values], [E|Ev], Previous, P0, PVars, (Value=Disj*E).Formulas, Parameters) :-
|
|
apply_middle_parent(PVars, Previous, Disj, TheseParents),
|
|
% this must be done after applying middle parents because of the var
|
|
% test.
|
|
P0 = [TheseParents|End],
|
|
apply_parents_second(Values, Ev, Previous, End, PVars, Formulas, Parameters).
|
|
|
|
apply_first_parent([Parents], Conj, [Theta]) :- !,
|
|
parents_to_conj(Parents,Theta,Conj).
|
|
apply_first_parent(Parents.PVars, Disj+Conj, Theta.TheseParents) :-
|
|
parents_to_conj(Parents,Theta,Conj),
|
|
apply_first_parent(PVars, Disj, TheseParents).
|
|
|
|
apply_middle_parent([Parents], Other, Conj, [ThetaPar]) :- !,
|
|
skim_for_theta(Other, Theta, _, ThetaPar),
|
|
parents_to_conj(Parents,Theta,Conj).
|
|
apply_middle_parent(Parents.PVars, Other, Conj+Disj, ThetaPar.TheseParents) :-
|
|
skim_for_theta(Other, Theta, Remaining, ThetaPar),
|
|
parents_to_conj(Parents,(Theta),Conj),
|
|
apply_middle_parent(PVars, Remaining, Disj, TheseParents).
|
|
|
|
apply_last_parent([Parents], Other, Conj) :- !,
|
|
parents_to_conj(Parents,(Theta),Conj),
|
|
skim_for_theta(Other, Theta, _, _).
|
|
apply_last_parent(Parents.PVars, Other, Conj+Disj) :-
|
|
parents_to_conj(Parents,(Theta),Conj),
|
|
skim_for_theta(Other, Theta, Remaining, _),
|
|
apply_last_parent(PVars, Remaining, Disj).
|
|
|
|
%
|
|
%
|
|
% simplify stuff, removing process that is cancelled by 0s
|
|
%
|
|
parents_to_conj([], Theta, Theta) :- !.
|
|
parents_to_conj(Ps, Theta, Conj*Theta) :-
|
|
parents_to_conj2(Ps, Conj).
|
|
|
|
parents_to_conj2([P],P) :- !.
|
|
parents_to_conj2(P.Ps,Conj*P) :-
|
|
parents_to_conj2(Ps,Conj).
|
|
|
|
%
|
|
% first case we haven't reached the end of the list so we need
|
|
% to create a new parameter variable
|
|
%
|
|
skim_for_theta([[P|Other]|V], New*not(P), [Other|_], New) :- var(V), !.
|
|
%
|
|
% last theta, it is just negation of the other ones
|
|
%
|
|
skim_for_theta([[P|Other]], not(P), [Other], _) :- !.
|
|
%
|
|
% recursive case, build-up
|
|
%
|
|
skim_for_theta([[P|Other]|More], Ps*not(P), [Other|Left], New ) :-
|
|
skim_for_theta(More, Ps, Left, New ).
|
|
|
|
get_evidence(V, Tree, Ev, F0, F, Leaves, Finals) :-
|
|
clpbn:get_atts(V, [evidence(Pos)]), !,
|
|
zero_pos(0, Pos, Ev),
|
|
insert_output(Leaves, V, Finals, Tree, Outs, SendOut),
|
|
get_outs(F0, F, SendOut, Outs).
|
|
% hidden deterministic node, can be removed.
|
|
get_evidence(V, _Tree, Ev, F0, [], _Leaves, _Finals) :-
|
|
clpbn:get_atts(V, [key(K)]),
|
|
functor(K, Name, 2),
|
|
( Name = 'AVG' ; Name = 'MAX' ; Name = 'MIN' ),
|
|
!,
|
|
one_list(Ev),
|
|
eval_outs(F0).
|
|
%% no evidence !!!
|
|
get_evidence(V, Tree, _Values, F0, F1, Leaves, Finals) :-
|
|
insert_output(Leaves, V, Finals, Tree, Outs, SendOut),
|
|
get_outs(F0, F1, SendOut, Outs).
|
|
|
|
zero_pos(_, _Pos, []).
|
|
zero_pos(Pos, Pos, 1.Values) :- !,
|
|
I is Pos+1,
|
|
zero_pos(I, Pos, Values).
|
|
zero_pos(I0, Pos, 0.Values) :-
|
|
I is I0+1,
|
|
zero_pos(I, Pos, Values).
|
|
|
|
one_list([]).
|
|
one_list(1.Ev) :-
|
|
one_list(Ev).
|
|
|
|
%
|
|
% insert a node with the disj of all alternatives, this is only done if node ends up to be in the output
|
|
%
|
|
insert_output([], _V, [], _Out, _Outs, []).
|
|
insert_output(V._Leaves, V0, [Top|_], Top, Outs, [Top = Outs]) :- V == V0, !.
|
|
insert_output(_.Leaves, V, _.Finals, Top, Outs, SendOut) :-
|
|
insert_output(Leaves, V, Finals, Top, Outs, SendOut).
|
|
|
|
|
|
get_outs([V=F], [V=NF|End], End, V) :- !,
|
|
simplify_exp(F,NF).
|
|
get_outs((V=F).Outs, (V=NF).NOuts, End, (F0 + V)) :-
|
|
simplify_exp(F,NF),
|
|
get_outs(Outs, NOuts, End, F0).
|
|
|
|
eval_outs([]).
|
|
eval_outs((V=F).Outs) :-
|
|
simplify_exp(F,NF),
|
|
V = NF,
|
|
get_outs(Outs).
|
|
|
|
%simplify_exp(V,V) :- !.
|
|
simplify_exp(V,V) :- var(V), !.
|
|
simplify_exp(S1+S2,NS) :- !,
|
|
simplify_exp(S1, SS1),
|
|
simplify_exp(S2, SS2),
|
|
simplify_sum(SS1, SS2, NS).
|
|
simplify_exp(S1*S2,NS) :- !,
|
|
simplify_exp(S1, SS1),
|
|
simplify_exp(S2, SS2),
|
|
simplify_prod(SS1, SS2, NS).
|
|
simplify_exp(not(S),NS) :- !,
|
|
simplify_exp(S, SS),
|
|
simplify_not(SS, NS).
|
|
simplify_exp(S,S).
|
|
|
|
simplify_sum(V1, V2, O) :-
|
|
( var(V1) ->
|
|
( var(V2) ->
|
|
( V1 == V2 -> O = V1 ; O = V1+V2 ) ; /* var(V1) , var(V2) */
|
|
( V2 == 0 -> O = V1 ; V2 == 1 -> O = 1 ; O = V1+V2 ) /* var(V1) , nonvar(V2) */
|
|
) ;
|
|
( var(V2) ->
|
|
( V1 == 0 -> O = V2 ; V1 == 1 -> O = 1 ; O = V1+V2 ) ; /* nonvar(V1) , var(V2) */
|
|
( V2 == 0 -> O = V1 ; V2 == 1 -> O = 1 ; V1 == 0 -> O = V2 ; V1 == 1 -> O = 1; O = V1+V2 ) /* nonvar(V1) , nonvar(V2) */
|
|
)
|
|
).
|
|
|
|
simplify_prod(V1, V2, O) :-
|
|
( var(V1) ->
|
|
( var(V2) ->
|
|
( V1 == V2 -> O = V1 ; O = V1*V2 ) ; /* var(V1) , var(V2) */
|
|
( V2 == 0 -> O = 0 ; V2 == 1 -> O = V1 ; O = V1*V2 ) /* var(V1) , nonvar(V2) */
|
|
) ;
|
|
( var(V2) ->
|
|
( V1 == 0 -> O = 0 ; V1 == 1 -> O = V2 ; O = V1*V2 ) ; /* nonvar(V1) , var(V2) */
|
|
( V2 == 0 -> O = 0 ; V2 == 1 -> O = V1 ; V1 == 0 -> O = 0 ; V1 == 1 -> O = V2; V1 == V2 -> O = V1 ; O = V1*V2 ) /* nonvar(V1) , nonvar(V2) */
|
|
)
|
|
).
|
|
|
|
|
|
simplify_not(V, not(V)) :- var(V), !.
|
|
simplify_not(0, 1) :- !.
|
|
simplify_not(1, 0) :- !.
|
|
simplify_not(SS, not(SS)).
|
|
|
|
|
|
run_bdd_solver([[V]], LPs, bdd(Term, _Leaves, Nodes)) :-
|
|
build_out_node(Nodes, Node),
|
|
findall(Prob, get_prob(Term, Node, V, Prob),TermProbs),
|
|
sumlist(TermProbs, Sum),
|
|
writeln(TermProbs:Sum),
|
|
normalise(TermProbs, Sum, LPs).
|
|
|
|
build_out_node([_Top], []).
|
|
build_out_node([T,T1|Tops], [Top = T*Top]) :-
|
|
build_out_node2(T1.Tops, Top).
|
|
|
|
build_out_node2([Top], Top).
|
|
build_out_node2([T,T1|Tops], T*Top) :-
|
|
build_out_node2(T1.Tops, Top).
|
|
|
|
|
|
get_prob(Term, Node, V, SP) :-
|
|
bind_all(Term, Node, Bindings, V, AllParms, AllParmValues),
|
|
% reverse(AllParms, RAllParms),
|
|
term_variables(AllParms, NVs),
|
|
build_bdd(Bindings, NVs, AllParms, AllParmValues, Bdd),
|
|
bdd_to_probability_sum_product(Bdd, SP),
|
|
bdd_close(Bdd).
|
|
|
|
build_bdd(Bindings, NVs, VTheta, Theta, Bdd) :-
|
|
bdd_from_list(Bindings, NVs, Bdd),
|
|
bdd_tree(Bdd, bdd(_F,Tree,_Vs)), length(Tree, Len),
|
|
writeln(length=Len),
|
|
VTheta = Theta.
|
|
|
|
bind_all([], End, End, _V, [], []).
|
|
bind_all(info(V, _Tree, Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :-
|
|
V0 == V, !,
|
|
set_to_one_zeros(Ev),
|
|
bind_formula(Formula, BindsF, BindsI),
|
|
bind_all(Term, End, BindsI, V0, AllParms, AllTheta).
|
|
bind_all(info(_V, _Tree, Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :-
|
|
set_to_ones(Ev),!,
|
|
bind_formula(Formula, BindsF, BindsI),
|
|
bind_all(Term, End, BindsI, V0, AllParms, AllTheta).
|
|
% evidence: no need to add any stuff.
|
|
bind_all(info(_V, _Tree, _Ev, _Values, Formula, ParmVars, Parms).Term, End, BindsF, V0, ParmVars.AllParms, Parms.AllTheta) :-
|
|
bind_formula(Formula, BindsF, BindsI),
|
|
bind_all(Term, End, BindsI, V0, AllParms, AllTheta).
|
|
|
|
bind_formula([], L, L).
|
|
bind_formula(B.Formula, B.BsF, Bs0) :-
|
|
bind_formula(Formula, BsF, Bs0).
|
|
|
|
set_to_one_zeros([1|Values]) :-
|
|
set_to_zeros(Values).
|
|
set_to_one_zeros([0|Values]) :-
|
|
set_to_one_zeros(Values).
|
|
|
|
set_to_zeros([]).
|
|
set_to_zeros(0.Values) :-
|
|
set_to_zeros(Values).
|
|
|
|
set_to_ones([]).
|
|
set_to_ones(1.Values) :-
|
|
set_to_ones(Values).
|
|
|
|
normalise([], _Sum, []).
|
|
normalise(P.TermProbs, Sum, NP.LPs) :-
|
|
NP is P/Sum,
|
|
normalise(TermProbs, Sum, LPs).
|
|
|
|
finalize_bdd_solver(_).
|
|
|