269 lines
5.7 KiB
Plaintext
269 lines
5.7 KiB
Plaintext
|
|
||
|
:- protocol(find_rootp).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Default protocol for root find algorithms.']).
|
||
|
|
||
|
:- public(find_root/5).
|
||
|
:- mode(find_root(+object_identifier, +float, +float, +float, -float), one).
|
||
|
:- info(find_root/5, [
|
||
|
comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error.',
|
||
|
argnames is ['Function', 'A', 'B', 'Error', 'Zero']]).
|
||
|
|
||
|
:- public(find_root/6).
|
||
|
:- mode(find_root(+object_identifier, +float, +float, +float, -float, -object_identifier), one).
|
||
|
:- info(find_root/6, [
|
||
|
comment is 'Find the root of a function in the interval [A, B] given a maximum aproximation error. Return the method used.',
|
||
|
argnames is ['Function', 'A', 'B', 'Error', 'Zero', 'Method']]).
|
||
|
|
||
|
:- end_protocol.
|
||
|
|
||
|
|
||
|
:- protocol(functionp).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Default protocol for real functions of a single real variable.']).
|
||
|
|
||
|
:- public(eval/2).
|
||
|
:- mode(eval(+float, -float), one).
|
||
|
:- info(eval/2, [
|
||
|
comment is 'Calculate the function value.',
|
||
|
argnames is ['X', 'Fx']]).
|
||
|
|
||
|
:- public(evald/2).
|
||
|
:- mode(evald(+float, -float), one).
|
||
|
:- info(evald/2, [
|
||
|
comment is 'Calculate the value of the function derivative.',
|
||
|
argnames is ['X', 'DFx']]).
|
||
|
|
||
|
:- end_protocol.
|
||
|
|
||
|
|
||
|
:- object(f1,
|
||
|
implements(functionp)).
|
||
|
|
||
|
% x^2 - 4
|
||
|
% 2.0
|
||
|
|
||
|
eval(X, Y) :-
|
||
|
Y is X * X - 4.
|
||
|
evald(X, Y) :-
|
||
|
Y is 2 * X.
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(f2,
|
||
|
implements(functionp)).
|
||
|
|
||
|
% x^7 + 9x^5 - 13x - 17
|
||
|
% 1.29999999999945448
|
||
|
|
||
|
eval(X, Y) :-
|
||
|
Y is X**7 + 9*X**5 - 13*X - 17.
|
||
|
|
||
|
evald(X, Y) :-
|
||
|
Y is 7*X**6 + 45*X**4 - 13.
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(f3,
|
||
|
implements(functionp)).
|
||
|
|
||
|
% (x - sqrt(2))^7
|
||
|
% 1.41421356237309537
|
||
|
|
||
|
eval(X, Y) :-
|
||
|
Y is (X - sqrt(2.0))**8.
|
||
|
|
||
|
evald(X, Y) :-
|
||
|
Y is 8*(X - sqrt(2.0))**7.
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(function_root,
|
||
|
implements(find_rootp)).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Multi-threading interface to root finding algorithms.']).
|
||
|
|
||
|
:- threaded.
|
||
|
|
||
|
find_root(Function, A, B, Error, Zero) :-
|
||
|
find_root(Function, A, B, Error, Zero, _).
|
||
|
|
||
|
find_root(Function, A, B, Error, Zero, Algorithm) :-
|
||
|
threaded_call(
|
||
|
( try_method(bisection, Function, A, B, Error, Zero)
|
||
|
; try_method(newton, Function, A, B, Error, Zero)
|
||
|
; try_method(muller, Function, A, B, Error, Zero)
|
||
|
)),
|
||
|
threaded_exit(try_method(Algorithm, Function, A, B, Error, Zero)).
|
||
|
|
||
|
try_method(Algorithm, Function, A, B, Error, Zero) :-
|
||
|
Algorithm::find_root(Function, A, B, Error, Zero).
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(bisection,
|
||
|
implements(find_rootp)).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Bisection algorithm.']).
|
||
|
|
||
|
find_root(Function, A, B, Error, Zero) :-
|
||
|
Function::eval(A, Fa),
|
||
|
Function::eval(B, Fb),
|
||
|
( Fa > 0.0, Fb < 0.0 ->
|
||
|
true
|
||
|
; Fa < 0.0, Fb > 0.0
|
||
|
),
|
||
|
X0 is (A + B) / 2,
|
||
|
Function::eval(X0, F0),
|
||
|
bisection(Function, A, B, X0, F0, Error, Zero).
|
||
|
|
||
|
bisection(_, _, _, Xn1, 0.0, _, Xn1) :-
|
||
|
!.
|
||
|
|
||
|
bisection(_, Xn1, Xn, _, _, Error, Xn1) :-
|
||
|
abs(Xn1 - Xn) < Error,
|
||
|
!.
|
||
|
|
||
|
bisection(Function, An, Bn, _, _, Error, Zero) :-
|
||
|
Xn1 is (An + Bn) / 2,
|
||
|
Function::eval(Xn1, Fn1),
|
||
|
Function::eval(An, FAn),
|
||
|
( Fn1*FAn < 0.0 ->
|
||
|
An1 is An,
|
||
|
Bn1 is Xn1
|
||
|
; An1 is Xn1,
|
||
|
Bn1 is Bn
|
||
|
),
|
||
|
bisection(Function, An1, Bn1, Xn1, Fn1, Error, Zero).
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(newton,
|
||
|
implements(find_rootp)).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Newton algorithm.']).
|
||
|
|
||
|
find_root(Function, Xa, Xb, Deviation, Zero) :-
|
||
|
X0 is (Xa + Xb) / 2,
|
||
|
newton(Function, X0, Deviation, Zero).
|
||
|
|
||
|
newton(Function, X0, Deviation, Zero) :-
|
||
|
Xn1 is X0,
|
||
|
Function::eval(Xn1, Fn1),
|
||
|
Function::evald(Xn1, DFn1),
|
||
|
Ac is -(Fn1 / DFn1),
|
||
|
newton(Function, Xn1, Deviation, Fn1, Ac, Zero).
|
||
|
|
||
|
% test deviation
|
||
|
newton(_, Xn1, Deviation, _, Ac, Xn1) :-
|
||
|
abs(Ac) < Deviation,
|
||
|
!.
|
||
|
|
||
|
% test solution
|
||
|
newton(_, Xn1, _, 0.0, _, Xn1) :-
|
||
|
!.
|
||
|
|
||
|
% calc
|
||
|
newton(Function, Xn, Deviation, _, Ac, Zero) :-
|
||
|
Xn1 is Xn + Ac,
|
||
|
Function::eval(Xn1, Fn1),
|
||
|
Function::evald(Xn1, DFn1),
|
||
|
Ac1 is (-(Fn1 / DFn1)),
|
||
|
newton(Function, Xn1, Deviation, Fn1, Ac1, Zero).
|
||
|
|
||
|
:- end_object.
|
||
|
|
||
|
|
||
|
:- object(muller,
|
||
|
implements(find_rootp)).
|
||
|
|
||
|
:- info([
|
||
|
version is 1.0,
|
||
|
date is 2006/4/21,
|
||
|
author is 'Paulo Nunes',
|
||
|
comment is 'Muller algorithm.']).
|
||
|
|
||
|
find_root(Function, Xa, Xb, Deviation, Zero) :-
|
||
|
Xc is (Xa + Xb) / 2,
|
||
|
muller(Function, Xa, Xc, Xb, Deviation, Zero).
|
||
|
|
||
|
muller(Function, Xa, Xb, Xc, Deviation, Zero) :-
|
||
|
Function::eval(Xa, Ya),
|
||
|
Function::eval(Xb, Yb),
|
||
|
Function::eval(Xc, Yc),
|
||
|
H1 is (Xb - Xa),
|
||
|
DDba is ((Yb - Ya) / H1),
|
||
|
Ac is (Deviation + 1),
|
||
|
muller(Function, Xa, Xb, Xc, Deviation, Ya, Yb, Yc, Ac, H1, DDba, Zero).
|
||
|
|
||
|
% complex
|
||
|
muller(_, _, _, complex, _, _, _, _, _, _, _, complex) :-
|
||
|
!.
|
||
|
|
||
|
% test deviation
|
||
|
muller(_, _, _, Xc, Deviation, _, _, _, Ac, _, _, Xc) :-
|
||
|
abs(Ac) < Deviation,
|
||
|
!.
|
||
|
|
||
|
% test solution
|
||
|
muller(_, _, _, Xc, _, _, _, 0.0, _, _, _, Xc) :-
|
||
|
!.
|
||
|
|
||
|
% calc
|
||
|
muller(Function, Xa, Xb, Xc, Deviation, _, Yb, Yc, _, _, DDba, Zero) :-
|
||
|
H2n is (Xc - Xb),
|
||
|
DDcbn is ((Yc - Yb) / H2n),
|
||
|
Cn is ((DDcbn - DDba) / (Xc - Xa)),
|
||
|
Bn is (DDcbn + H2n * Cn),
|
||
|
Rn is (Bn * Bn - 4.0 * Yc * Cn),
|
||
|
% complex
|
||
|
% write(Rn),
|
||
|
( Rn < 0.0 ->
|
||
|
muller(Function, _, _, complex, Deviation, _, _, _, _, _, _, Zero),
|
||
|
!, fail
|
||
|
; V is sqrt(Rn)
|
||
|
),
|
||
|
( Bn > 0.0 ->
|
||
|
Dn is (Bn + V)
|
||
|
; Dn is (Bn - V)
|
||
|
),
|
||
|
Acn is (-(2 * Yc / Dn)),
|
||
|
Xan is Xb,
|
||
|
Xbn is Xc,
|
||
|
Xcn is Xc + Acn,
|
||
|
|
||
|
Yan is Yb,
|
||
|
Ybn is Yc,
|
||
|
Function::eval(Xcn, Ycn),
|
||
|
|
||
|
H1n is H2n,
|
||
|
DDban is DDcbn,
|
||
|
muller(Function, Xan, Xbn, Xcn, Deviation, Yan, Ybn, Ycn, Acn, H1n, DDban, Zero).
|
||
|
|
||
|
:- end_object.
|