128 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
		
		
			
		
	
	
			128 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Perl
		
	
	
	
	
	
|   | % INEQUALITIES with MINIMIUM and MAXIMUM on terms | ||
|  | % 920303, 950411 ECRC Thom Rruehwirth | ||
|  | % 961105 Christian Holzbaur, SICStus mods | ||
|  | 
 | ||
|  | :- use_module( library(chr)). | ||
|  | 
 | ||
|  | handler minmax. | ||
|  | 
 | ||
|  | option(check_guard_bindings, on).        % for ~=/2 with deep guards | ||
|  | 
 | ||
|  | operator(700, xfx, lss). % less than | ||
|  | operator(700, xfx, grt). % greater than | ||
|  | operator(700, xfx, neq). % not equal to | ||
|  | operator(700, xfx, geq). % greater or equal to | ||
|  | operator(700, xfx, leq). % less or equal to | ||
|  | operator(700, xfx, ~=).  % not identical | ||
|  | 
 | ||
|  | constraints (~=)/2. | ||
|  | 
 | ||
|  | X ~= X <=> fail. | ||
|  | X ~= Y <=> ground(X),ground(Y) | X\==Y. | ||
|  | 
 | ||
|  | constraints (leq)/2, (lss)/2, (neq)/2, minimum/3, maximum/3. | ||
|  | 
 | ||
|  | X geq Y :- Y leq X. | ||
|  | X grt Y :- Y lss X. | ||
|  | 
 | ||
|  | 
 | ||
|  | /* leq */ | ||
|  | 
 | ||
|  | built_in     @ X leq Y <=> ground(X),ground(Y) | X @=< Y. | ||
|  | reflexivity  @ X leq X <=> true. | ||
|  | 
 | ||
|  | antisymmetry @ X leq Y, Y leq X <=> X = Y. | ||
|  | 
 | ||
|  | transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z. | ||
|  | 
 | ||
|  | subsumption  @ X leq N \ X leq M <=> N@<M | true. | ||
|  | subsumption  @ M leq X \ N leq X <=> N@<M | true. | ||
|  | 
 | ||
|  | 
 | ||
|  | /* lss */ | ||
|  | 
 | ||
|  | built_in     @ X lss Y <=> ground(X),ground(Y) | X @< Y. | ||
|  | irreflexivity@ X lss X <=> fail. | ||
|  | 
 | ||
|  | transitivity @ X lss Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z. | ||
|  | transitivity @ X leq Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z. | ||
|  | transitivity @ X lss Y, Y leq Z ==> X \== Y, Y \== Z | X lss Z. | ||
|  | 
 | ||
|  | subsumption  @ X lss Y \ X leq Y <=> true. | ||
|  | 
 | ||
|  | subsumption  @ X lss N \ X lss M <=> N@<M | true. | ||
|  | subsumption  @ M lss X \ N lss X <=> N@<M | true. | ||
|  | 
 | ||
|  | subsumption  @ X leq N \ X lss M <=> N@<M | true. | ||
|  | subsumption  @ M leq X \ N lss X <=> N@<M | true. | ||
|  | subsumption  @ X lss N \ X leq M <=> N@<M | true. | ||
|  | subsumption  @ M lss X \ N leq X <=> N@<M | true. | ||
|  | 
 | ||
|  | 
 | ||
|  | /* neq */ | ||
|  | 
 | ||
|  | built_in     @ X neq Y <=> X ~= Y | true. | ||
|  | irreflexivity@ X neq X <=> fail.  | ||
|  | 
 | ||
|  | subsumption  @ X neq Y \ Y neq X <=> true. | ||
|  | subsumption  @ X lss Y \ X neq Y <=> true. | ||
|  | subsumption  @ X lss Y \ Y neq X <=> true. | ||
|  | 
 | ||
|  | simplification @ X neq Y, X leq Y <=> X lss Y.  | ||
|  | simplification @ Y neq X, X leq Y <=> X lss Y.  | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* MINIMUM */ | ||
|  | 
 | ||
|  | constraints labeling/0. | ||
|  | 
 | ||
|  | labeling, minimum(X, Y, Z)#Pc <=>  | ||
|  | 	(X leq Y, Z = X ; Y lss X, Z = Y),  | ||
|  | 	labeling | ||
|  |     pragma passive(Pc). | ||
|  | 
 | ||
|  | built_in @ minimum(X, Y, Z) <=> ground(X),ground(Y) | (X@=<Y -> Z=X ; Z=Y). | ||
|  | built_in @ minimum(X, Y, Z) <=> Z~=X | Z = Y, Y lss X. | ||
|  | built_in @ minimum(Y, X, Z) <=> Z~=X | Z = Y, Y lss X. | ||
|  | 
 | ||
|  | min_eq @ minimum(X, X, Y) <=> X = Y. | ||
|  | 
 | ||
|  | min_leq @ Y leq X \ minimum(X, Y, Z) <=> Y=Z. | ||
|  | min_leq @ X leq Y \ minimum(X, Y, Z) <=> X=Z. | ||
|  | min_lss @ Z lss X \ minimum(X, Y, Z) <=> Y=Z. | ||
|  | min_lss @ Z lss Y \ minimum(X, Y, Z) <=> X=Z.  | ||
|  | 
 | ||
|  | functional @ minimum(X, Y, Z) \ minimum(X, Y, Z1) <=> Z1=Z. | ||
|  | functional @ minimum(X, Y, Z) \ minimum(Y, X, Z1) <=> Z1=Z. | ||
|  | 
 | ||
|  | propagation @ minimum(X, Y, Z) ==> X\==Y | Z leq X, Z leq Y. | ||
|  | 
 | ||
|  | 
 | ||
|  | /* MAXIMUM */ | ||
|  | 
 | ||
|  | labeling, maximum(X, Y, Z)#Pc <=>  | ||
|  | 	(X leq Y, Z = Y ; Y lss X, Z = X),  | ||
|  | 	labeling | ||
|  |     pragma passive(Pc). | ||
|  | 
 | ||
|  | built_in @ maximum(X, Y, Z) <=> ground(X),ground(Y) | (Y@=<X -> Z=X ; Z=Y). | ||
|  | built_in @ maximum(X, Y, Z) <=> Z~=X | Z = Y, X lss Y. | ||
|  | built_in @ maximum(Y, X, Z) <=> Z~=X | Z = Y, X lss Y. | ||
|  | 
 | ||
|  | max_eq @ maximum(X, X, Y) <=> X = Y. | ||
|  | 
 | ||
|  | max_leq @ Y leq X \ maximum(X, Y, Z) <=> X=Z. | ||
|  | max_leq @ X leq Y \ maximum(X, Y, Z) <=> Y=Z. | ||
|  | max_lss @ X lss Z \ maximum(X, Y, Z) <=> Y=Z. | ||
|  | max_lss @ Y lss Z \ maximum(X, Y, Z) <=> X=Z.  | ||
|  | 
 | ||
|  | functional @ maximum(X, Y, Z) \ maximum(X, Y, Z1) <=> Z1=Z. | ||
|  | functional @ maximum(X, Y, Z) \ maximum(Y, X, Z1) <=> Z1=Z. | ||
|  | 
 | ||
|  | propagation @ maximum(X, Y, Z) ==> X\==Y | X leq Z, Y leq Z. | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | % end of handler minmax |