which included commits to RCS files with non-trunk default branches. git-svn-id: https://yap.svn.sf.net/svnroot/yap/trunk@5 b08c6af1-5177-4d33-ba66-4b1c6b8b522a
		
			
				
	
	
		
			128 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
			
		
		
	
	
			128 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			Prolog
		
	
	
	
	
	
| % INEQUALITIES with MINIMIUM and MAXIMUM on terms
 | |
| % 920303, 950411 ECRC Thom Rruehwirth
 | |
| % 961105 Christian Holzbaur, SICStus mods
 | |
| 
 | |
| :- use_module( library(chr)).
 | |
| 
 | |
| handler minmax.
 | |
| 
 | |
| option(check_guard_bindings, on).        % for ~=/2 with deep guards
 | |
| 
 | |
| operator(700, xfx, lss). % less than
 | |
| operator(700, xfx, grt). % greater than
 | |
| operator(700, xfx, neq). % not equal to
 | |
| operator(700, xfx, geq). % greater or equal to
 | |
| operator(700, xfx, leq). % less or equal to
 | |
| operator(700, xfx, ~=).  % not identical
 | |
| 
 | |
| constraints (~=)/2.
 | |
| 
 | |
| X ~= X <=> fail.
 | |
| X ~= Y <=> ground(X),ground(Y) | X\==Y.
 | |
| 
 | |
| constraints (leq)/2, (lss)/2, (neq)/2, minimum/3, maximum/3.
 | |
| 
 | |
| X geq Y :- Y leq X.
 | |
| X grt Y :- Y lss X.
 | |
| 
 | |
| 
 | |
| /* leq */
 | |
| 
 | |
| built_in     @ X leq Y <=> ground(X),ground(Y) | X @=< Y.
 | |
| reflexivity  @ X leq X <=> true.
 | |
| 
 | |
| antisymmetry @ X leq Y, Y leq X <=> X = Y.
 | |
| 
 | |
| transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z.
 | |
| 
 | |
| subsumption  @ X leq N \ X leq M <=> N@<M | true.
 | |
| subsumption  @ M leq X \ N leq X <=> N@<M | true.
 | |
| 
 | |
| 
 | |
| /* lss */
 | |
| 
 | |
| built_in     @ X lss Y <=> ground(X),ground(Y) | X @< Y.
 | |
| irreflexivity@ X lss X <=> fail.
 | |
| 
 | |
| transitivity @ X lss Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.
 | |
| transitivity @ X leq Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.
 | |
| transitivity @ X lss Y, Y leq Z ==> X \== Y, Y \== Z | X lss Z.
 | |
| 
 | |
| subsumption  @ X lss Y \ X leq Y <=> true.
 | |
| 
 | |
| subsumption  @ X lss N \ X lss M <=> N@<M | true.
 | |
| subsumption  @ M lss X \ N lss X <=> N@<M | true.
 | |
| 
 | |
| subsumption  @ X leq N \ X lss M <=> N@<M | true.
 | |
| subsumption  @ M leq X \ N lss X <=> N@<M | true.
 | |
| subsumption  @ X lss N \ X leq M <=> N@<M | true.
 | |
| subsumption  @ M lss X \ N leq X <=> N@<M | true.
 | |
| 
 | |
| 
 | |
| /* neq */
 | |
| 
 | |
| built_in     @ X neq Y <=> X ~= Y | true.
 | |
| irreflexivity@ X neq X <=> fail. 
 | |
| 
 | |
| subsumption  @ X neq Y \ Y neq X <=> true.
 | |
| subsumption  @ X lss Y \ X neq Y <=> true.
 | |
| subsumption  @ X lss Y \ Y neq X <=> true.
 | |
| 
 | |
| simplification @ X neq Y, X leq Y <=> X lss Y. 
 | |
| simplification @ Y neq X, X leq Y <=> X lss Y. 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* MINIMUM */
 | |
| 
 | |
| constraints labeling/0.
 | |
| 
 | |
| labeling, minimum(X, Y, Z)#Pc <=> 
 | |
| 	(X leq Y, Z = X ; Y lss X, Z = Y), 
 | |
| 	labeling
 | |
|     pragma passive(Pc).
 | |
| 
 | |
| built_in @ minimum(X, Y, Z) <=> ground(X),ground(Y) | (X@=<Y -> Z=X ; Z=Y).
 | |
| built_in @ minimum(X, Y, Z) <=> Z~=X | Z = Y, Y lss X.
 | |
| built_in @ minimum(Y, X, Z) <=> Z~=X | Z = Y, Y lss X.
 | |
| 
 | |
| min_eq @ minimum(X, X, Y) <=> X = Y.
 | |
| 
 | |
| min_leq @ Y leq X \ minimum(X, Y, Z) <=> Y=Z.
 | |
| min_leq @ X leq Y \ minimum(X, Y, Z) <=> X=Z.
 | |
| min_lss @ Z lss X \ minimum(X, Y, Z) <=> Y=Z.
 | |
| min_lss @ Z lss Y \ minimum(X, Y, Z) <=> X=Z. 
 | |
| 
 | |
| functional @ minimum(X, Y, Z) \ minimum(X, Y, Z1) <=> Z1=Z.
 | |
| functional @ minimum(X, Y, Z) \ minimum(Y, X, Z1) <=> Z1=Z.
 | |
| 
 | |
| propagation @ minimum(X, Y, Z) ==> X\==Y | Z leq X, Z leq Y.
 | |
| 
 | |
| 
 | |
| /* MAXIMUM */
 | |
| 
 | |
| labeling, maximum(X, Y, Z)#Pc <=> 
 | |
| 	(X leq Y, Z = Y ; Y lss X, Z = X), 
 | |
| 	labeling
 | |
|     pragma passive(Pc).
 | |
| 
 | |
| built_in @ maximum(X, Y, Z) <=> ground(X),ground(Y) | (Y@=<X -> Z=X ; Z=Y).
 | |
| built_in @ maximum(X, Y, Z) <=> Z~=X | Z = Y, X lss Y.
 | |
| built_in @ maximum(Y, X, Z) <=> Z~=X | Z = Y, X lss Y.
 | |
| 
 | |
| max_eq @ maximum(X, X, Y) <=> X = Y.
 | |
| 
 | |
| max_leq @ Y leq X \ maximum(X, Y, Z) <=> X=Z.
 | |
| max_leq @ X leq Y \ maximum(X, Y, Z) <=> Y=Z.
 | |
| max_lss @ X lss Z \ maximum(X, Y, Z) <=> Y=Z.
 | |
| max_lss @ Y lss Z \ maximum(X, Y, Z) <=> X=Z. 
 | |
| 
 | |
| functional @ maximum(X, Y, Z) \ maximum(X, Y, Z1) <=> Z1=Z.
 | |
| functional @ maximum(X, Y, Z) \ maximum(Y, X, Z1) <=> Z1=Z.
 | |
| 
 | |
| propagation @ maximum(X, Y, Z) ==> X\==Y | X leq Z, Y leq Z.
 | |
| 
 | |
| 
 | |
| 
 | |
| % end of handler minmax
 |